
Boxes Go Bananas: Encoding Higher-Order Abstract Syntax with
Parametric Polymorphism

Geoffrey Washburn Stephanie Weirich
Department of Computer and Information Science

University of Pennsylvania

{geoffw,sweirich}@cis.upenn.edu

Abstract

Higher-order abstract syntax is a simple technique for implement-
ing languages with functional programming. Object variables and
binders are implemented by variables and binders in the host lan-
guage. By using this technique, one can avoid implementing com-
mon and tricky routines dealing with variables, such as capture-
avoiding substitution. However, despite the advantages this tech-
nique provides, it is not commonly used because it is difficult to
write sound elimination forms (such as folds or catamorphisms) for
higher-order abstract syntax. To fold over such a datatype, one must
either simultaneously define an inverse operation (which may not
exist) or show that all functions embedded in the datatype are para-
metric.

In this paper, we show how first-class polymorphism can be used to
guarantee the parametricity of functions embedded in higher-order
abstract syntax. With this restriction, we implement a library of it-
eration operators over data-structures containing functionals. From
this implementation, we derive “fusion laws” that functional pro-
grammers may use to reason about the iteration operator. Finally,
we show how this use of parametric polymorphism corresponds
to the Schürmann, Despeyroux and Pfenning method of enforcing
parametricity through modal types. We do so by using this library
to give a sound and complete encoding of their calculus into System
Fω. This encoding can serve as a starting point for reasoning about
higher-order structures in polymorphic languages.

Categories and Subject Descriptors

D.3.3 [PROGRAMMING LANGUAGES]: Language Constructs
and Features—abstract data types, polymorphism, control struc-
tures; F.3.3 [LOGICS AND MEANINGS OF PROGRAMS]:
Software—type structure, program and recursion schemes, func-
tional constructs; F.4.1 [MATHEMATICAL LOGIC AND FOR-
MAL LANGUAGES]: Mathematical Logic—Lambda calculus
and related systems, modal logic

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’03, August 25–29, 2003, Uppsala, Sweden.
Copyright 2003 ACM 1-58113-756-7/03/0008 ...$5.00

General Terms

Languages

Keywords

Higher-order abstract syntax, modal type system, catamorphism,
parametricity, parametric polymorphism

1 Introduction

Higher-order abstract syntax (HOAS) is an old and seductively sim-
ple technique for implementing a language with functional pro-
gramming.1 The main idea is elegant: instead of representing ob-
ject variables explicitly, we use metalanguage variables. For ex-
ample, we might represent the object calculus term (λx.x) with
the Haskell expression lam (\x -> x). Doing so eliminates the
need to implement a number of tricky routines dealing with object
language variables. For example, capture-avoiding substitution is
merely function application in the metalanguage. However, out-
side of a few specialized domains, such as theorem proving, partial
evaluation [26], logical frameworks [22] and intensional type anal-
ysis [27, 30], higher-order abstract syntax has found limited use as
an implementation technique.

One obstacle preventing the widespread use of this technique is the
difficulty in using elimination forms, such as catamorphisms2, for
datatypes containing functions. The general form of catamorphism
for these datatypes requires that an inverse be simultaneously de-
fined for every iteration [16]. Unfortunately, many operations that
we would like to define with catamorphisms require inverses that
do not exist or are expensive to compute.

However, if we know that the embedded functions in a datatype are
parametric, we can use a version of the catamorphism that does not
require an inverse [9, 24]. A parametric function may not examine
its argument; it may only use it abstractly or “push it around”. Only
allowing parametric embedded functions works well with HOAS
because the terms with non-parametric embedded functions are ex-
actly those that have no correspondence to any λ-calculus term [24].
In this paper, we use iterator to refer to a catamorphism restricted
to arguments with parametric functions.

A type system can separate parametric functions from those that

1While the name comes from Pfenning and Elliott [21], the idea
itself goes back to Church. [4].

2Catamorphisms (also called folds) are sometimes represented
with the bananas (| · |) notation [15].

are not. For example, Fegaras and Sheard [9] add tags to mark
the types of datatypes whose embedded functions are not para-
metric, prohibiting iteration over those datatypes. Alternatively,
Schürmann, Despeyroux and Pfenning [24, 8] use the necessity
modality (“box”) to mark those terms that allow iteration.

However, many modern typed languages already have a mechanism
to enforce that an argument be used abstractly—parametric poly-
morphism. It seems desirable to find a way to use this mechanism
instead of adding a separate facility to the type system. In this pa-
per, we show how to encode datatypes with parametric function
spaces in the polymorphic λ-calculus, including iteration operators
over them.

Our specific contributions are the following. For functional pro-
grammers, we provide an informal description of how restricting
datatypes to parametric function spaces can be enforced in the
Haskell language using first-class polymorphism. We provide a safe
and easy implementation of a library for iteration over higher-order
abstract syntax. This Haskell library allows the natural expression
of many algorithms over the object language; to illustrate its use,
we use it to implement a number of operations including Danvy
and Filinski’s optimizing one-pass CPS conversion algorithm [6].
Furthermore, because we encode the iteration operator within the
polymorphic λ-calculus, we also derive “fusion laws” about the
iteration operator that functional programmers may use to reason
about their programs.

To show the generality of this technique, we use this implementa-
tion to show a formal translation from the Schürmann, Despeyroux
and Pfenning modal calculus [24] (called here the SDP calculus)
to System Fω. This encoding has an added benefit to language de-
signers who wish to incorporate reasoning about parametric func-
tion spaces. It demonstrates how systems based on the polymor-
phic λ-calculus may be extended with reasoning about higher-order
structure.

We do not claim that this encoding will solve all of the problems
with programming using higher-order abstract syntax. In particular,
algorithms that require the explicit manipulation of the names of
bound variables remain outside the scope of this implementation
technique.

The remainder of this paper is as follows. Section 2 starts with
background material on catamorphisms for HOAS, including those
developed by Meijer and Hutton [16] and Fegaras and Sheard [9].
In Section 2.1 we show how to use first-class polymorphism and ab-
stract types to provide an interface for Fegaras and Sheard’s imple-
mentation that enforces the parametricity of embedded functions.
Using this interface, we show some examples of iteration includ-
ing CPS conversion (Section 2.2). In Section 3, we describe an
implementation of that interface within the part of Haskell that cor-
responds to System Fω, and describe properties of that implemen-
tation in Section 3.1. Section 4 describes the SDP calculus and
Section 5 presents an encoding of that calculus into Fω, using the
implementation that we developed in Section 3. Section 6 presents
future work, Section 7 presents related work, and Section 8 con-
cludes. We include Generic Haskell code for the polytypic part of
our implementation in Appendix A and the full encoding of the SDP
calculus into System Fω in Appendix B.

2 Catamorphisms for datatypes with embed-
ded functions

The following recursive datatype represents the untyped λ-calculus
using Higher-Order Abstract Syntax (HOAS).3

data Exp = Lam (Exp -> Exp) | App Exp Exp

The data constructor Lam represents λ-expressions. How-
ever, instead of explicitly representing bound λ-calculus
variables, Haskell functions are used to implement binding
and Haskell variables are used to represent variables. For
example, we might represent the identity function (λx.x) as
Lam (\x -> x) or the infinite loop (λx.(xx))(λx.(xx)) as
App (Lam (\x -> App x x)) (Lam (\x -> App x x)).

