
1

A Markov Decision Processing Solution to Natural Language
Querying of Online e-Commerce Catalogs:

The EQUIsearch Agent

Barry G. Silverman1, Mintu Bachann2, Khaled Al-Akharas2

1- Dept. of Systems Engineering, University of Pennsylvania, 2- Equalfooting.com
contact: barryg@seas.upenn.edu

February 2001

ABSTRACT
A long-standing problem facing the field of Natural Language Query (NLQ) is

that NLQ has been largely an academically appealing concept that isn’t able to scale up
to the complexities and performance demands of large-scale online catalogs (e.g., e-
commerce shopping sites). Instead, the major relational database management systems
and their applications rely on Conceptual Query (CQ) at best, and more often they use
simple conjunctive keyword search for relational shopping catalogs. This paper expresses
the NLQ of relational, online catalogs as an MDP problem that can be solved via policy-
iterative, dynamic programming methods. Our research further delineates how to reduce
the computational complexity of the MDP problem so as to obtain solutions in near real-
time. Finally, this article concludes with a demonstration of the technique as a
complement to CQ in a real world, large-scale relational catalog and with presentation of
statistical tests that verify that NLQ scales up with reasonable response times and with
better precision and quality than can be obtained with CQ approaches alone. The result is
that NLQ complements CQ and improves search of online shopping sites.

1) Introduction
This article describes a bot or agent that uses restricted natural language to help

users search product catalogs in large scale market exchanges. Market exchanges are sites
that offer a virtual integration across multiple vendors’ catalogs so that users can browse,
search, bid, finance, buy, and/or ship products. Market exchanges are a major form of e-
commerce in both the business to consumer and business to business segments: e.g., see
Amazon.com, Priceline.com, or Ariba.com among many others.

Despite some recent setbacks, the rapid rise of e-commerce is impressive – over
half of today’s 80 million web users shop for or buy products online, and business to
business purchasing is expected to rapidly eclipse that level [1]. However, in the rush to
provide online presence, many e-market sites have been built quickly, with little
infrastructure and capabilities needed to run such an e-business. As we all know only too
well, browsing, searching, and buying via online web catalogs can be a time consuming,
frustrating task. For example, [1] reports that over 80% of web shoppers have at some
point left e-markets without finding what they want and that 23% of all attempted e-
shopping transactions end in failure. Four of the top five failure modes are search-related
(i.e., page loading times, couldn’t find product, system crashed, had to call customer
service) although some of the blame needs to be shared by other causes as well, a few of
which are internet delays, overall website design, and reliability.

2

In general, several challenges confront one attempting to support search across
product catalogs. First, is the question of the incompleteness and inconsistency of the
product descriptions across sellers. Some descriptions include partial parameter
information (e.g., 2”, black) while others focus on how the product might be used, and
still others are highly terse and omit most details. Second is the difficulty of matching the
buyer’s search terms to the wording in the descriptive fields. Where exact term matches
don’t exist, one must consider issues related to word stemming, spelling errors,
abbreviations, synonyms, and related problems. A third challenge is that numeric
attributes are poorly and incompletely represented in these descriptions, yet some users
will want to search by size, weight, height, voltage, and many other quantitative
parameters. Unfortunately, the item description fields do not permit structured search of
attribute information. For example, if searching the item description field for 2” brushes,
a keyword search engine doesn’t know this is a width attribute and it would return hits on
any occurrence of 2 and brushes. Thus the engine will return 2 ½ inch brushes, brushes
made at 2 Downing Lane, and so on. Finally, there is the challenge of trying to figure out
the user’s intent and underlying search goal.

Earlier we mentioned that most users encounter search failure and frustration due
to sites having poor search and being unable to properly support them. Research shows
that about 15% of online search failures are due to spelling errors and another 40% are
due to customers using different terms from those in the website (e.g., patching vs.
concrete): e.g., see [1-4]. Because they can’t interpret the meaning of the users’ query,
search engines typically are tuned to bring back innumerable hits of everything even
remotely relevant, often burying the best choice deep within the list (or omitting it
altogether) and providing little help for then searching just the returned set of items. In
short, when users get in trouble, most shopping sites provide little in the way of “trouble
management”.

In this article, we describe progress to date with a search agent that uses a
customized form of limited natural language to try and determine “what the user means”,
not just “what they said.” This is also variously called either “conceptual search” or
“natural language querying (NLQ)” of databases and it is intended to provide “trouble
management” capability for market exchange (or single company) sites that don’t
currently have it. Actually, [26] points out some interesting distinctions between
conceptual query (CQ) vs. natural language query, where the former tend to deal with
term semantics and ambiguities, while the latter attempt to parse the entire query string
and may even engage in interactive conversation about the query to confirm its
interpretation. According to [26], CQ languages [e.g., 27-29] can be improved by adding
a parser with a grammar restricted to the domain of the database. Such parsers have less-
than-general interpretation power, but still can offer much needed trouble management
improvements and in helping the interface conform to the user’s language. Several
systems purport to provide these extensions such as [26, 30-32], and some of them offer
formal slotted grammars (with semantically typed slots) for merging the natural language
approach atop conceptual querying.

Proponents of pure CQ in turn argue that the natural language extensions tend to
be impractical, and indeed none of the NLQ systems just cited have been evaluated on a
large scale. They argue that the “natural language problem” is too difficult and remains
unsolved on any reasonable scale. As a result, most large scale relational database

3

management products (eg, Oracle, Sybase, DB II, or Alta Vista Search Engine) that are
widely used by market exchanges and other large scale e-commerce sites, include CQ
features for those who choose to deploy them, but exclude NLQ. There are some smaller
(less formally defined) NLQ systems that appear to work atop specific databases or
environments. One such example is Microsoft English Query [5] which applies natural
language searching ideas to catalogs built atop their own proprietary software products
(i.e., SQL Server and ASP or COM), or EasyAsk which likewise only works on
Microsoft NT machines [6]. Also, there is a push to add natural language self-help or
chatterbots to many e-commerce websites, but these bots handle site navigation and
document retrieval issues, and they are entirely incapable of processing catalog or
database search requests, a fact that adds fuel to the arguments that only conceptual query
is scalable: e.g., see [7-10]. In sum, there are no examples of NLQ working in large scale
e-commerce catalog shopping sites, and one is tempted to believe the proponents of CQ
rather than NLQ.

Specifically, there are three hypotheses that are worth examining and that we will
attempt to explore in this paper:
• H1: While it may be work as a novelty item in specialty applications, NLQ is not

scalable to the complexity of databases found in large scale market exchanges.
• H2: Even if NLQ could be scaled up to work in market exchanges, its query parsing

and processing time would be unacceptable compared to the best CQ approaches.
• H3: Since natural language is so ambiguous and difficult to parse, the effectiveness or

quality of the results from NLQ will never equal that of CQ.

Creating an NLQ agent that is scaleable, fast, and effective would be a useful
complement to many of the catalog CQ products that already exist. This article explains
our research toward this end, and concludes with empirical tests of these hypotheses to
allow the reader to determine what progress has been made to date. Briefly, our approach
is similar to [26] in that we both use parsers, information extraction approaches, and
semantically-typed grammar slots that are domain specific. But that’s where the
similarities end, and unlike systems such as [26], our approach uses Markovian decision
processing rather than formal logic. Also, we have done away with some of the less
practical NLQ proposals in the literature, such as conversational feedback and
explanation of the translation of the query to be user prior to executing the query. Instead
we converse with the user in the fashion that CQ systems use -- after the query via the
display either of hits or of pre-canned, limited explanations of query failures. In the end,
we will test the three hypotheses via a relatively large scale implementation, and we’ll
examine results from several timing and effectiveness evaluation tests as well.

1.1) Definition of an Online Shopping Catalog
Before going further, it is worth elaborating on the definition of an online catalog

and some of the search challenges it represents. An e-commerce catalog is the heart of a
shopping site and it holds information on all the products one can buy at that site. The
catalog is browsable like other website contents, but unlike the other contents, it usually
is stored in a relational database product as are the transactions such as bid, buy, ship, etc.
On the face of it, the reason a relational database is used is that the catalog is far more
structured than the HTML documents typically found on a website. However, the degree

4

of structure is relative, and most product catalogs do not have nearly enough structure for
search to work at its optimum.

We start by describing the general structure of product catalogs and the search
challenges they pose, and then proceed to a discussion of the actual catalog instantiated
for our testing. The basic logical structure of a product or item catalog may be described
as four sets of Relations, R = {R1, R2, R3, R4}, three of which we discuss here.
The fourth concerns the fields that are used in processing transactions:

Product Hierarchies (R1) – These are the fields supplied by the website when
users try to browse the catalog. As a result, R2 = <C1, …, CN> is a tuple of multi-level
trees that taxonomize the contents of the catalog and whose leaf nodes point to actual
products in the catalog. When merging each of the CN catalogs of multiple vendors on a
dynamic, continuing basis, market makers encounter almost overwhelming taxonomic
challenges to constructing R1, which in turn pose browse and search design concerns.

Product Descriptions (R2) – This relation is a tuple, R2 = <D1, …, DK>, of
k=1,K free text descriptions that suppliers create and which hold the information about
products that suppliers believe users need. The DK are the document fragments utilized
by search engines to support user queries and product search commands. Interestingly,
while catalogs include a field called “product name”, most suppliers omit this field
believing the “description” field is sufficient. When merging 100,000s and 1,000,000s of
products, market-makers have no resources to supply this or other missing information,
or to standardize free text descriptions the suppliers provide in the DK. This makes for
some formidable search engine design challenges – ones the field has yet to entirely
overcome.

Product Attributes and Values (R3) – The catalogs also hold numerous
parameters about each product (e.g., color, weight, length, manufacturer, price, condition
(new, used), availability, reviews, etc.). This is the information that is used to support
parameter search and sorts such as by price or size or location. A universal feature of
catalogs is that there are many products, the product lines are continually changing, and
each of the 1,000s of leaf node categories of products has a different set of attributes. As
a result, attributes are not stored as fields of a table. Rather, the m=1,M categories of
attribute names are stored as data items as are their value settings. Thus R3 = <<A31,
V31>, …, < A3M, V3M>> where A and V are vectors of a-v pairs that are equi-length for
any given category. This and large numbers of unfilled in attribute fields are stumbling
blocks few DSS designer have yet to fully eliminate in trying to support attribute or
parameter search.

Shopping catalogs often include many dozens of tables (some have 1,000s) in
order to support all the services and user support. In order to improve runtime
performance, a denormalized field called a “munge” is often used as the target for the
search engine. This munge places into its sub-fields copies of each of the searchable
fields of the catalog such as item name, item ID, category name and ID, model or part
number, description, price, maker, condition, and all attribute-value pairs. In effect the
munge is like a document on each product in the catalog. Since most search algorithms
can’t infer the sub-fields to search, they will search the entire munge. For example,
keyword search will search across all sub-fields of the full munge for a strict match on
terms, while CQ will traverse the same ground but with the ability to look for synonyms,
alphabetically similar terms, and related conceptualizations. NLQ, in turn, is the only

5

search strategy that infers the labels or field names of each token in the query string and,
hence, can then send the (conceptual) search to the precise “subfields” of the catalog in
which the query’s tokens should exist provided they are in the database. In general,
however, the challenges mentioned at the outset of this section cast into doubt the ability
of any of these search strategies to be entirely effective in product catalogs.

1.2) Measuring Query Effectiveness (recall, precision)
When one talks about improving online search, it is important to have a way of

measuring progress and of calibrating improvements. Ideally, any measure should be
both scientifically grounded and reflect improvement from the user’s perspective.
Fortuanately, there are several decades of information retrieval “effectiveness” research
to turn to for suitable metrics, though that literature is by no means settled on what is the
best metric [35-39]. There, effectiveness is defined as a measure of the ability of the
system to satisfy the user in terms of the relevance or pertinence of items retrieved.
Pertinence is assumed to mean 'aboutness' and 'appropriateness', that is, a document is
ultimately determined to be pertinent or not by the user (or us). It is helpful at this point
to introduce the ubiquitous 'contingency table’ shown in Table 1.

Table 1 – “Contingency Table” For Deriving Effectiveness Metrics

A large number of measures of effectiveness can be and are derived from this table. To
list but two of the most common ones:
• Precision is a measure of how well a system finds ONLY pertinent documents on a

searched for query. Thus precision is the ratio HITS:(True HITS + False Positives)

PRECISION = RP/(RP+RI)
= Pr(P|R) = conditional probability of being pertinent given its retrieved

• Recall is a measure of how well an information search and retrieval system finds ALL
pertinent documents on a searched for topic, even to the extent that it includes some
irrelevant documents. Thus, Recall is the ratio HITS:(True HITS + False Negatives)

RECALL = RP/(RP+NP)
= Pr(R|P) = conditional probability of being retrieved given its pertinent

N I
B e n e f i t (B 2)

N P
C o s t (C 2)

T y p e I I e r r o r s

N o t - R e t r i e v e d
(N = N P + N I)

R I
C o s t (C 1)

T y p e I e r r o r s

R P
B e n e f i t (B 1)

“ H i t s ”

R e t r i e v e d
(R = R P + R I)

I r r e l e v a n t
(I = R I + N I)

P e r t i n e n t
(P = R P + N P)

N I
B e n e f i t (B 2)

N P
C o s t (C 2)

T y p e I I e r r o r s

N o t - R e t r i e v e d
(N = N P + N I)

R I
C o s t (C 1)

T y p e I e r r o r s

R P
B e n e f i t (B 1)

“ H i t s ”

R e t r i e v e d
(R = R P + R I)

I r r e l e v a n t
(I = R I + N I)

P e r t i n e n t
(P = R P + N P)

T o t a l C a t a l o g = R P + R I + N P + N I

6

Most of the information retrieval literature defines precision and recall as the
simple ratios defined here. Swets in [37] objected to these ratios as failing to be grounded
in statistical decision theory. He redefined them as approximations to conditional
probabilities, which is the second line of each equation above. This is a useful step, and
following this idea, we have introduced the notion of Type I (false positive) and Type II
(false negative) errors into Table 1. Swets also introduced the idea of benefits and costs
and we reproduce that in Table 1, however, neither Swets nor the ensuing literature have
generated a suitable way of measuring these monetarily. So, most evaluations stick with
the recall and precision metrics.

The Cranfields Tests [35,36] in the 1960's claimed to find an inverse relationship
between recall and precision. As recall rate went up, precision rate fell; as precision rate
rose, recall rate went down. However, these co-variances are only loosely connected and
are largely a pragmatic effect. In theory, it is not necessary and one could devise a search
algorithm that maximizes hits while minimizing both Type I and II errors. As a result, a
number of researchers have attempted metrics that are composites and serve as a single
measure of effectiveness: e.g., see [38, 39] for a survey. The simplest of these is just
[SUM = RECALL + PRECISION], although this has no theoretical basis to it. Several
others do exist that have theoretical rigor, however, those either appear computationally
over-complex, or they tend to ignore Recall, or at least they omit consideration of the
False Negative rate: e.g., see [38, 39].

We are interested in a simple composite with some degree of rigor to it. Another
field that has some metrics we find suitable is that of statistical quality control. There
they measure defect rates and both Type I and II errors. The metric that seems most
suited to us is one where utility of the search approaches unity as the error rate falls to nil:

QUALITY = 1.0 – {ERROR RATE}

 FALSE POSITIVES + FALSE NEGATIVES
= 1.0 –

 HITS + FALSE POSITIVES + FALSE NEGATIVES}

= 1.0 – {(RI + NP)/ (RP + RI + NP)}

We purposely label this as quality, since we also plan to use it as the surrogate of the net-
benefits (benefits – costs) to the user of the search engine. Finally, it will serve a third
purpose, that of being the reward value we seek to maximize within the Markov Decision
Process, a topic taken up in the next section.

2) System Architecture and Algorithm
This section begins with an overview of how the agent is configured and proceeds

to elaborate the algorithms used to try and improve search quality. Specifically, the
search agent in this article tokenizes an initial search string or phrase typed by the user at
their browser (left side of Figure 1), and then acts as an intelligent interpreter for
traditional search engines, such as Intermedia from Oracle or the Alta Vista Search
Engine (AVSE) on the right of the Figure. As a language or meaning “broker,” the

7

agent’s intelligent interpretation efforts iteratively label each token of the query and
subsequently modify these labels by applying a sequence of transformation rules which
attempt to reduce the remaining ambiguities and residual errors left in place by the
previous rules. In this regard, the Search Agent is a markovian decision process or a finite
state automaton, technology that is commonly used in message understanding and in
language understanding, but which is relatively untested for the searching of electronic
commerce catalogs over the web.

For this to work, first, one must accept that from the agent’s perspective, each
search string or query produced by a different user is a partially observable instantiation
of the current state of the world. The agent’s job, then, is to discover the meaning of each
query, by parsing it within a limited sub-grammar. This morphosyntactic parsing is
accomplished by attempting to label the state of each term in the query, where state is
defined within the sub-grammar. Second, for this to work, one must have the sub-
grammar. The sub-grammar we created here is called “OAV Triplet Grammar.” OAV
triplets, or object-attribute-value triplets, captures the underlying meaning of searches in
product catalogs even though product catalogs may contain many tables of features and
parameters of a given product. Specifically, in product catalog domains, searches are
usually for objects with attributes of a certain value. This is something of a noun phrase
that includes adjectives. For example, some triplets in various orderings might be: ‘mini
sized amps’ or ‘hammer colored red’. The order of the triplets is a task for the agent to
discover. Thus a common order variant occurs where the O is sought initially and then
the AVs are subsequently used for comparison and search refinement (bolt cutter
followed by size, price, and availability). Even more common are searches for one or
more V of a given type of O where the A is suppressed (eg, AA Eveready batteries, ½”
no.8 slotted screws, or desk chair).