Using this datatype, we can implement an interpreter for the λ-
calculus. To do so, we must also represent the result values (also
using HOAS).

data Value = Fn (Value -> Value)
unFn (Fn x) = x

It is tricky to define recursive operations, such as evaluation, over
this implementation of expressions. The argument, x, to Lam below
is a function of type Exp -> Exp. To evaluate it, we must convert
x to a function of type Value -> Value. Therefore, we must also
simultaneously define an inverse to evaluation, called uneval, such
that eval . uneval = \x -> x. This inverse is used to convert
the argument of x from a Value to an Exp.

eval :: Exp -> Value
eval (Lam x) = Fn (eval . x . uneval)
eval (App y z) = unFn (eval y) (eval z)
uneval :: Value -> Exp
uneval (Fn x) = Lam (uneval . x . eval)

Consider the evaluation of ((λx.x)(λy.y)). First eval replaces App
with unFn and pushes evaluation down to the two subcomponents
of the application. Next, each Lam is replaced by Fn, and the argu-
ment is composed with eval and uneval. The unFn cancels the
first Fn, and the identity functions can be removed from the com-
positions. As uneval is right inverse to eval, we can replace each
(eval . uneval) with the identity function.

eval (App (Lam (\x -> x)) (Lam (\y -> y)))
= unFn (eval (Lam (\x -> x)))

(eval (Lam (\y -> y)))
= unFn (Fn (eval . \x -> x . uneval))

(Fn (eval . \y -> y . uneval))
= (eval . uneval) (Fn (eval . uneval))
= (\x -> x) (Fn (\y -> y))
= Fn (\y -> y)

Many functions defined over Exp will follow this same pattern of
recursion, requiring an inverse for Lam and calling themselves re-
cursively for the subcomponents of App. Catamorphisms capture
the general pattern of recursion for functions defined over recur-
sive datatypes. For example, foldl is a catamorphism for the list
datatype and can implement many list operations. For lists of type

3All of the following examples are in the syntax of the Haskell
language [19]. While some of the later examples require an exten-
sion of the Haskell type system—first-class polymorphism—this
extension is supported by the Haskell implementations GHC and
Hugs.

newtype Rec a = Roll (a (Rec a))

data ExpF a = Lam (a -> a) | App a a
type Exp = Rec ExpF

lam :: (Exp -> Exp) -> Exp
lam x = Roll (Lam x)

app :: Exp -> Exp -> Exp
app x y = Roll (App x y)

xmapExpF :: (a -> b, b -> a)
-> (ExpF a -> ExpF b, ExpF b -> ExpF a)

xmapExpF (f,g) = (\x -> case x of
Lam x -> Lam (f . x . g)
App y z -> App (f y) (f z),

\x -> case x of
Lam x -> Lam (g . x . f)
App y z -> App (g y) (g z))

cata ::
(ExpF a -> a) -> (a -> ExpF a) -> Rec ExpF -> a

cata f g (Roll x) =
f ((fst (xmapExpF (cata f g, ana f g))) x)

ana ::
(ExpF a -> a) -> (a -> ExpF a) -> a -> Rec ExpF

ana f g x =
Roll (snd (xmapExpF (cata f g, ana f g)) (g x))

Figure 1. Meijer/Hutton catamorphism

[a], foldr replaces [] with a base case of type b and (:) with a
function of type (a -> b -> b).

Meijer and Hutton [16] showed how to define catamorphisms
for datatypes with embedded functions, such as Exp. The cata-
morphism for Exp systematically replaces Lam with a function
of type ((a -> a) -> a) and App with a function of type
(a -> a -> a). However, just as we defined eval simul-
taneously with uneval, the catamorphism for Exp must be
simultaneously defined with an anamorphism. The catamor-
phism provides a way to consume members of type Exp and the
anamorphism provides a way to generate them.

In order to easily specify this anamorphism, we use a slightly more
complicated version of the Exp datatype, shown at the top of Fig-
ure 1. This version makes the recursion in the datatype explicit. The
newtype Rec computes the fixed point of type constructors (func-
tions from types to types). The type Exp is the fixed point of the
type constructor ExpF, where the recursive occurrences of Exp have
been replaced with the type parameter a. The first argument to cata
is of type ExpF a -> a (combining the two functions mentioned
above, of type ((a -> a) -> a) and (a -> a -> a)). The first
argument to ana has the inverse type a -> ExpF a.

The functions cata and ana are defined in terms of xmapExpF, a
generalized version of a mapping function for the type construc-
tor ExpF. Because of the function argument to Lam, xmapExpF
maps two functions, one of type a -> b and the other of type
b -> a. The definition of xmapExpF is completely determined by
the definition of ExpF. With Generic Haskell [5], we can define
xmap and automatically generate xmapExpF from ExpF (see Ap-

data Rec a b = Roll (a (Rec a b)) | Place b

data ExpF a = Lam (a -> a) | App a a
type Exp a = Rec ExpF a

lam :: (Exp a -> Exp a) -> Exp a
lam x = Roll (Lam x)

app :: Exp a -> Exp a -> Exp a
app x y = Roll (App x y)

xmapExpF :: (a -> b, b -> a)
-> (ExpF a -> ExpF b, ExpF b -> ExpF a)

xmapExpF (f,g) = (\x -> case x of
Lam x -> Lam (f . x . g)
App y z -> App (f y) (f z),

\x -> case x of
Lam x -> Lam (g . x . f)
App y z -> App (g y) (g z))

cata :: (ExpF a -> a) -> Exp a -> a
cata f (Roll x) =
f ((fst (xmapExpF (cata f, Place))) x)

cata f (Place x) = x

Figure 2. Fegaras/Sheard catamorphism

pendix A).4 That way, we can easily generalize this catamorphism
to other datatypes. Unlike map, which is defined only for covari-
ant type constructors, xmap is defined for type constructors that
have both positive and negative occurrences of the bound variable.
The only type constructors of Fω for which xmap is not defined are
those whose bodies contain first-class polymorphism. For example,
λα : ?.∀β : ?.α → β.

We can use cata to implement eval. To do so we must de-
scribe one step of turning an expression into a value (the function
evalAux) and one step of turning a value into an expression (the
function unevalAux).

evalAux :: ExpF Value -> Value
evalAux (Lam f) = Fn f
evalAux (App x y) = (unFn x) y

unevalAux :: Value -> ExpF Value
unevalAux (Fn f) = Lam f

eval :: Exp -> Value
eval x = cata evalAux unevalAux x

Using cata to implement operations such as eval is convenient
because the pattern of recursion is already specified. None of eval,
evalAux or unevalAux are recursively defined. However, for some
operations, there is no obvious (or efficient) inverse. For exam-
ple, to using cata to print out expressions also requires writing a
parser. Fegaras and Sheard [9] noted that sometimes the operation
of the catamorphism often undoes with f what it has just done with

4Meijer and Hutton’s version of xmapExpF only created the first
component of the pair. In ana where the second component is
needed, they swap the arguments. This is valid because fst (xmap
(f,g)) = snd(xmap (g,f)). However, while the version that
we use here is a little more complicated, it can be defined with
Generic Haskell.

g. This situation occurs when the argument to cata contains only
parametric functions. A parametric function is one that does not
analyze its argument with case or cata.

When the argument to cata is parametric, Fegaras and Sheard
showed how to implement cata without ana. The basic idea is that
for parametric functions, any use of ana during the computation of
a catamorphism will always be annihilated by cata in the final re-
sult. Therefore, instead of computing the anamorphism, they use
a place holder to store the original argument. When cata reaches
that place holder, it returns the stored argument.

To implement Fegaras and Sheard’s catamorphism, we must rede-
fine Rec. In Figure 2, we extend it with an extra branch (called
Place) that is the place holder. Because Place can contain any
type of value, Rec (and consequently Exp) must be parameterized
with the type of the argument to Place. This type is the result of the
catamorphism over the expression. In the implementation of cata,
Place is the second argument to xmapExpF instead of ana f. It is
a right inverse to cata f by definition.