Figure 1 – Overview of The EQUIsearch Agent as a Meaning Translator In the
Interface Between Users and Traditional Search Engines

Buyer at
Browser

Commercial
Search
Engine

(Retrieval)

Product
Catalog

(R)

Intermed.
Feedback
(eg, Spell check)

Search
Query, QT SQL

Query

Intermed.
Results
(eg, Synset results)

T
o
k
e
n
i
z
e
r

S
Q
L

B
u
i
l
d
e
r

EQUIsearch Agent
(Extract, Refine Query)

Manager/
Parser

(Min E(s))

Dictionaries
•Strip
•Spell

•Synset

Catalog KBs
•Objects

•Attributes
•Values

•Measurmts

Query
Transfor-

mation
Rulesets

(Φr)

Hits

Iterations

Items
Categories

User Interface

Offline KB Builder

Search Table (Djk)

8

In addition to the rules of the sub-grammar, one obviously must also derive the
vocabulary for any given instantiation or catalog. In shopping domains, the vocabularies
can be derived for objects and another for attribute-value pairs by crawling the fields of
the relational catalog database and by extracting all unique terms (item names are object
name, attributes are parameter names, and parameter settings are attribute values). We
show this tool for crawling the catalog and extracting the KB values at the base of Figure
1. Using such a tool, one can readily construct the sub-grammar and its vocabulary for
any given electronic catalog. The result is stored in KB lookup tables (base of agent in
Figure 1) so it can be utilized by transformation rules of the phrase parser to infer and
insert O, A, and V labels onto the various terms of any given search phrase. Also at the
bottom right of the agent box are shown other rules (Φr) that are used to infer OAV
meanings from queries.

It is not sufficient that the vocabulary extracted from the catalog provides 100%
coverage of the lexicon of a given shopping site if the users of the site are unaware of that
lexicon or prone to misusing it. To help overcome such semantic impasses, the tokens in
the query string are first stemmed, subsequently expanded for synonyms, and ultimately
checked for spelling (bottom left of the agent in Figure 1). This is supported by adding
the dictionaries and KBs across the base of Figure 1. Each of these items across the base
of the agent requires major investment by a given e-commerce site as the lexicons are
often unique and poorly covered in off-the-shelf dictionaries. These items must be
developed and adapted to each new catalog application. So a generic contribution is not
only their contents, but also the infrastructure to acquire and maintain them in each new
application. To the extent these steps can be automated, that is a direct payoff in
manpower reduction and time to market with better search capability.

2.1) How the EQUIsearch Agent Manager Works
We make the assumption that a Markov decision process is suitable to analyze the

semantics and morphosyntactics of the user’s query. Specifically, Markov decision
processes (MDPs) model decision theoretic planning problems in which an agent must
make a sequence of decisions to maximize its expected utility given uncertainty in the
effects of its actions and its current state. At any moment in time, the agent is in one of a
finite number of states (s=1,S) and must choose one of a finite set of actions (a=1,A) to
transition to the next state. More specifically, optimizing a Markov decision process was
defined in [11-14] as a dynamic programming problem that maximizes expected,
discounted rewards across future periods as follows:

T

Max V* = E [Σ δt U(st, at)] (1)
 t=1

where,
V* = optimum value point (in terms of “quality” as defined earlier)
E[] = expected value of the discounted future reward over iterations t=1,T
δt = discount factor (0<δ t <1, but in short horizon problems let δ t =1)
U() = reward function or utility (QUALITY) from selecting action at at state st

9

Often this formulation is expanded to a “value iteration” formulation where one
loops across iterations (t=1,T) and for each iteration, one then loops across all states
(s=1,S) to find the action or set of actions that maximizes both current and future rewards
so as to avoid local optima: e.g., see Howard(1960), Monahan(1982), or White(1987).
This expansion is captured by finding the maximal value of the following function after
testing all possible actions, a=1,A:

 S
Zt(s,a) = U(st, at) + δ Σ π(st, at, st+1) Vt-1

*(st+1) (2)
 st+1=1

where,

π(st, at, st+1) = the transition probability of being in state st+1 immediately after taking
action at from state st

Vt-1
*(st+1) = Zt-1(st+1,argmaxa(Zt-1(s,a)) where argmaxa finds the maximal quality action

Thus, recursive equation (2) summarizes the standard computable “value
iteration” formulation of the dynamic programming optimization of a Markovian decision
process. It is necessary to adapt this into a formulation that can be solved in catalog
search domains. To do so, we first must define the permissible states and actions, the
reward function, the transition probabilities, and the other terms of the equation within
the context of catalog search problems.

Figure 2 displays one of many possible orderings of the permissible states,
actions, and transition probabilities. Actually, these are illustrative and somewhat of a
simplification, since there is more looping possible between iteration levels (t) on the
diagram than is actually plotted. Also, the transition probabilities displayed here are
approximations for a particular market exchange. They must be computed anew for each
application based on frequencies in transaction log files from that application’s catalog.

According to the Markov Decision Process theory, we must compute the expected
utility function or a set of decision triggers at each state (the policy table) that drives the
agent to seek the optimal path through the state transition network. That is, we want the
agent to chose argmaxa for each state such that it tries to optimize utility. In theory, the
agent could follow this utility maximizing scheme to achieve the desired argmax result.
That is the “policy iteration” approach within dynamic programming. However, the
computational complexity of dynamic programming updates of partially observable
MDPs is at least P-complete which is intractable for large problems unless a number of
restrictions are imposed. In practice we have determined the “steady state” policy set for
the agent: i.e., a “policy matrix” that the agent uses to select specific actions in a given
order when the query is in a given state as portrayed in Figure 2. This approach allows
the MDP to be independent of initial state of the query and it is widely used to reduce the
computational complexity of Markov Decision Processes: e.g., see [12-16]. Another
simplification we make is that since reward assignments are implicit within policy
iteration, we do not bother to have the agent compute them for each query, a change that
has no impact on finding the optimal argmax resultant. Finally, the number of iterations
are bounded by the number of rules that are authored in Φr, a number that is often less
than a few dozen, and many of which are lumped for runtime purposes into a few
iterations at most.

10

Figure 2 - Permissible States and Actions of the Agent when viewed as a Markov
Decision Process (S=15, A=11). NOTE: This view displays the computationally
optimized stationary policies for all actions (at) and transition probabilities, π.

 ACTIONS LEGEND (at):
a1 = tokenize, strip, and stem a new user query, Qi, from the server
a2 = pop a token from the Qi’ string
a2’= return for another token if Qi’ not empty
a3 = test the token against the OAV triplet vocabulary stored in the KBs
a4 = test unknown-meaning tokens against rules in Φr

a5 = build SQL query (conjunctive keyword search of munge on stemmed tokens
expanded by synonyms and with OAV field assignments for all tokens)

a6 = build SQL query (conjunctive keyword search of munge on stemmed tokens
expanded by synonyms and with OAV field assignments as known)

a7 = build SQL query (conjunctive keyword search of munge on stemmed tokens
expanded by synonyms. This is also known as V1.3 search)

a8 = collect query results in the form of returned category and item IDs & names, and load display pages
a9 = collect query results in the form of returned category and item IDs & names, and load display pages along with a warning

that meaning was not determined, and blind keyword search was used
a10 = invoke spell checker, and if spelling is wrong then load spelling suggestions, else load no hits page
a11 = push display pages to web server for user viewing

Before turning to that evaluation topic, it is probably worth it to provide a little
more detail about the agent’s actions during each of the iterations.

2.2) Agent Actions in Iteration 1 (t=1)
Action 1 of Iteration 1 consists of the standard morphosyntactic extraction steps

intended to transform the raw search string, Q, into a set of stripped and stemmed tokens
that form the transformed query string, Q’. To facilitate the transformation process the
agent first tokenizes the terms in the search phrase, Q. Next it eliminates stop or strip
words (e.g., “find me a”, “get all”, and opening and closing quotes) by comparing the
search string to a negative dictionary or a strip word list. Finally, the agent applies a

Hits
= blindly

found Loaded
Spelling

=Bad

a11

Meaning
=unknown

a4

Meaning=Null
Hits=Null

Spelling=Null

a3

END

START

No
hits

found

stuck
0.01 Loaded

“No Hits”
Page

a11

hits
=optimal

Loaded
Catalog/Item

Pages

a11

All
meanings
=known

a4

hits
= near
optimal

a11

Some
meanings
=known

a4

Tokenized,
Stemmed

Q i’

a1

a2

Loaded
Catalog/Item

Pages plus
Warning

0.75

0.15 0.34

0.65

a4

a4

stuck
0.01

stuck
0.01

stuck
0.01

1.0
1.0

1.0

1.0

0.99

0.99

0.99

stuck
0.01

0.1

0.1

0.1

0.9

0.9

0.29

0.5

0.2

a3

a3

a7

a5

a6

a7

a1 0

a9

a8

a8

a1 0

t=1
Prepare Q’

t=2
Test SIM(Q’,KB)
and label terms

t=5
Display results
over Internet

t=3
Build SQL for commercial
engine’s test of SIM(Q’, D)

t=4
Collect/organize

results from engine

11

stemming algorithm uses Porter [17] modified to also strip out all numerals. The result of
these steps, as already mentioned, is the query string the agent labels as Q’. The stripped
numerals are returned to the query during the SQL build step as will be explained below.

In order to perform subsequent actions on the tokens within the transformed
query, the agent next defines a query string Q’(λ, h, Spelling) and its facets or tags as:

Q = the user’s original query string
Q’ = the query string after being transformed by the agent
I = number of tokenized terms in the search string
λ = the λ=1,Λ meaning tags that a query or a term, i, might assume after

transformation
h = the counter of the H hit tags of a term (initially NULL, then transitioning

to one of 4 possible labels shown in the t=3 column of Figure 2)
Spelling = a flag that assumes the value of NULL initially, and then Bad or Good

as a result of action a10 in t=3

When discussing the entire query, Q’(λ, h, Spelling), we say that Λ=4, and the
five tags are NULL, UNKOWN, SOME KNOWN, ALL KNOWN. Here NULL is a
assigned at the outset, whereas UNKNOWN is a specific label or tag that implies the
string has failed all attempts to label it’s tokens. The SOME or ALL KNOWN tags are
string status indicators based on individually testing each token in the string. To assign
meaning tags to individual tokens, we refer to the ith token and its facets as Q’i(λ, h,
Spelling). In this case, Λ=5, and the five permissible token level tags are NULL,
UNKOWN, OBJECT, ATTRIBUTE, or VALUE.

2.3) Agent Actions in Iteration 2 (t=2)
The primary agent activity in this iteration is to test the individual tokens of the

query string against the knowledge bases that hold the catalog’s objects, attributes, and
values expressed within the vocabulary of the sub-grammar.

The agent then proceeds to display all categories containing hits from keyword
searching of the KB fields. This is defined as a match between the i= 1,I terms in the
query string (Q’i) and their counterparts somewhere in the j=1,J terms in the kth
knowledge base (KBjk) being searched. Here there are three KBs, one each for objects
(k=1), attributes (k=2), and values (k=3). If the match is exact, the similarity (Sim) equals
unity and the pointer to the KB or product is returned.

Let us state this as:

 I
Sim (Q, KBk) = { Σ Sim(Qi , KBji) }/ I (3)

i =1

Subject to,
 I

ε(s) = { Σ ei(s)}/ I
 i=1

12

ei(s) = { 1- Sim(Qis’, KBjk
’) }

Qis’ = Φr(Qi’)

Stopping rule: ε(s) < β1 or, ΤΙΜΕ = β2

Where,
I = number of terms in the search string
s = current state counter for the query string
s-1 = prior state before latest rule transformations

Sim(Qis’, KBjk) = score of the ith query token against the j=1,J terms of the kth
Knowledge Base. Score is (0,1) depending on whether a match occurs.
A perfect match occurs where Sim(Qis’, KBjk) = 1.

Φr = application of one of a number of possible miscellaneous rules that changes
the meaning, λ, of the query string by tagging or labeling some terms
within it (see action a4 below).

β = threshold for error allowed -- generally et(s) is an on-off function or (0,1)
TIME = maximum search time before the web-logic engine will terminate the

request

Action a4 – Run Miscellaneous Rules (Φr):
Testing the Sim(Qi’, KBjk) corresponds to action a3. However, one can add all

kinds of domain-specific rules for any given catalog that will provide further
transformations of the individual tokens within a query string in order to increase the
likelihood that Sim(Qi’, KBjk) will be non-zero. In the hardware domain some of these
pertain to recognizing and labeling the notation. For example, a number followed by ‘ is
feet or “ is inches, while a number followed by lb is a weight. Likewise, the term “made
by” is a two value predicate often preceded by an object and superseded by a
manufacturer (so C-H Cutler Hammer or just Hammer can be discerned as the object or
the maker). Or other rules might be added about two measures linked together, like ½ x 8
for screws. One of the advantages of the rule-based approach is that rules can be added
on the fly, and as more get added, the better the search engine becomes. Thus one can
peruse domain content sources and manually extract rules over time, or one can try to
deploy machine learning approaches and add newly discovered patterns as convenient.

2.4) Agent Actions in Iteration 3 (t=3)
The primary activity in this iteration is for the agent to use the object, attribute,

and value tags plus findings from rules in t=2 to construct an intelligent SQL search
statement that the commercial engine can use to test the query string against the catalog
itself. Any token that is tagged retains its tag and the commercial engine uses this to
restrict the fields it searches. In many cases numerals have already been returned to the
search string and labeled or tagged by rules. Where all tokens in the string are tagged, the
agent calls this the optimal search, and performs action a8. Even in this case, the tokens

13

are expanded via synonyms since the users’ meaning might be broader than their term
usage (e.g., a search for “safety glove” includes “protective mitten”, “work glove”, and so
on).

Where the set of tokens and numerals in the query are only partially tagged,
action a8 constructs a SQL statement that searches the specific fields for the tagged
tokens, and searches the “munge” or entire search table for the remaining tokens. Again,
all tokens are expanded via synonyms. For those unfamiliar with the jargon, “munge” is a
construct provided by the commercial database systems. It is a join of all the database
fields that one wishes to search into a single de-normalized table. Typically, one places
quite a few fields into this munge such as product ID, name, description (short and long),
and select attributes such as manufacturer name, price, and so on. When tokens are
labeled, only the respective fields of the munge table (also called the search policy table)
are queried. Otherwise, keyword matching is attempted for all expanded, untagged tokens
across the full range of fields in the munge. If none of the tokens in the query string are
tagged at all, the agent calls this blind search of the munge, and invokes a7 which
attempts a conjunctive search on the tokens and their expansion sets.

Our concept of how the commercial engine uses the SQL query built and invoked
by a5, a6, or a8 is as follows. We believe the commercial search engine sorts through and
finds all categories containing hits from searching of the munge fields. This is defined as
a match between the i= 1,I terms in the query string (Q’i) and their counterparts
somewhere in the m=1,M fields in the nth database record (Dmn) being searched. If the
match is exact, the similarity (Sim) equals unity and the product ID and its browse tree
category ID are returned. A perfect match occurs where Sim(Q’, D) = 1. In general (non-
catalog) web searching, most engines will return partial matches often by reducing the
threshold to some reasonable number (Sim(Q, D)<1), but they will sort the documents in
descending score so those closest to 1.0 will appear first. Also, when searching on the
web, S(Q, D) is most often computed as a weighted dot product of the respective term
vectors, Qi and Dmn. In catalog search, something equivalent to this can be used
depending on the preferences of the market exchange or site proprietor. In our experience
a strict keyword match is often utilized (albeit on synonyms), where the boolean AND is
assumed between all the terms of the vector Q’i. Thus, a variant of equation (3) is often
utilized in the form shown here:

 I
Sim (Q, Dk) = { Σ Sim(Q’i , Dmn) }/ I

i =1
Subject to,

 I (4)
ε(s) = { Σ ei(s)}/ I

 i=1

ei(s) = { Sim (Qis-1’, Dmn
’) }

Stopping rule: ε(s) < β1 or, ΤΙΜΕ = β2

Where,
I = number of terms in the search string
s = current state counter for the query string

14

s-1 = prior state before latest rule transformations
Dmn = the m=1,M field in the nth “record” being searched.
β = threshold for error allowed - generally et(s) is an on-off function or (0,1)
TIME = maximum search time before web-logic engine terminates the request

2.5) Agent Actions in Iteration 4 and 5 (t=4,5)
At this juncture, the agent is seeking to load the appropriate display pages to send

to the user. Under a8, the agent is fairly assured that a reasonably relevant response has
been located (expectation is that “precision” is fairly high) and, under a11, the user is sent
a summary of the number of hits sorted by browse tree category. The user can inspect
these through subsequent browsing interactions.
 By contrast, if a9 was just run, the agent realizes that a blind, conjunctive
keyword search of the munge just transpired and that any hits may or may not contain the
relevant products. Thus precision is likely to be low and recall fairly high (many hits
returned). So the agent prepares a warning to send at the top of the page it displays to the
user as follows: “We have been unable to locate your exact item (possibly due to
mislabeling in our catalog). You might find your item in the following near hits:” The
rest of the page then contains a listing that is identical in format to that of the high
precision case – i.e., a summary of the number of hits sorted by browse tree category.

When the commercial engine’s SQL search of the catalog is completed and there
is no direct hit in the database, we assume that the stopping rule in (1) has failed such that

Stopping rule: et >= β1 or, ΤΙΜΕ > β2

In this case, our agent branches between one of two actions. The agent first checks for
mis-spelled words (action a10). This can be set to happen earlier in the chain (e.g., in
iteration 1), however, our experience to date indicates this is a fruitful place for this
action to occur. If mis-spellings are detected, they are flagged and a display page is sent
to the user requesting them to accept the suggested or alternate corrections, or to add their
own (a11). The spell checker we use is a component (source code) purchased from Sentry
Software [18]. For each market exchange or proprietary application, one must extend its
spelling dictionary with a number of local terms, manufacturer mis-spellings lists, and
commonly used acronyms. Once the user corrects their spelling error, the agent process
begins anew back at Iteration 1.