For example, to count the number of occurrences of bound variables
in an expression, we might use the following code.

countvarAux :: ExpF Int -> Int
countvarAux (App x y) = x + y
countvarAux (Lam f) = f 1

countvar :: Exp Int -> Int
countvar = cata countvarAux

The function countvarAux describes what to do in one step. The
number of variables in an application expression is the sum of the
number of variables in x and the number of variables in y. In the
case of a λ-expression, f is a function from the number of variables
in a variable expression (i.e. one) to the number of variables in the
body of the lam. For example, to count the variables in (λx. x x):

countvar (lam (\x -> app x x))
= (countvar . (\x -> x + x) . Place) 1
= (\x -> (countvar (Place x))

+ (countvar (Place x))) 1
= (countvar (Place 1)) + (countvar (Place 1))
= 2

This definition of cata only works for arguments whose function
spaces are parametric and who do not use Place. Informally, we
call such expressions sound and other expressions unsound. Apply-
ing cata to an unsound expression can return a meaningless result.
For example, say we define the following term:

badplace :: Exp Int
badplace = lam (\x -> Place 3)

Then countvar badplace = 3, even though it contains no bound
variables. Even more importantly for higher-order abstract syntax,
unsound datatypes do not correspond to untyped λ-calculus expres-
sions, so it is important to be able to distinguish between sound and
unsound representations.5

5It is also important to distinguish between sound and unsound
members of datatypes that have meaningful non-parametric repre-
sentations. For these datatypes, the behavior of the Fegaras and
Sheard catamorphism on unsound arguments does not correspond
to the Meijer and Hutton version.

There are two ways for parametricity to fail, corresponding to the
two destructors for the type Exp a. A function is not parametric if
it uses cata or case to examine its argument, as below:

badcata :: Exp Int
badcata = lam (\x -> if (countvar x == 1)

then app x x
else x)

badcase :: Exp a
badcase = lam (\x -> case x of

Roll (App v w) -> app x x
Roll (Lam f) -> x
Place v -> x)

Fegaras and Sheard designed a type system to distinguish between
sound and unsound expressions. Datatypes such as Exp were an-
notated with flags to indicate whether they had been examined with
either case or cata, and if so, they were prevented from appearing
inside of non-flagged datatypes. Furthermore, their language pre-
vented the user from accessing Place by automatically generating
cata from the definition of the user’s datatype.

2.1 Enforcing parametricity with type ab-
straction

The type of badcata is Exp Int. This type tells us that something
is wrong: the type parameter of Exp is constrained to be Int, so
we can only use cata on this expression to produce an Int. The
same is true for badplace. Whenever we use cata or Place in
an expression, this parameter will be constrained. If we can ensure
that only sound expressions have type (forall a. Exp a), then
we can use first-class polymorphism to enforce that the argument to
a function is sound. That way, we can be assured that it will behave
as expected. For example, define a version of cata, called iter0
that may only be applied to sound expressions, below. The imple-
mentation of cata uses the argument at the specific type (Exp a),
so it is safe for iter0 to require that its argument has the more
general type (forall a. Exp a).

iter0 :: (ExpF b -> b) -> (forall a. Exp a) -> b
iter0 = cata

However, this new type does not prevent expressions like badcase
from being the argument to iter0. We can prevent such case anal-
ysis inside lam expressions by ruling out case analysis for all terms
of type Exp t. If the user cannot use case, then they cannot write
badcase. While this restriction means that some operations cannot
be naturally defined in this calculus, cata alone can define a large
number of operations, as we demonstrate below and in Section 2.2.

There are two ways to prohibit case analysis. The first way is to
reimplement Exp in such a way that cata is the only possible oper-
ation (in other words without using a Haskell datatype). We discuss
this alternative in Section 3.

The second way to prohibit case analysis is to make Rec an abstract
type constructor. If the definition of Rec is hidden by some module
boundary, such as with the interface in Figure 3, then the only way
to destruct an expression of type Exp a is with cata. Because
Roll and Place are datatype constructors of Rec, and cata pattern
matches these constructors, they must all be defined in the same
module as Rec. However, because we only need to prohibit case
analysis, we can export Roll and Place as the functions roll and
place. With roll we can define the terms app and lam anywhere.

type Rec a b -- abstract
data ExpF a = Lam (a -> a) | App a a
type Exp a = Rec ExpF a

roll :: ExpF (Exp a) -> Exp a
place :: a -> Exp a
cata :: (ExpF a -> a) -> Exp a -> a

Figure 3. Iteration library interface

We can also make good use of place. The type forall a. Exp a
enforces that all embedded functions are parametric, but it can only
represent closed expressions. What if we would like to examine
expressions with free variables? In HOAS, an expression with one
free variable has type Exp t -> Exp t. To compute the catamor-
phism for the expression, we use place to provide the value for the
free variable.

openiter1 :: (ExpF b -> b)
-> (Exp b -> Exp b) -> (b -> b)

openiter1 f x = \y -> cata f (x (place y))

If we would like to make sure that the expression is sound, we must
quantify over the parameter type and require that the expression
have type forall a. Exp a -> Exp a.

iter1 :: (ExpF b -> b)
-> (forall a. Exp a -> Exp a) -> (b -> b)

iter1 = openiter1

With iter1 we can determine if that one free variable occurs in an
expression.

freevarused :: (forall a. Exp a -> Exp a) -> Bool
freevarused e =
iter1 (\x -> case x of

(App x y) -> x || y
(Lam f) -> f False) e True

An app expression uses the free variable if either the function or the
argument uses it. The occurrence of the bound variable of a lam is
not an occurrence of the free variable, so False is the argument to
f, but the expression does use the free variable if it appears some-
where in the body of the abstraction. Finally, the program works
by feeding in True for the value of the free variable. If the result is
True then it must have appeared somewhere in the expression.

There is no reason to stop with one free variable. There are an infi-
nite number of related iteration operators, each indexed by the type
inside the forall. The types of several such iterators are shown
below. For example, the third one, iterList, may analyze expres-
sions with arbitrary numbers of free variables.

iter2 :: (ExpF b -> b)
-> (forall a. Exp a -> Exp a -> Exp a)
-> (b -> b -> b)

iterFun :: (ExpF b -> b)
-> (forall a. (Exp a -> Exp a) -> Exp a)
-> ((b -> b) -> b)

iterList :: (ExpF b -> b)
-> (forall a. ([Exp a] -> Exp a))
-> ([b] -> b)

Each of these iterators is defined by using xmap to map (cata f)
and place. Thus we can easily implement them by defining the
appropriate version of xmap. However, because xmap is a polytypic
function, we should be able to automatically generate all of these
iterators using Generic Haskell. The following code implements
these operations. Below, the notation xmap{|g|} generates the in-
stance of xmap for the type constructor g.

openiter{|g :: * -> * |} ::
(ExpF a -> a) -> g (Exp a) -> g a

openiter{|g|} f =
fst (xmap{|g|} (cata f, place))

iter{|g :: * -> * |} ::
(ExpF a -> a) -> (forall b. g (Exp b)) -> g a

iter{|g|} = openiter{|g|}

Unfortunately, the above Generic Haskell code cannot automat-
ically generate all the iterators that we want, such as iter1,
iterFun and iterList. Because of type inference, g can only
be a type constructor that is a constant or a constant applied to type
constructors [13]. In particular, we cannot represent the type con-
structor (λα : ?.α→ α) in Haskell, so we cannot automatically gen-
erate the instance

iter1 :: (f b -> b)
-> (forall a. (Exp a) -> (Exp a)) -> b -> b

Fortunately, using a different extension of Haskell, called functional
dependencies [14], we can generate these versions of openiter.
For each version of iter that we want, we still need to redefine the
generated openiter with the more restrictive type.

iter1 :: (ExpF a -> a)
-> (forall b. Exp b -> Exp b) -> a -> a

iter1 = openiter

The Iterable class defines openiter simultaneously with its in-
verse. The parameters m and n should be g(Exp a) and g a, where
each instance specifies g. (The type a is a parameter of the type
class so that m and n may refer to it.) Also necessary are the func-
tional dependencies that state that m determines both a and n. These
dependencies rule out ambiguities during type inference.

class Iterable a m n | m -> a, m -> n where
openiter :: (ExpF a -> a) -> m -> n
uniter :: (ExpF a -> a) -> n -> m

If g is the identity type constructor, then m and n are Exp a and a
respectively.

instance Iterable a (Exp a) a where
openiter = cata
uniter f = place

Using the instances for the subcomponents, we can define instances
for types that contain ->.

instance (Iterable a m1 n1, Iterable a m2 n2)
=> Iterable a (m1 -> m2) (n1 -> n2) where
openiter f x = openiter f . x . uniter f
uniter f x = uniter f . x . openiter f

With these instances, we have a definition for openiter{|λα.α →
α|}. It is not difficult to add instances for other type constructors,
such as lists and tuples.