If there is no spelling error found, action a11 prints the message: “We have found
0 items for your (search string).” And it provides a number of standard hints for better
searching of the catalog, and a request that they try again in the box at the base of the
page.

3) Comparison Testing of EQUIsearch’s Capabilities
Earlier we said that EQUIsearch is complementary to commercial search engines

for online catalogs. To illustrate that point, this section provides an empirical evaluation
of query performance both with and without the EQUIsearch Agent for a major
commercial search engine relevant to e-commerce catalogs. In general, search engine
performance can be measured in terms of four methods: retrieval effectiveness metrics
(e.g., recall, precision), user satisfaction measures, transaction log analysis, and the

15

critical incident technique. Silverman et al [34] examines the last three of these. In the
current study, we provide a comparison based on the metrics enumerated in earlier
Section 1.2.

3.1) Test of the Scaleup Hypothesis (H1)
In order to fully test the hypothesis that NLQ can scale up, we ideally should

demonstrate EQUIsearch’s deployment and operation in a number of e-commerce
websites and online catalogs. To date we have only deployed it at a single market
exchange, so the results of this section are an “existence proof”. A valid question is: can
we duplicate this deployment for a variety of catalogs, or if not, what constrains the
scale-up? We return to this question in the conclusions, and focus attention here on the
details of the existence proof.

Specifically, the existence proof website is EqualFooting.com
(www.equalfooting.com), a B2B online marketplace for the “maintenance, repair, and
operations” (MRO) sector: e.g., see [28]. This means basically EqualFooting sells
industrial and construction supplies – something like a Home Depot for small contractors
only with an order of magnitude more products than Home Depot offers. The company’s
official launch date was February 2000 and by June 2000 they were handling one million
hits per day (by about 23,000 separate users daily). Also, at this writing their catalog
integrates almost 450,000 products offered by over 2,000 sellers, although they project an
order of magnitude growth in catalog size by year’s end.

The catalog is stored internally in an Oracle database on dual processors to
balance user load and to support Oracle Parallel Server. A hidden mirror site exists on
the opposite side of the country to further address redundancy and load issues. At the
front end is an application server (WebLogic) and an Enterprise Java Beans
implementation of about ½ million lines of code, as of this writing, that performs all the
functions of the website and that connects the users’ web-browsing clients to the Oracle
parallel servers holding the catalog. The application server consists of another 5 or 6
parallel machines with a load balancing capability. The EQUIsearch agent is deployed on
the parallel application server machines as the sole searching interface to the catalog.
Users at this website now utilize the NLQ via EQUIsearch, that in turn interfaces with
Oracle and its CQ search technology to represent the user’s interests.

The CQ capabilities within Oracle are known as the interMedia search engine. It
should be noted that the conceptual search features of a product such as interMedia are
not immediately usable at a given shopping site. For example, in order to make the
production version of the Equalfooting.com database conceptual-search capable required
significant investment and effort. We took advantage of that prior investment in order to
quickly assemble the benchmark for the current study, but it might be interesting to
readers if we briefly delineate the tasks that were involved in setting up conceptual search
for a production catalog. The tasks were to create the three dictionaries always needed for
conceptual search – spelling, stripping, and synonyms – as these are domain-specific
items. Growing the thesaurus involved many false starts and deadends. For example, it is
tempting to try and use an existing general purpose thesaurus such as WordNet from
Princeton. This includes 95,000 words and all their synonyms, however, this thesaurus
brings back too many synonyms, many of which are inappropriate (racial slurs, curses,
body parts, religious terms, etc.). Plus most of the specialty terms of a given domain are

16

omitted (e.g., chain saw, Phillips head, and safety gloves are among the 1,000s of items
found in a hardware catalog). Instead, based on search log analyses, we assembled our
own thesaurus for about 1500 terms critical to this domain with five synonyms for each.
The second dictionary task was to assure the database would have a spell checker (Oracle
doesn’t ship with this functionality), so we purchased and installed one separately [18].
Although it came with 100,000 words it was necessary to embellish the spell checker’s
dictionary by adding: (1) the top 1,000 mis-spelled words from the user search logs and
their corrections, (2) proper names of all manufacturers and suppliers (the spell-checker
assumes initially that all proper names are errors) and how they might be mis-spelled, and
(3) many 100s of acronyms with proper spelling (e.g., CD, DVD, HVAC, etc.). The third
and final dictionary task was to massage the stop word list for the current domain as some
generic stop words are relevant here and others are unique.

For a site that already has prepared all three dictionaries required by CQ (i.e.,
strip, synset, spell), the extra effort to add EQUIsearch is rather straightforward. The
steps are to:

1) run a catalog crawler that extracts all the lexicon
2) construct the lexical knowledge bases (objects and attribute-value pairs)
3) author the relevant rule sets and encode them in the Φr

4) complete any interface code needed in the SQL builder of the agent to adapt it
to the requirements of the CQ technology (interMedia in this case)

We performed these steps manually for the test catalog during the Fall 2000, and the
agent was deployed as of November 17, 2000. It has been in continuous operation (24
hours a day, 7 days/week) since that time as the sole searching interface that users
interact with. A new goal to enhance the portability of EQUIsearch is to construct
automated tools that help us to do each of the steps more easily, both for helping to
maintain the current site, and for deploying EQUIsearch for new catalogs and exchanges.

3.2) Test of the Timing Hypothesis (H2)
Once the agent went live in the online catalog that users access via the web, we no

longer had access to it for scientific inquiry, and we were not allowed to alter the settings
of that site, turn on and off the agent (it stays on all the time on that site), or run studies.
Instead, for further testing we were given access to an alternative online catalog – the
developers’ benchmark catalog. The benchmark catalog is a smaller version of the actual
production site (172,000 vs. 450,000 records), and it exists on a relatively slow server on
the intranet that is accessed by 50 or so developers from their workstations. The
production database by contrast is hosted on multiple high speed, parallel servers on the
internet.

Both of these catalogs are in Oracle, and whether on the inter- or intra-net,
EQUIsearch accesses Oracle via the WebLogic application server. Thus timing tests
should be viewed for their relative outcomes. In general, although the server we had
access to is significantly slower than the bank of production site machines, the internet
has several orders of magnitude more traffic and far greater latency, so the timing test
results will be a couple of seconds faster on average than actual user times.

Timing test results for noun (item name or synonym of a name) search with and
without the agent are displayed in Tables 2a and b. The left column of that table displays
the search term, while the next column shows the total hits retrieved. Here, we are

17

Table 2 –Timing and Effectiveness Statistics for Item (Noun) Search
(a) Without the Agent

(b) With the Agent

Search String TOTAL
R T R V D

RETRVD &
PERTNT

RETRVD &
IRRLVT

NOT RTRV
& PERTNT

NOT RTRV
& IRRLVT

Quality Recall Precis
ion

Actual

1 # 2 Avg(ms)
aircompressor 178 88 90 0 171891 0.5 1.0 0.5 88 571 561 566.0
ballast 738 3 735 0 171331 0.0 1.0 0.0 3 431 441 436.0
blower 480 364 116 0 171589 0.8 1.0 0.8 364 390 400 395.0
brad 298 159 139 0 171771 0.5 1.0 0.5 159 441 431 436.0
brush 792 660 132 0 171277 0.8 1.0 0.8 660 341 341 341.0
cabinet 668 436 232 0 171401 0.7 1.0 0.7 436 350 340 345.0
calculator 78 49 29 0 171991 0.6 1.0 0.6 49 361 371 366.0
chipper 497 290 207 0 171572 0.6 1.0 0.6 290 421 401 411.0
chisel 456 428 28 0 171613 0.9 1.0 0.9 428 300 310 305.0
cleaner 1685 438 1247 0 170384 0.3 1.0 0.3 438 521 531 526.0
compressor 178 88 90 0 171891 0.5 1.0 0.5 88 571 561 566.0
connector 2815 1182 1633 0 169254 0.4 1.0 0.4 1182 1292 1282 1287.0
cupboard 668 436 232 0 171401 0.7 1.0 0.7 436 351 361 356.0
cutter 18339 2519 15820 0 153730 0.1 1.0 0.1 2519 811 811 811.0
drill 10787 7745 3042 0 161282 0.7 1.0 0.7 7745 3084 3134 3109.0
fans 480 364 116 0 171589 0.8 1.0 0.8 364 400 410 405.0
glove 1303 1122 181 0 170766 0.9 1.0 0.9 1122 551 551 551.0
grinder 497 290 207 0 171572 0.6 1.0 0.6 290 421 401 411.0
hammer 701 586 115 0 171368 0.8 1.0 0.8 586 430 430 430.0
ladder 178 112 66 0 171891 0.6 1.0 0.6 112 451 461 456.0
mal let 701 586 115 0 171368 0.8 1.0 0.8 586 450 420 435.0
mitten 1303 1122 181 0 170766 0.9 1.0 0.9 1122 551 551 551.0
nail 298 159 139 0 171771 0.5 1.0 0.5 159 441 431 436.0
paper 677 257 420 0 171392 0.4 1.0 0.4 257 390 390 390.0
pipe 8945 2488 6457 0 163124 0.3 1.0 0.3 2488 791 761 776.0
processor 78 49 29 0 171991 0.6 1.0 0.6 49 380 381 380.5
saw 1458 598 860 0 170611 0.4 1.0 0.4 598 391 391 391.0
screw 7677 5769 1908 0 164392 0.8 1.0 0.8 5769 651 651 651.0
snapper 18339 2519 15820 0 153730 0.1 1.0 0.1 2519 811 831 821.0
soap 1685 438 1247 0 170384 0.3 1.0 0.3 438 531 530 530.5
tube 8945 2488 6457 0 163124 0.3 1.0 0.3 2488 771 761 766.0