2.2 Examples of iteration

We next present several additional examples of the expressiveness
of iter0 for arguments of type (forall a. Exp a). The pur-
pose of these examples is to demonstrate how to implement some
of the common operations for λ-calculus terms without case analy-
sis.

For example, we can use iter0 to convert expressions to strings.
So that we have different names for each nested binding occurrence,
we must parameterize this iteration with a list of variable names.
Haskell’s list comprehension provides us with an infinite supply of
strings.

vars :: [String]
vars = [[i] | i <- [’a’..’z’]] ++

[i : show j | j <- [1..], i <- [’a’..’z’]]

showAux :: ExpF ([String] -> String)
-> ([String] -> String)

showAux (App x y) vars =
"(" ++ (x vars) ++ " " ++ (y vars) ++ ")"
showAux (Lam z) (v:vars) =
"(fn " ++ v ++ ". " ++ (z (const v) vars) ++ ")"

show :: (forall a. Exp a) -> String
show e = iter0 showAux e vars

Applying show to an expression produces a readable form of the
expression.

show (lam (\x -> lam (\y -> app x y)))
= (fn a. (fn b. (a b)))

Another operation we might wish to perform for a λ-calculus ex-
pression is to reduce it to a simpler form. As an example, we next
implement parallel reduction for a λ-calculus expression.6 Parallel
reduction differs from full reduction in that it does not reduce any
newly created redexes. Therefore, it terminates even for expres-
sions with no β-normal form. Parallel reduction may be specified
by the following inductive definition.

x ⇒ x
M ⇒ M′

λx.M ⇒ λx.M′
M ⇒ M′ N ⇒ N′

MN ⇒ M′N′

M ⇒ M′ N ⇒ N′

(λx.M)N ⇒ M′{x/N′}

We use iter0 to implement parallel reduction below. The tricky
part is the case for applications. We must determine whether the
first component of an application is a lam expression, and if so,
perform the reduction. However, we cannot do a case analysis on
expressions, as the type Exp a is abstract. Therefore, we imple-
ment parallel reduction with a “pairing” trick7. As we iterate over
the term we produce two results, stored in the following record:

data PAR a = PAR { par :: Exp a,
apply :: Exp a -> Exp a }

The first component, par, is the actual result we want—the parallel
reduction of the term. The second component, apply, is a func-

6This example is from Schürmann et. al [24].
7Pairing was first used to implement the predecessor operation

for Church numbers. The iteration simultaneously computes the
desired result with auxiliary operations.

tion that we build up for the application case. In the case of a lam
expression, apply performs the substitution in the reduced term.
Otherwise, apply creates an app expression with its argument and
the reduced term.8

parAux :: ExpF (PAR a) -> PAR a
parAux (Lam f) =
PAR { par = lam (par . f . var),

apply = par . f . var }
where

var :: Exp a -> PAR a
var x = PAR { par = x, apply = app x }

parAux (App x y) =
PAR { par = apply x (par y),

apply = app (apply x (par y)) }

parallel :: (forall v. Exp v) -> (forall v. Exp v)
parallel x = par (iter0 parAux x)

For example:

show (parallel (app (lam (\x -> app x x))
(lam (\y -> y))))

= "((fn a. a) (fn a. a))"

While we could not write the most natural form of parallel reduc-
tion with iter0, other operations may be expressed in a very nat-
ural manner. For example, we can implement the one-pass call-by-
value CPS-conversion of Danvy and Filinski [6]. This sophisticated
algorithm performs “administrative” redexes at the meta-level so
that the result term has no more redexes than the original expres-
sion. The algorithm is based on two mutually recursive operations:
cpsmeta performs closure conversion given a meta-level continua-
tion (a term of type Exp a -> Exp a), and cpsobj does the same
with an object-level continuation (a term of type Exp a).

data CPS a = CPS {
cpsmeta :: (Exp a -> Exp a) -> Exp a,
cpsobj :: Exp a -> Exp a }

If we are given a value (i.e. a λ-expression or a variable) the func-
tion value below describes its CPS conversion. Given a meta-
continuation k, we apply k to the value. Otherwise, given an object
continuation c, we create an object application of c to the value.

value :: Exp a -> CPS a
value x = CPS { cpsmeta = \k -> k x,

cpsobj = \c -> app c x }

The operation cpsAux takes an expression whose subcomponents
have already been CPS converted and CPS converts it. For applica-
tion, translation is the same in both cases except that the meta-case
converts the meta-continuation into an object continuation with
lam.

cpsAux :: ExpF (CPS a) -> CPS a
cpsAux (App e1 e2) =
CPS { cpsmeta = \k -> appexp (lam k),

cpsobj = appexp }
where appexp c =

(cpsmeta e1) (\y1 ->
(cpsmeta e2) (\y2 ->

app (app y1 y2) c))

8In Haskell, the notation apply x projects the apply compo-
nent from the record x.

type Rec f a = (f a -> a) -> a
data ExpF a = Lam (a -> a) | App a a
type Exp a = Rec ExpF a

roll :: ExpF (Exp a) -> Exp a
roll x =
\f -> f (fst (xmapExpF (cata f, place)) x)

place :: a -> Exp a
place x = \f -> x

lam :: (Exp a -> Exp a) -> Exp a
lam x = roll (Lam x)

app :: Exp a -> Exp a -> Exp a
app y z = roll (App y z)

xmapExpF :: (a -> b, b -> a)
-> (ExpF a -> ExpF b, ExpF b -> ExpF a)

xmapExpF (f,g) = (\x -> case x of
Lam x -> Lam (f . x . g)
App y z -> App (f y) (f z),

\x -> case x of
Lam x -> Lam (g . x . f)
App y z -> App (g y) (g z))

cata :: (ExpF a -> a) -> Exp a -> a
cata f x = x f

iter0 :: (ExpF a -> a) -> (forall b. Exp b) -> a
iter0 = cata

Figure 4. Catamorphism in the Fω fragment of Haskell

For functions, we use value, but we must transform the function
to bind both the original and continuation arguments and transform
the body of the function to use this object continuation. The outer
lam binds the original argument. We use value for this argument
in f and cpsobj yields a body expecting an object continuation that
the inner lam converts to an expression.

cpsAux (Lam f) =
value (lam (lam . cpsobj . f . value))

Finally, we start cps with iter0 by abstracting an arbitrary dy-
namic context a and transforming the argument with respect to that
context.

cps :: (forall a. Exp a) -> (forall a. Exp a)
cps x = lam (\a ->

cpsmeta (iter0 cpsAux x) (\m -> app a m))

show (cps (lam (\x -> app x x)))
= "(fn a. (a (fn b. (fn c. ((b b) c)))))"

Above, a is the initial continuation, b is the argument x, and c is the
continuation for the function.

3 Encoding iteration in Fω

In the previous section, we implemented iter as a recursive func-
tion and used a recursive type, Rec, to define Exp. To prevent case
analysis, we hid this definition of Rec behind a module boundary.
However, this module abstraction and is not the only way to prevent
case analysis. Furthermore, term and type recursion is not neces-

sary to implement this datatype. We may define iter and Rec in
the fragment of Haskell that corresponds to Fω [10] so that iteration
is the only elimination form for Rec. This implementation appears
in Figure 4.

The encoding is similar to the encoding of covariant datatypes in
the polymorphic λ-calculus [3] (or to the encoding of Church nu-
merals). We encode an expression of type Exp a as its elimination
form. For example, something of type Exp a should take an elimi-
nation function of type (ExpF a -> a) and return an a. To imple-
ment cata we apply the expression to the elimination function.