0.6 1.0 0.6 601.2
0.2 0.0 0.2 507.2

With out Agent

Elapsed t ime (ms)

Average
Standard Deviation

Search String
TOTAL
R T R V D

RETRVD &
PERTNT

RETRVD &
IRRLVT

NOT RTRV
& PERTNT

NOT RTRV
& IRRLVT

Quality Recall
Precis

ion
Actual

1 # 2 Avg (ms)
aircompressor 88 88 0 0 171981 1.0 1.0 1.0 88 391 391 391.0
ballast 3 3 0 0 172066 1.0 1.0 1.0 3 290 280 285.0
blower 364 364 0 0 171705 1.0 1.0 1.0 364 321 311 316.0
brad 159 159 0 0 171910 1.0 1.0 1.0 159 320 320 320.0
brush 660 660 0 0 171409 1.0 1.0 1.0 660 250 260 255.0
cabinet 436 436 0 0 171633 1.0 1.0 1.0 436 290 280 285.0
calculator 49 49 0 0 172020 1.0 1.0 1.0 49 291 291 291.0
chipper 290 290 0 0 171779 1.0 1.0 1.0 290 330 320 325.0
chisel 428 428 0 0 171641 1.0 1.0 1.0 428 260 270 265.0
cleaner 438 438 0 0 171631 1.0 1.0 1.0 438 351 361 356.0
compressor 88 88 0 0 171981 1.0 1.0 1.0 88 390 400 395.0
connector 1182 1182 0 0 170887 1.0 1.0 1.0 1182 561 561 561.0
cupboard 436 436 0 0 171633 1.0 1.0 1.0 436 290 290 290.0
cutter 2519 2519 0 0 169550 1.0 1.0 1.0 2519 351 351 351.0
drill 7745 7745 0 0 164324 1.0 1.0 1.0 7745 1352 1332 1342.0
fans 364 364 0 0 171705 1.0 1.0 1.0 364 331 301 316.0
glove 1122 1122 0 0 170947 1.0 1.0 1.0 1122 420 420 420.0
grinder 290 290 0 0 171779 1.0 1.0 1.0 290 311 321 316.0
hammer 586 586 0 0 171483 1.0 1.0 1.0 586 300 310 305.0
ladder 112 112 0 0 171957 1.0 1.0 1.0 112 321 331 326.0
mal let 586 586 0 0 171483 1.0 1.0 1.0 586 301 311 306.0
mitten 1122 1122 0 0 170947 1.0 1.0 1.0 1122 391 391 391.0
nail 159 159 0 0 171910 1.0 1.0 1.0 159 310 310 310.0
paper 257 257 0 0 171812 1.0 1.0 1.0 257 291 291 291.0
pipe 2488 2488 0 0 169581 1.0 1.0 1.0 2488 400 390 395.0
processor 49 49 0 0 172020 1.0 1.0 1.0 49 291 301 296.0
saw 598 598 0 0 171471 1.0 1.0 1.0 598 301 291 296.0
screw 5769 5769 0 0 166300 1.0 1.0 1.0 5769 460 450 455.0
snapper 2519 2519 0 0 169550 1.0 1.0 1.0 2519 380 370 375.0
soap 438 438 0 0 171631 1.0 1.0 1.0 438 360 380 370.0
tube 2488 2488 0 0 169581 1.0 1.0 1.0 2488 391 391 391.0

1.0 1.0 1.0 373.8
0.0 0.0 0.0 190.6

Average
Standard Deviation

Elapsed t ime (ms)

With Agent

18

only discussing the timing statistics in this table, so we will focus on the last three
columns of the table for now and return to a discussion of the rest of the table in the next
section. In that regard, the rows of Table 2a display 31 keyword searches without the
NLQ agent, below which are two rows of various summary statistics. Some of these
keywords are actual item names (e.g., hammer, glove), while others are synonyms (e.g.,
mallet, mitten). Table 2b displays the results for the same set of search strings, but this
time with the NLQ agent running. By inspection, the agent or NLQ search is faster than
CQ search (373 vs. 601 milliseconds averaged over two runs per query). In this case the
delay is reduced by about 1/3rd of a second on average. However, these differences aren’t
noticeable and one may reasonably claim that NLQ is on a par with CQ for noun search.

 Next we compared the timing for NLQ vs. CQ in the case of searches with both
nouns and adjectives (objects and attribute-values) as Table 3 depicts. The format is
identical to that in Table 2. Two differences from Table 2 are that we only used 17 search
strings (rows) here, however, we have again repeated each search 2 times so that the
timing statistics are for the average across the 34 replications. The reader should not
attempt to compare the times between Tables 2 and 3 since they were collected on
different days and at different times of the workday. It is may be partially a nuance of the
varying server load and intranet latencies that make the results in Table 3a seem better
than in Table 2a even though this second test involves a more complex search string.
Also, a factor may be the number of hits found, and since the Table 3a searches are more
precise they tend to return less hits.

Examining the response times within Table 3 alone, one can see that NLQ is far
slower than CQ on this more complex type of search (1.8 vs. .5 seconds on average). The
absolute difference is still within the toleration level of most shoppers, and we view this
as a reasonable price to pay. One can reasonably argue that the two sample means are on
a par (in fact a t-test of the sample means indicates no difference at the alpha = .05 level).
Still, it is instructive to discuss the differences a little further.

It should surprise no one that the NLQ is faster than CQ in noun search and
slower in noun-adjective search. In noun or object search, CQ must dynamically sort and
index the entire munge (many sub-fields de-normalized) while NLQ need only sort
through the Item-Name field since it has narrowed the search by labeling the token.
Likewise, in object-attribute search, CQ behaves the same as before, but NLQ’s SQL
statements cause the Oracle engine to sort an additional set of fields (all those with
attributes) and then do a soft join and eliminate items not in all parts of the join. That is,
both sets of results reflect the fact that the processing time is dominated by operations
that must be carried out by the Oracle interMedia product, not by the Markovian
processes of the NLQ agent. In general, the number of operations required by Oracle (or
any relational database sorting process) is on the order of O(n Log (n)). While this
iteration may be solved in log-linear time and thus seems faster than that for the MDP
(which is P-complete on n), in fact there is a gross imbalance in “n” used for complexity
during the MDP and during the actions for sorting of the catalog. In the former n is on the
order of 10E2 or less for number of action-state pairs in the stationary policy set, while in
the catalog n is typically on the order of 10E6 to 10E7 product records to be sorted. The
only exception to this is that the spelling checker typically has on the order of n = 10E6
terms. Thus the commercial search engine is typically the slowest process, and when
NLQ can narrow the search it will beat CQ.

19

Table 3 – Timing and Effectiveness Statistics for Noun and Adjective Queries
(a) Without the Agent

(a) With the Agent

Since the average search in shopping sites tends to be about 2.3 words long, many
of the queries are in fact just a single noun. In many of the other cases, the impact is not
overly severe in absolute terms and use of load shedding, parallelism, and prudent
algorithms should lead to search times of no more than a couple of seconds (excluding
latency) for a majority of the queries. Obviously, queries with large numbers of hits in the
database can take longer, as can queries with multiple spelling errors.

Also, there are some problematic queries. The worst example in Table 3 is “safety
tape”, which on the syntactic level seems almost identical to “cotton glove” and which
returns comparable numbers of hits, yet the response time is about 20 times as long.