To create an expression, roll must encode this elimination. There-
fore, roll returns a function that applies its argument f (the elimi-
nation function) to the result of iterating over x. Again, to use xmap
we need a right inverse for cata f. The term place in Figure 4
is an expression that when analyzed returns its argument. We can
show that place is a right inverse by expanding the above defini-
tions:

cata f . place = (\x -> cata f (place x))
= (\x -> (place x) f)
= (\x -> ((\y -> x) f))
= (\x -> x)

3.1 Reasoning about iteration

There are powerful tools for reasoning about programs written in
the polymorphic λ-calculus. For example, we know that all pro-
grams that are written in Fω will terminate. Therefore, we can ar-
gue that the examples of the previous section are total on all in-
puts that may be expressed in the polymorphic λ-calculus, such as
app (lam (\x -> app x x))(lam (\x -> app x x)). Un-
fortunately, we cannot argue that these examples are total for ar-
bitrary Haskell terms. For example, calling any of these routines on
(lam (let f x = f x in f)) will certainly diverge. Further-
more, even if the arguments to iteration are written in Fω, if the op-
eration itself uses type or term recursion, then it could still diverge.
For example, using the recursive datatype Value from Section 2,
we can implement the untyped λ-calculus evaluator with iter0.

Parametricity is another way to reason about programs written in
Fω. As awkward as they may be, one of the advantages to pro-
gramming with catamorphisms instead of general recursion is that
we may reason about our programs using algebraic laws that follow
from parametricity. While the following laws only hold for Fω, we
may be able to prove some form of them for Haskell using tech-
niques developed by Johann [12].

Using parametricity, we can derive a free theorem [28] about ex-
pressions of type (forall a. (b a -> a) -> a). If x has this
type, then

f . f’ = id and f . g = h . fst (xmap|b|(f,f’)) =>
f (x g) = x h

The equivalence in this theorem is equivalence in some parametric
model of Fω, such as the term model with βη-equivalence. Using
the free theorem, we can prove a number of properties about itera-
tion. First, we can show that iterating roll is an identity function,
that iter0 roll = id. Using this result we can show the unique-
ness property for iter, which describes when a function is equal
to an application of iter. It resembles an “induction principle” for
iter0.

f . f’ = id and f . roll = h . fst (xmap|b|(f,f’))
<=> f = iter0 h

The <= direction follows directly from the implementation of
iter0 and roll. The => direction follows from the free theorem.

Finally, the fusion law can be used to combine the composition of
a function f and an iteration into one iteration. This law follows
directly from the free theorem.

f . f’ = id and f . g = h . fst(xmap|b|(f,f’)) =>
f . iter0 g = iter0 h

However, there is an important property about this encoding of the
λ-calculus that we have not proven. Adequacy states that if a Fω
term is of type forall a. Exp a and is in canonical form, then
it should be the encoding of the canonical form of some λ-calculus
expression. In other words, there is no extra “junk” in the type
forall a. Exp a, such as badcase. As a first step towards prov-
ing this result, we next show how this Fω library can encode a lan-
guage with iteration over HOAS that itself adequately embeds the
λ-calculus.

4 Enforcing parametricity with modal types

In the next section, we formally describe the connection between
the interface we have provided for iteration over higher-order ab-
stract syntax and the modal calculus of Schürmann, Despeyroux
and Pfenning (SDP) [24]. We do so by using this library to give a
sound and complete embedding of the SDP calculus into Fω. First,
we provide a brief overview of the static and dynamic semantics of
this calculus. The syntax of the SDP calculus is shown in Figure 5.

The SDP calculus enforces the parametricity of function spaces
with modal types. Modal necessity in logic is used to indicate those
propositions that are true in all worlds. Consequently, these propo-
sitions can make use of only those assumptions that are also true
in all worlds. In Pfenning and Davies’ [20] interpretation of modal
necessity, necessarily true propositions correspond to those formu-
lae that can be shown to be valid. Validity is defined as derivable
with respect to only assumptions that themselves are valid assump-
tions. As such, the typing judgments have two environments (also
called contexts), one for valid assumptions, Ω, and one for “local”
assumptions, ϒ. The terms corresponding to the introduction and
elimination forms for modal necessity are box and let box. We
give them the following typing rules:

Ω;∅ ` M : A
Ω;ϒ ` boxM : �A

Ω;ϒ ` M1 : �A1 Ω]{x : A1};ϒ ` M2 : A2

Ω;ϒ ` let box x : A1 = M1 inM2 : A2

A boxed term, M, has type �A only if it has type A with respect
to the valid assumptions in Ω, and no assumptions in local environ-
ment. The let box elimination construct allows for the introduction
of valid assumptions into Ω, binding the contents of the boxed term
M1 in the body M2. This binding is allowed because the contents
of boxed terms are well-typed themselves with only valid assump-
tions. Another way to think about modal necessity is that terms
with boxed type are “closed” and do not contain any free variables,
except those that are bound to closed terms themselves.

Operationally, boxed terms behave like suspensions, while let box
substitutes the contents of a boxed term for the bound variable. Be-
cause the operational semantics is defined simultaneously with con-

(Pure Types) B ::= b | 1 | B1 → B2 | B1 ×B2
(Types) A ::= B | A1 → A2 | A1 ×A2 | �A
(Terms) M ::= x | c | 〈〉 | λx : A.M | M1M2 |

boxM | let box x : A = M1 inM2 |
〈M1,M2〉 | fstM | sndM |
iter [A1,A2][Θ] M

(Term Replacement) Θ ::= ∅ | Θ]{x 7→ M} | Θ]{c 7→ M}
(Pure Environment) Ψ ::= ∅ | Ψ]{x : B}
(Valid Environment) Ω ::= ∅ | Ω]{x : A}
(Local Environment) ϒ ::= ∅ | ϒ]{x : A}
(Signatures) Σ ::= ∅ | Σ]{c : B → b}

Figure 5. Syntax of SDP calculus

version to canonical forms, it is parameterized by the environment
Ψ that describes the types of free local variables appearing in the
expression.

Ψ ` M1 ↪→ boxM′
1 : �A1 Ψ ` M2{M′

1/x} ↪→V : A2

Ψ ` let box x : A1 = M1 inM2 ↪→V : A2

To enforce the separation between the iterative and parametric func-
tion spaces, the SDP calculus defines those types, B, that do not
contain a � type to be “pure”. Objects in the calculus with type �B,
boxed pure types, can be examined intensionally using an iteration
operator, while objects of arbitrary impure type, A, cannot. This
forces functions of pure type, λx : B1..M : B1 → B2, to be paramet-
ric. This is because the input, x, to such a function does not have
a boxed pure type, and there is no way to convert it to one — x
will not be free inside of a boxed expression in M. Consequently,
the functions of pure type may only treat their inputs extensionally,
making them parametric.

The language is parameterized by a constant type b and a signature,
Σ, of data constructor constants, c, for that base type. Each of the
constructors in this signature must be of type B → b. Because B is
a pure type, these constructors may only take parametric functions
as arguments.

For example, consider a signature describing the untyped λ-
calculus, Σ = {app : b × b → b, lam : (b → b) → b}, where the
constant type b corresponds to Exp. Using this signature, we can
write a function to count the number of bound variables in an
expression, as we did in Section 2.9

countvar , λx : �b.
iter[�b, int][{app 7→ λy : int.λz : int.y+ z,

lam 7→ λ f : int → int. f 1}] x

The term iter intensionally examines the structure of the argu-
ment x and replaces each occurrence of app and lam with
λy : int.λz : int.y+ z and λ f : int → int. f 1 respectively.

The typing rule for iter is the following:

Ω;ϒ ` M : �B Ω;ϒ ` Θ : A〈Σ〉
Ω;ϒ ` iter [�B,A][Θ] M : A〈B〉

The argument to iteration, M, must have a pure closed type to be
analyzable. Analysis proceeds via walking over M and using the

9For simplicity, our formal presentation of SDP (in Figure 5)
does not include integers. However, it is straightforward to extend
this calculus to additional base types.

replacement Θ, a finite map from constants to terms, to substitute
for the constants in the term M. The type A is the type that will
replace the base type b in the result of iteration. The notation A〈B〉
substitutes A for the constant b in the pure type B. Each term in
the range of the replacements must also agree with replacing b with
A. We verify this fact with the judgment Ω;ϒ ` Θ : A〈Σ〉, which
requires that if Θ(c) = Mc and Σ(c) = Bc, then Mc must have type
A〈Bc〉.