Search String

TOTAL
RETRV
D

RETRVD
&
PERTNT

RETRVD
&
IRRELVT

NOT
RTRV &
PERTNT

NOT
RTRV &
IRRLVT

Qualit
y

Recall
Prec
ision

Act
ual

2 Run
Avg (ms)

16 oz hammer 24 23 1 0 172045 1.0 1.0 1.0 23 661.0
10 inch nail 38 38 0 0 172031 1.0 1.0 1.0 38 510.5
bolt cutter 28 28 0 0 172041 1.0 1.0 1.0 28 365.5
copier paper 54 54 0 1 172014 1.0 1.0 1.0 55 376.0
cotton glove 57 57 0 0 172012 1.0 1.0 1.0 57 590.5
crimped brush 79 79 0 0 171990 1.0 1.0 1.0 79 335.5
cutter wheel 12 12 0 0 172057 1.0 1.0 1.0 12 315.5
leather glove 84 84 0 0 171985 1.0 1.0 1.0 84 656.0
nail hammer 12 12 0 0 172057 1.0 1.0 1.0 12 386.0
pipe clamp 239 239 0 0 171830 1.0 1.0 1.0 239 320.0
power cord 27 27 0 0 172042 1.0 1.0 1.0 27 2944.0
protective apron 68 68 0 0 172001 1.0 1.0 1.0 68 4992.5
roofing nail 9 9 0 0 172060 1.0 1.0 1.0 9 321.0
safety tape 56 56 0 0 172013 1.0 1.0 1.0 56 11797.0
steel brush 166 166 0 0 171903 1.0 1.0 1.0 166 2663.5
tape measure 162 162 0 0 171907 1.0 1.0 1.0 162 5363.0
white paper 12 12 0 16 172041 0.4 0.4 1.0 28 485.5
wire connector 60 60 0 0 172009 1.0 1.0 1.0 60 555.5

1.0 1.0 1.0 1868.8
0.1 0.1 0.0 2956.7

Time

Average
Standard Deviation

Search String

TOTAL
RETRV
D

RETRVD
&
PERTNT

RETRVD
&
IRRELVT

NOT
RTRV &
PERTNT

NOT
RTRV &
IRRLVT

Qualit
y

Recall
Prec
ision

Act
ual

2 Run
Avg (ms)

16 oz hammer 28 23 5 0 172041 0.8 1.0 0.8 23 490.5
10 inch nail 47 38 9 0 172022 0.8 1.0 0.8 38 601.0
bolt cutter 33 28 5 0 172036 0.8 1.0 0.8 28 461.0
copier paper 55 55 0 0 172014 1.0 1.0 1.0 55 626.0
cotton glove 265 57 208 0 171804 0.2 1.0 0.2 57 565.5
crimped brush 120 79 41 0 171949 0.7 1.0 0.7 79 360.5
cutter wheel 16 12 4 0 172053 0.8 1.0 0.8 12 425.5
leather glove 334 84 250 0 171735 0.3 1.0 0.3 84 510.5
nail hammer 17 12 5 0 172052 0.7 1.0 0.7 12 531.0
pipe clamp 460 239 221 0 171609 0.5 1.0 0.5 239 440.5
power cord 56 27 29 0 172013 0.5 1.0 0.5 27 751.5
protective apron 175 68 107 0 171894 0.4 1.0 0.4 68 766.0
roofing nail 9 9 0 0 172060 1.0 1.0 1.0 9 405.5
safety tape 95 56 39 0 171974 0.6 1.0 0.6 56 521.0
steel brush 338 166 172 0 171731 0.5 1.0 0.5 166 385.5
tape measure 368 162 206 0 171701 0.4 1.0 0.4 162 601.0
white paper 64 28 36 0 172005 0.4 1.0 0.4 28 375.5
wire connector 398 60 338 0 171671 0.2 1.0 0.2 60 891.0

0.6 1.0 0.6 539.4
0.3 0.0 0.3 147.3

Time

Average
Standard Deviation

20

These types of problem queries require individual investigation to learn where the trouble
arises. Sometimes it is due to poor specification in the synonym list which causes the
query to be expanded extensively, thereby leading to a lengthy join and eliminate
process. Other times it is due to one of the tokens appearing in a large portion of the
records of the database (e.g., a number like “2”). As these problems are discovered,
workarounds are developed, often in the form of fixes to one of the dictionaries or KBs or
as new rules for the agent.

3.3) Tests of the Quality Hypothesis (H3)
Proofs of NLQ scaleup and timing parity of NLQ with respect to conceptual

query (CQ) would be of minimal value if the effectiveness of the search were not
improved by an NLQ agent. Table 4 depicts the results of the same 31 item name
searches of the benchmark catalog as used in earlier Table 2 -- column 1 shows the search
strings. The first 31 rows have the agent turned off, so this is strictly conceptual search
using Oracle interMedia. As in the real system, Oracle is using stemming, the 8,000 word
synonym list, and conjunctive search. The second group of 31 rows of the table are for
the identical search strings, but with the NLQ agent turned on, as the second column
indicates. The 3rd column shows the total items retrieved, which is further broken into the
retrieved items that are pertinent and irrelevant in the subsequent 2 columns. The 6th and
7th columns show statistics on the non-retrieved items. The last three columns of the table
compute the metrics mentioned at the outset – the commonly used recall and precision,
plus our merged “quality” metric. At the end of each group of 31 rows, one can view the
Mean and Standard Deviation for those searches.

One can see by inspection of column 6 that in this test there are no false negatives
(not retrieved but pertinent) left behind by either query method. This has the effect of
driving Recall to unity, and of leaving Quality and Precision effectively equal. Also, one
can see by inspection that on average the agent’s Quality is 0.90 as compared to 0.63 for
the average of the 31 searches with the conceptual query method.

In a similar vein, Table 5 presents the quality and effectiveness statistics for the
21 attribute-object query strings of earlier Table 3. Here again we see the quality
improves from .6 on average without the agent to .93 when the agent is engaged. The
results are not uniformly better. In a few cases the agent does no better than the CQ
search, and in two cases (both involving “paper”) it even does worse than CQ search in
terms of having some relevant items left not-retrieved. Upon close inspection, one can
attribute these to the missing data problem alluded to in the introduction to this paper. For
example, consider “white paper” for which the agent retrieved 12 pertinent items, but for
which the CQ search found the other 16 that are in the catalog. For those 16 items, their
color attribute is missing, and the CQ agent matched them from a description of the
product contained in the “short description” in the munge. These kind of outcomes are
not overwhelming in the benchmark catalog though, and on average the agent is out-
performing the CQ search. However, in catalog sites where missing data is an
overwhelming problem, one can expect CQ search to begin to approach the quality and
precision of NLQ search unless the effort is made to clean the catalog. One would expect
this type of effort is necessary anyways for a variety of reasons.

21

3.4) Other Results
We would be entirely remiss if we ended without also pointing out the

fundamental advantage of adding a parser to any search engine – it can parse free-form
sentences so long as they are written in the lexicon (or synonym set) of the catalog. As
Table 4 shows, in fact, EQUIsearch processes whole sentences at about the same speed as
it does the noun-adjective phrases. Further, one can compare the hits to earlier Table 3
and notice it suffers no drop off in quality or precision. Table 4 also shows what is well
known: absent a parser, CQ search is unable to strip enough of the words to make sense
of the queries and it returns no hits for all but one of the sentences.

Table 4 – Results of Full Sentence Queries With and Without EQUIsearch Agent

4) Results Analysis and Concluding Remarks
This paper has presented an MDP algorithm for an NLQ agent that can

complement and improve search engines for online e-commerce shopping catalogs. The
results show that the agent improves the quality and precision of the search with no
significant overall impact on response time. These results hold true for a large scale
example deployment.

Several lessons learned are worth discussing further:
• Scaling Up NLQ – The result to date is encouraging. The agent worked and is

continuing to work at a relatively large-scale market exchange, which previously
operated with CQ search alone. We hope to deploy the EQUIsearch agent at further
sites in the future as part of the effort to address this line of investigation.

• CQ Paves the Way for NLQ – Relational DBMSs ship with CQ features, however,
the three standard dictionaries (strip, synonym, and spell) need to be enabled and
domain-filled before CQ can work for a given shopping catalog. The good news is
that these are the same three dictionaries that NLQ needs, and if a site has already

Without
Agent

Search String TOTAL
RETRVD

RETRVD
&
PERTNT

RETRVD
&
IRRELVT

NOT
RTRV &
PERTNT

NOT
RTRV &
IRRLVT

Qualit
y

Rec
all

Preci
sion

Actu
al

Retrieve
d

#1 #2 Avg
show me all power cords 27 27 0 0 172042 1.0 1.0 1.0 27 1682 1612 1647.0 0
list me cotton gloves 57 57 0 0 172012 1.0 1.0 1.0 57 391 381 386.0 0
show me gloves made of leather 84 84 0 0 171985 1.0 1.0 1.0 84 441 411 426.0 0
i want to buy leather gloves 84 84 0 0 171985 1.0 1.0 1.0 84 400 500 450.0 0
show me steel brushes 166 166 0 0 171903 1.0 1.0 1.0 166 2654 2644 2649.0 0
i want to buy a crimped brush 79 79 0 0 171990 1.0 1.0 1.0 79 370 371 370.5 0
let me see leather gloves if any with you 84 84 0 0 171985 1.0 1.0 1.0 84 400 410 405.0 0
list me some good cotton gloves 57 57 0 0 172012 1.0 1.0 1.0 57 371 381 376.0 0
let me see some leather gloves 84 84 0 0 171985 1.0 1.0 1.0 84 400 400 400.0 0
list me nails for roofing 9 9 0 0 172060 1.0 1.0 1.0 9 261 261 261.0 0
list me all wheel cutters 12 12 0 0 172057 1.0 1.0 1.0 12 300 300 300.0 0
show me bolt cutter 28 28 0 0 172041 1.0 1.0 1.0 28 321 331 326.0 0
list wire connectors 60 60 0 0 172009 1.0 1.0 1.0 60 360 380 370.0 11
list brush made of steel 166 166 0 0 171903 1.0 1.0 1.0 166 2644 2664 2654.0 0

1.0 1.0 1.0 787.2
0.0 0.0 0.0 860.9

With Agent

Elapsed time (ms)

Average
Standard Deviation

22

developed them and deployed CQ, then there is only minimal extra effort to also
deploy NLQ.

• Automatic KB Extraction Tools Would Further Ease NLQ Adoption – For the
current deployment of EQUIsearch, we manually extracted the lexicon and built the
KBs and other interfaces. However, as the catalog is altered over time, or as new ones
are attempted, the EQUIsearch agent’s KBs must be modified and updated. For these
purposes, we are already developing a suite of automated KB extraction and
instantiation tools, plus other maintenance features (e.g., SQL interfaces to a range of
commercial DBMS products).

• Data Cleansing Obstacles Remain for Any Search Method – Possibly the most
serious obstacle to scale up in any unified shopping catalog is the numerous typoes,
missing item name and other data, and poor quality of attribute information. This
obstacle is not unique to NLQ search, but equally plagues the CQ and conjunctive
keyword searching methods as well.

• Speed Differences are a NonIssue For Most Cases – It seems that NLQ is faster for
noun search, but slower than CQ for noun-attribute pair searching. However, the
average search involves just over 2 terms per query, so noun searching is a major
mode of user query. But in either case, the time differences are not statistically
significant, although precision and quality improvements are being achieved for all
types of search.

• NLQ Agent Provides Precision and Quality Improvement – The results to date
reflect about a 50% improvement in quality and precision when NLQ is added to the
CQ capability. This means that users experience noticeably shortened retrieval sets,
and that the items retrieved include far less false positives. In addition there are fewer
false negatives or relevant items omitted. An implication for the effectiveness studies
and metrics literature is that recall and precision aren’t always inversely coupled.
Certainly for introducing an innovation such as NLQ, it is possible to shift precision
in the positive direction without adversely affecting recall.

• NLQ Agent Offers Parsing Services CQ Can’t Provide – Many shopping sites are
starting to add chatterbots like AskJeeves that provide navigation help and answer site
or content questions in natural-like language. The results to date indicate that users
like this type of self-service help, and that when it is present, they build up a higher
expectation that the catalog search will behave in a similarly naturalistic way and they
no longer limit their queries to the short keyword format (2.3 words on average) [4].
They pose English-like sentences and questions to the catalog search engine and it
seems they are adversely affected by the inability of CQ search engines to parse their
questions. As the testing here demonstrated, NLQ search in general, and EQUIsearch
in particular is able to parse and reliably answer full sentences and questions in the
domain of the catalog.

To close, we believe this research demonstrates that NLQ search is able to compete with
industrial strength CQ search. It holds its own in terms of timing as scaleup occurs, and it
improves quality, precision, and parsing capability. For catalogs that are already adding
CQ search, there is not much added effort to also include an NLQ agent. It thus seems
likely that many catalogs will begin to add NLQ search in the near future in the effort to
improve the online shopping experience.

23

ACKNOWLEDGEMENT
A project like this involves the help of many hands. We thank Raja Balasubramanian and
Raghava Vemula for flashes of occasional programming brilliance and for being so
patient throughout the implementation and benchmarking tests; Danny Zhao and his
database crew for guiding us through the maze of schemas and versions; and Gary
Vaughn, Angela Zaev and the rest of the catalog team for being remarkably responsive.

REFERENCES

1. Anon., “Winning the Online Consumer: Insights Into Consumer Behavior,”
Cambridge: Boston Consulting Group, March 2000, www.bcg.com.

2. Pollock, A., Hockley, A., “What's Wrong with Internet Searching,” D-Lib Magazine,
Ipswich, UK: BT Laboratories, March 1997, avail. at
www.dlib.org/dlib/march97/bt/03pollock.html

3. Neilsen, J., “Search and you may find” Alert Box, July 15, 1997, avail. at
http://www.useit.com/alertbox/9707b.html

4. Hagen, PR, Manning, H, Paul, Y, “Must Search Stink?”, Cambridge: Forrester
Research, June 2000. (www.forrester.com)

5. Blum, A., “Add Natural Language Search Capabilities to Your Site with English
Query,” Microsoft Interactive Developer, April 1998,
www.microsoft.com/Mind/0498/equery.htm

6. Anon., “Revolutionizing the Search for Products at E-Commerce Sites,” Littleton:
Easy Ask Inc., March 2000, www.easyask.com

7. “BotSpot Categories - Chatter Bots,” http://www.botspot.com/search/s-chat.htm
8. “Virtual Personalities”, http://www.vperson.com/sapphire2000/index.html
9. http://www.askjeeves.com/
10. http://support.dell.com/us/en/askdudley/
11. Bellman, R., “A Markovian Decision Process,” J. Math. And Mech., v.6, 1957, pp

679-93.
12. Howard, R, Dynamic Programming and Markov Processes, New York: John Wiley,

1963.
13. White, C., “Procedures for the Solution of a Finite Horizon, Partially Observable,

Semi-Markov Optimization Problem,” Operations Research, v. 24, 1976, pp. 348-58.
14. Monahan, GE, “A Survey of Partially Observable Markov Decision Processes:

Theory, Models, and Algorithms,” Management Science, v.28,n.2, 1982, pp. 2-16
15. Littman, ML, Cassandra, AR, Kaebling, LP, “Efficient Dynamic Programming

Updates in Partially Observable Markov Decision Processes,” Dec. 1995.
16. Bernstein, DS, Zilberstein, S, Immerman, N, “The Complexity of Decentralized

Control of Markov Decision Processes,” Proc. 16th Conf. Uncertainty in Artificial
Intelligence, Stanford, California, July 2000.

17. Porter, MF, “An Algorithm for Suffix Stripping,” Program, v.14, n.3, July 1980,
pp.130-137.

24

18. Sentry Spelling Checker avail at http://www.wintertree-
software.com/dev/ssce/java/index.html

19. Anon., Oracle 8i interMedia Text 8.1.6 – Technical Overview, Redwood City:
Oracle, 2000.

20. Anon., DB II and the Universal Database (UDB), Yorktown Hgts: IBM, 2000
21. Anon., SQL Server 2000 Database Management System, Redmond: Microsoft, 2000
22. AltaVista Search Engine (AVSE) version 3.1, available from www.altavista.com
23. Anon., “Datasheets on Frictionless Search Engine,” 2000, avail. at

http://www.frictionless.com/solutions/datasheetform.html
24. William S. Cooper, "On Selecting a Measure of Retrieval Effectiveness," Journal of

the American Society for Information Science, v.24, 1973, pp. 87-100, 413-424.
25. Dagobert Soergel, "Is User Satisfaction a Hobgoblin?," Journal of the American

Society for Information Science, v.27, July-August 1976,pp. 256-259.
26. Tonta, Y., “Analysis of Search Failures in Document Retrieval Systems: A Review,”

Public Access Computer Systems Review, v. 3, no.1 (1992): 4-53.
27. Owei, V., “Natural Language Querying of Databases: An Information Extraction

Approach in the Conceptual Query Language,” IJHCS, v. 53, 2000, pp. 439-92.
28. Chang, T., Sciore, E., “A Universal Relation Data Model with Semantic Abstraction,”

IEEE Trans. KDE, v.4, 1992, pp. 23-33.
29. Chan, HC, Wei, KK, Siau, KL, “User Database Interface: The Effect of Abstraction

Levels on Query Performance,” MIS Quarterly, v.17, 1993, pp. 441-64.
30. Jarke, M, Gallersdorfer, R, et al., “Concept-Base – A Deductive Object Base for Meta

Data Management, “J. of Intell. Inf.Sys., v.4, 1995, pp. 167-92.
31. Cowie, J, Lehnert, W., “Information Extraction,” CACM, v. 39, 1996, pp. 80-91.
32. Vilian, M., “inferential Information Extraction,” in MT Pazienza (ed.), Information

Extraction: Toward Scalable, Adaptable Systems, Berlin: Springer, 1998, pp. 95-119.
33. Dekleva, SM, “Is Natural Language Querying Practical?” Data Base, v. 25,

1994, pp. 24-36.
34. Silverman, BG, Bachann, M, et al, “Buyer Decision Support Systems and

Search Agents for eCommerce Websites,” (submitted for pub.),
http://www.seas.upenn.edu:8080/~barryg/BDSS.html

35. Cleverdon, C. W., and E. M. Keen. 1966. Factors determining the performance of
indexing systems, volume 1: design, volume 2: test results. Cranfield, England: Aslib
Cranfield Research Project.

36. Sparck Jones, K. 1981. The Cranfield tests. In: Information Retrieval Experiment, K.
Sparck Jones (ed.). London: Butterworths: pp. 256-284.

37. Swets, JA, “Information Retrieval Systems,” SCIENCE, July 19, 1963, pp. 245-50.
38. van Rijsgergen, CJ, “Information Retrieval, New York: _______, 2nd ed.,1979.
39. Yee & Layne, Modern Information Retrieval, New York: , 1998.

25