Operationally, iteration in the SDP calculus works in the following
fashion.

Ψ ` M ↪→ boxM′ : �B
∅ ` M′ ⇑V ′ : B

Ψ ` 〈A,Ψ,Θ〉(V ′) ↪→V : A〈B〉

Ψ ` iter [�B,A][Θ] M ↪→V : A〈B〉

First, the argument to iteration M is evaluated, Ψ ` M ↪→ boxM′ :
�B, producing a boxed object M′. M′ is then evaluated to η-long
canonical form via ∅ ` M′ ⇑ V ′ : B. Next we perform elimination
of that canonical form, 〈A,Ψ,Θ〉(V ′), walking over V ′ and using Θ
to replace the occurrences of constants. Finally, we evaluate that
result, Ψ ` 〈A,Ψ,Θ〉(V ′) ↪→V : A〈B〉.

In order to simplify the presentation of the encoding, we have made
a few changes to the SDP calculus. First, while the language pre-
sented in this paper has only one pure base type b, the SDP calculus
allows the signature Σ to contain arbitrarily many base types. How-
ever, the extension of the encoding to several base types is straight-
forward. Also, in order to make the constants of the pure language
more closely resemble datatype constructors, we have forced them
all to be of the form B → b instead of any arbitrary pure type B. To
facilitate this restriction, we add unit and pairing to the pure frag-
ment of the calculus so that constructors may take any number of
arguments.

5 Encoding SDP in Fω

The terms that we defined in Section 3, roll and iter, correspond
very closely to the constructors and iteration primitive of the SDP
calculus. In this section, we strengthen this observation by showing
how to encode all programs written in the SDP calculus into Fω
using a variation of these terms.

There are two key ideas behind our encoding:

• We use type abstraction to ensure that the encoding of boxed
objects obeys the closure property of the source language, and
prevents variables from the local environment from appearing
inside these terms. To do so, we parameterize our encoding by
a type that represents the current world and maintain the in-
variant that all variables in the local environment mention the
current world in their types. Because a term enclosed within
a box must be well-typed in any world, when we encode a
boxed term we use a fresh type variable to create an arbitrary
world. We then encode the enclosed term with that new world
and wrap the result with a type abstraction. As a consequence,
the encoding of a data-structure within a box cannot contain
free local variables because their types would mention that
fresh type variable outside of the scope of the type abstrac-
tion.

• We encode constants in the source language as their elimina-
tion form with roll. Furthermore, we restrict the result of
elimination to be of the type that is the world in which the
term was encoded. However, the encoding of boxed expres-

sions quantifies over that world, allowing the resulting com-
putations to be of arbitrary type.

The encoding of the SDP calculus can be broken into four primary
pieces: the encodings for signatures, types, terms, and replace-
ments. To simplify our presentation, we extend the target language
with unit, void, products, and variants. The syntax of these terms
appears in Figure 6. This extension does not weaken our results as
there are well known encodings of these types into Fω. In the re-
mainder of this section, we present the details of the encoding and
describe the most interesting cases. The full specification of this
encoding appears in Appendix B.

Signatures. The encoding of signatures in the SDP calculus, no-
tated τ〈Σ〉, corresponds to generating the type constructor whose
fixed point defines the recursive datatype. (For example, ExpF in
Section 2.) The argument of the encoding, a specified world τ, cor-
responds to the argument of the type constructor.

For this encoding, we assume the aid of an injective function L that
maps data constructors in the source language to distinct labels in
the target language. We also need an operation called parameteri-
zation, notated τ〈B〉 and defined in Appendix B.1. This operation
parameterizes pure types in the source calculus with respect to a
given world in the target language, and produces a type in the tar-
get language. Essentially, τ〈B〉 “substitutes” the type τ for the base
type, b, in B.

We encode a signature as a variant. Each field corresponds to a
constant ci in the signature, with a label according to L , and a type
that is the result of parameterizing the argument type of ci with the
provided type.

∀ci ∈ dom(Σ) Σ(ci) = Bi → b

τ〈Σ〉 , 〈L(c1) : τ〈B1〉, . . . ,L(cn) : τ〈Bn〉〉

We often use parameterization and the signature translation to build
type constructors in the target language, so we define the following
two abbreviations:

B∗ , λα : ?.α〈B〉 Σ∗ , λα : ?.α〈Σ〉

Types. As with the encoding of signatures, the encoding of types
is parameterized by the worlds in which they occur. We write the
judgment for encoding a type A in the source calculus in world τ
as ∆ ` A Bτ τ′. The environment ∆ tracks type variables allocated
during the translation and allows us to chose variables that are not
in scope. The two interesting cases for encoding types from the
source calculus are those for the base type and for boxed types. The
case for b corresponds to Rec ExpF a from Section 3. Therefore,
we define the abbreviation Rec Σ∗ α , (Σ∗α → α) → α, intuitively
a fixed point of Σ∗, to the same idea of encoding a datatype as its
elimination form.

∆ ` bBτ Rec Σ∗ τ

The rule for boxed types uses type abstraction to ensure the result
is parametric with respect to its world. Naı̈vely, we might expect
to use a fresh type variable as the new world and then encode the
contents of the boxed type with that type variable. This encoding
ensures that the type is parametric with respect to its world and then
quantifies over the result.

α 6∈ ∆ ∆]{α : ?} ` ABα τ′

∆ ` �ABτ ∀α :?.τ′
WRONG!

(Kinds) κ ::= ? | κ1 → κ2
(Types) τ ::= 1 | 0 | α | τ1 → τ2 | ∀α :κ.τ | τ1 × τ2 | 〈l1 : τ1, . . . , ln : τn〉 | λα : κ.τ | α | τ1τ2
(Terms) e ::= x | 〈〉 | λx : τ.e | e1e2 | Λα :κ.e | e[τ] | 〈e1,e2〉 | fste | snde | injl eofτ |

caseeof injl1 x1 ine1 . . . injln xn inen
(Type Variable Environment) ∆ ::= ∅ | ∆]{α : κ}
(Term Environment) Γ ::= ∅ | Γ]{x : τ}

Figure 6. Syntax of Fω with unit, void, products, and variants

However, with this encoding we violate the invariant that the types
of all free local variables mention the current world, because the
encoding does not involve τ. Instead, we use the fresh type vari-
able to create a new world from the current world and consider α
as a “world transformer”. During the translation, a term will be en-
coded with a stack of world transformers, somewhat akin to stack
of environments in the implicit formulation of modal types [7].

α 6∈ ∆ ∆]{α : ? → ?} ` ABατ τ′

∆ ` �ABτ ∀α :? → ?.τ′

The naı̈ve translation of the unit type also forgets the current world.
For this reason, we add a non-standard unit to Fω that is parameter-
ized by the current world. In other words, the unit type 1 is of kind
?→ ? and the unit term 〈〉 has type ∀α :?.1(α). Our type translation
instantiates this type with the current world.

∆ ` 1Bτ 1[τ]

The remaining types in the SDP language are encoded recursively
in a straightforward manner. The complete rules can be found in
Appendix B.3.

Terms and replacements. We encode the source term, M, with
the judgment ∆;Ξ ` M Bτ e. In addition to the current world, τ,
and the set of allocated type variables, ∆, the encoding of terms
is also parameterized by a set of term variables, Ξ. This set of
variables allows the encoding to distinguish between variables that
were bound with λ and those bound with let box. We will elaborate
on why this set is necessary shortly.

Our encoding of boxed terms follows immediately from the encod-
ing of boxed types. Here we encode the argument term with respect
to a fresh world transformer applied to the present world and then
wrap the result with a type abstraction.

α 6∈ ∆ ∆]{α : ? → ?};Ξ ` M Bατ e

∆;Ξ ` boxM Bτ Λα :? → ?.e

We encode let box by converting it to an abstraction and application
in the target language. However, one might note the discrepancy
between the type of the variable we bind in the abstraction and the
type we might naı̈vely expect.

∆ ` �A1 Bτ τ1
∆;Ξ ` M1 Bτ e1 ∆;Ξ]{x} ` M2 Bτ e2

∆;Ξ ` let box x : A1 = M1 inM2 Bτ (λx : τ1.e2)e1

The type of x is A1 and so one might assume that the type of x in
the target should be the encoding of A1 in the world τ. However,
let box allows us to bind variables that are accessible in any world
and using A1 encoded against τ would allow the result to be used

cata : ∀α :?.(Σ∗α → α) → (Rec Σ∗ α) → α
cata , Λα :?..λ f : (Σ∗α → α).λy : (Rec Σ∗ α).y f

place : ∀α :?.α → Rec Σ∗ α
place , Λα :?.λx : α.λ f : (Σ∗α → α).x

xmap{|τ|} : ∀α :?.∀β :?.(α → β×β → α) →
(τα → τβ× τβ → τα)

openiter{|τ|} : ∀α :?.(Σ∗α → α) → τ(Rec Σ∗ α) → τα
openiter{|τ|} , Λα :?.λ f : Σ∗α → α.

fst(xmap{|τ|}[Rec Σ∗ α][α]〈cata[α] f ,place[α]〉)

iter{|τ|} : ∀γ :?.∀α :?.(Σ∗α → α) →
(∀β :? → ?.τ(Rec Σ∗ (βγ)) → τα

iter{|τ|} , Λγ :?.Λα :?.λ f : Σ∗α → α.
λx : (∀β : ? → ?.τ(Rec Σ∗ (βγ))).openiter{|τ|}[α] f (x[α])

roll : ∀α :?.Σ∗(Rec Σ∗ α) → Rec Σ∗ α
roll , Λα :?.λx : Σ∗(Rec Σ∗ α).

λ f : Σ∗α → α. f (openiter{|Σ∗|}[α] f x)

Figure 7. Library routines

only in the present world. Because the encoding of M1 will evalu-
ate to a type abstraction, a term parametric in its world, we do not
immediately unpack it by instantiating it with the current world.
Instead we pass it as x and then, when x appears we instantiate it
with the current world. Consequently, we use Ξ to keep track of
variables bound by let box. When encoding variables, we check
whether x occurs in Ξ and perform instantiations as necessary.

x 6∈ Ξ
∆;Ξ ` x Bτ x

x ∈ Ξ
∆;Ξ ` x Bτ x[λα : ?.τ]

If the variable is in Ξ, then it is applied to a world transformer that
ignores its argument, and returns the present world. This essentially
replaces the bottom of the world transformer stack captured by the
type abstraction substituted for x with the world τ. Doing so ensures
that if we substitute the encoding of a boxed term into the encoding
of another boxed term, the type correctness of the embedding is
maintained by correctly propagating the enclosing world.

Figure 7 shows the types and definitions of the library routines used
by the encoding. The only difference between it and Figure 4 is
that iter abstracts the current world and requires that its argument
be valid in any transformation of the current world. Again, we
make use of the polytypic function xmap to lift cata to arbitrary
type constructors . Because xmap is defined by the structure of
a type constructor τ, we cannot directly define it as a term in Fω.
Instead, we will think of xmap{|τ|} as macro that expands to the

mapping function for the type constructor τ. (We use the notation
{|·|} to distinguish between polytypic instantiation and parametric
type instantiation.) This expansion is done according to the defini-
tion in Appendix A. We do not cover the implementation here, see
Hinze [11] for details.

Encoding constants in the source calculus makes straightforward
use of the library routine roll. We simply translate the constant into
an abstraction that accepts a term that is the encoding of the argu-
ment of the constant, and then uses roll to transform the injection
into the encoding of the base type, Rec Σ∗ τ.

Σ(c) = B → b ∆ ` BBτ τB

∆;Ξ ` cBτ λx : τB.roll[τ](injL(c) x ofΣ∗(Rec Σ∗ τ))

The encoding of iteration is similarly straightforward. We instanti-
ate our polytypic function iter with a type constructor created from
parameterizing B, and then apply it to the current world and the en-
codings of the intended result type A, the replacement term Θ and
argument term M.

∆ ` ABτ τA ∆;Ξ ` ΘB
τA
τ eΘ ∆;Ξ ` M Bτ eM

∆;Ξ ` iter [�B,A][Θ] M Bτ iter{|B∗|}[τ][τA]eΘ eM

The encoding of replacements Θ is uncomplicated and analogous
to the encoding of signatures. We construct an abstraction that con-
sumes an instance of an encoded signature, dispatching the variant
using a case expression. In each branch, the encoding of the corre-
sponding replacement is applied to the argument of the injection.

∀ci ∈ dom(Θ) ∆;Ξ ` Θ(Ci)Bτ ei

∆;Ξ ` ΘB
τA
τ λx : Σ∗τA.casexof injL(c1) y1 in(e1y1)

. . .
injL(cn) yn in(enyn)

The encodings for the other terms in the source language are
straightforward and appear in Appendix B.4. Now that we have
defined all of our encoding for any closed term M in the SDP cal-
culus, we put everything together to construct a term e in our target
calculus using the initial judgment ∅;∅ ` M B0 e. We use the void
type as the initial world to enforce the parametricity of unboxed
constants.

5.1 Properties of the encoding

We have proven a number of desirable properties concerning this
encoding. However, before we can state these properties, we must
first define the relationship between the environments in the source
and target calculi. These relations hold when all types from the
local environment are encoded with the current world, and all types
from the valid environment are first boxed then encoded with any
world.

DEFINITION 5.1 (ENCODING TYPING ENVIRONMENTS). We
write ∆ ` ϒBτ Γ1 and ∆ ` ΩBΓ2 to mean that

∀x : A ∈ ϒ,x : τA ∈ Γ1 when ∆ ` ABτ τA
∀x : A ∈ Ω,x : τA ∈ Γ2 when there exists ∆ ` τ′ such that

∆ ` �ABτ′ τA

The relation for valid environments above is not parameterized by
the current world. A single valid environment may be encoded as
many different target environments, depending on what worlds are
chosen for each type in the environment. However, in some sense
the encodings are equivalent. If the translation of M type checks

with one encoding of Ω, it will type check with any other encoding
of Ω.

The encoding is type preserving. If we encode a well-typed term
M, the resulting term will be well-typed under the appropriately
translated environment. Furthermore, the converse is also true. If
the encoding of a term M is well-typed in the target language, then
M must have been well-typed in the source. This means that the
target language preserves the abstractions of the source language.

THEOREM 5.2 (STATIC CORRECTNESS). Assume ∆ ` τ and
∆ ` ϒBτ Γ1 and ∆ ` ΩBΓ2.

1. If ∆;dom(Ω) ` M Bτ e then

Ω;ϒ ` M : A and ∆ ` ABτ τA ⇔ ∆;Γ1]Γ2 ` e : τA

2. If ∆;dom(Ω) ` ΘB
τA
τ eθ then

Ω;ϒ `Θ : A〈Σ〉 and ∆ `ABτ τA ⇔ ∆;Γ1]Γ2 ` eθ : τA〈Σ〉→ τA

PROOF. By mutual induction over the translation
of terms (∆;dom(Ω) ` M Bτ e) and of replacements
(∆;dom(Ω) ` ΘB

τA
τ eθ).

Furthermore, source evaluation and canonicalization is the same as
βη-equivalence in the target calculus.

THEOREM 5.3 (DYNAMIC CORRECTNESS). If ∅;Ψ ` M : A
and ∅;Ψ ` M Bτ e and ∅;Ψ `V Bτ e′ and ∅ ` ABτ τA and
∅;Ξ ` ∅;ΨBτ Γ then

1. Ψ ` M ↪→V : A ⇔ ∅;Γ ` e ≡βη e′ : τA.

2. Ψ ` M ⇑V : A ⇔ ∅;Γ ` e ≡βη e′ : τA.

PROOF. The forward direction follows by simultaneous induction
on the evaluation of M (Ψ ` M ↪→V : A) and the conversion of M
to canonical form (Ψ ` M ⇑ V : A). The reverse direction follows
from the forward direction and from the fact that evaluation in the
SDP calculus is deterministic and total.

6 Future work

Although we have shown a very close connection between SDP
and its encoding in Fω, we have not shown that this encoding is
adequate. We would like to show that if τ is the image of an SDP
type, then all terms of type τ are equivalent to the encoding of some
SDP term. In other words, there is no extra “junk” of type τ. Show-
ing this result would also show that encoding the λ-calculus with
app and lam is adequate, because the SDP calculus can already
adequately encode the λ-calculus.

Alternatively, we could try to show adequacy with respect to the λ-
calculus directly using a different method. It may also be possible to
do so for the simpler encoding of modal types, informally presented
in the first part of the paper, that uses first-order quantification and
discards the current world. Whereas this simpler encoding allows
the translation of some terms that are rejected by the SDP calculus
to type check (for example, λx : �b. box x), it may still be adequate
for encoding the untyped λ-calculus.

One important extension of this work is the case operator. Because
there are limitations to what may be defined with iter, the SDP
calculus also includes a construct for case analysis of closed terms.

However, we have not yet found an obvious correspondence for
case in our encoding.

Another further area of investigation is into the dual operation to
iter, the anamorphism over datatypes with embedded functions.
An implementation of this operation, called coiter, is below. The
coiter term is an anamorphism—it generates a recursive data
structure from an initial seed.

data Dia f a = In (f (Dia f a), a)

coroll :: Dia f a -> f (Dia f a)
coroll (In x) = fst x
coplace :: Dia f a -> a
coplace (In x) = snd x

coiter0 :: (a -> f a) -> a -> (exists a. Dia f a)
coiter0 g b =
In (snd (xmap (coplace, coiter0 g) (g b)), b)

Instead of embedding the recursive type in a sum, we embed it in
a product. The two selectors from this product have the dual types
to roll and place. In the definition of coiter0 we use coplace
as the inverse where we would have used cata in the definition of
ana. A term of type (exists a. Dia b a) corresponds to the
possibility type (� b) in a modal calculus. However, while a general
anamorphism is an inverse of a catamorphism, coiter is not an
inverse to iter. In fact, iter cannot consume what coiter pro-
duces, giving doubts to its practical use. (On the other hand, ana
itself has seen little practical use for datatypes with embedded func-
tions.) From a logical point of view, this restriction makes sense.
Combining anamorphisms and catamorphisms (even for datatypes
without embedded functions) leads to general recursion.

7 Related work

The technique we present, using polymorphism to enforce para-
metricity, has appeared under various guises in the literature. For
example, Shao et al. [27] use this technique (one level up) to imple-
ment type-level intensional analysis of recursive types. They use
higher-order abstract syntax to the represent recursive types and re-
mark that the kind of this type constructor requires a parametric
function as its argument. However, they do not make a connec-
tion with modal type systems, nor do they extend their type-level
iteration operator to higher kinds. Xi et al. [31] remark on the cor-
respondence between HOAS terms with the place operator (which
they call HOASvar) and closed terms of Mini-ML�

e but do not in-
vestigate the relationship or any form of iteration.

While higher-order abstract syntax has an attractive simplicity, the
difficulties programming and reasoning about structures encoded
with this technique have motivated research into language exten-
sions for working with higher-order abstract syntax or alternative
approaches altogether. Dale Miller developed a small language
called MLλ [17] that introduces a type constructor for terms formed
by abstracting out a parameter. These types can be thought of as
function types that can be intensionally analyzed through pattern
matching. Pitts and Gabbay built on the theory of FM-sets to de-
sign a language called FreshML [23] that allows for the manipu-
lation and abstraction of fresh “names”. Nanevski [18] combines
fresh names with modal necessity to allow for the construction of
more efficient residual terms, while still retaining the ability to eval-
uate them at runtime. The Delphin Project [25] by Schürmann et al.
develops a functional language for manipulating datatypes that are
terms in the LF logical framework. Because higher-order abstract

syntax is the primary representation technique in LF, Delphin pro-
vides operations for matching over higher-order LF terms in regular
worlds. The SDP calculus uses modal necessity to restrict match-
ing to closed worlds, so regular worlds provide additional flexi-
bility without the difficulties of matching in an open world. The
Hybrid [2] logical framework provides induction over higher-order
abstract syntax by evaluation to de Bruijn terms, which provide
straightforward induction.

There is a long history of encoding modality in logic, but only re-
cently has the encoding of modal type systems been explored. Acar
et al. [1] use modal types in a functional language that provides con-
trol over the use of memoization, and implement it as a library in
SML. Because SML does not have modal types or first-class poly-
morphism, they use run-time checks to enforce the correct use of
modality. Davies and Pfenning [7] presented, in passing, a simple
encoding of the modal λ-calculus into the simply-typed λ-calculus
that preserves only the dynamic semantics. Washburn expanded
upon this encoding, showing that it bisimulates the source calcu-
lus [29].

8 Conclusion

While other approaches to defining an induction operator over
higher-order abstract syntax require type system extensions to en-
sure the parametricity of embedded function spaces, the approach
that we present in this paper requires only type polymorphism. Be-
cause of this encoding, we are able to implement iteration operators
for datatypes with embedded parametric functions directly in the
Haskell language.

However, despite its simplicity, our approach is equivalent to pre-
vious work on induction operators for HOAS. We demonstrate this
generality by showing how the modal calculus of Schüermann, De-
speyroux and Pfenning may be embedded into Fω using this tech-
nique. In fact, the analogy of representing boxed terms with poly-
morphic terms makes semantic sense: a proposition with a boxed
type is valid in all worlds and polymorphism makes that quantifica-
tion explicit.

Acknowledgements

We thank Margaret DeLap, Eijiro Sumi, Stephen Tse, Stephan
Zdancewic and the anonymous ICFP reviewers for providing us
with feedback concerning this paper.

9 References

[1] U. Acar, G. Blelloch, and R. Harper. Selective memoiza-
tion. In Thirtieth ACMSIGPLAN-SIGACT Symposium on
Principles of Programming Languages, New Orleans, LA,
Jan. 2002.

[2] S. Ambler, R. L. Crole, and A. Momigliano. Combining
higer order abstract syntax with tactical theorem proving and
(co)induction. In Theorem Proving in Higher Order Logics,
15th International Conference, TPHOLs 2002, Hampton, VA,
USA, August 20-23, 2002, Proceedings, volume 2410 of Lec-
ture Notes in Computer Science. Springer, 2002.

[3] C. Böhm and A. Berarducci. Automatic synthesis of typed
Λ-programs on term algebras. Theoretical Computer Science,
39:135–154, 1985.

[4] A. Church. A formulation of the simple theory of types. Jour-
nal of Symbolic Logic, 5:56–68, 1940.

[5] D. Clarke, R. Hinze, J. Jeuring, A. Löh, and J. de Wit. The
Generic Haskell user’s guide. Technical Report UU-CS-2001-
26, Utrecht University, 2001.

[6] O. Danvy and A. Filinski. Representing control: a study of the
CPS transformation. Mathematical Structures in Computer
Science, 2(4):361–391, Dec. 1992.

[7] R. Davies and F. Pfenning. A modal analysis of staged com-
putation. Journal of the ACM, 48(3):555–604, May 2001.

[8] J. Despeyroux and P. Leleu. Recursion over objects of func-
tional type. Mathematical Structures in Computer Science,
11:555–572, 2001.

[9] L. Fegaras and T. Sheard. Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer
space). In Twenty-Third ACMSIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 284–294,
St. Petersburg Beach, FL,USA, 1996.

[10] J.-Y. Girard. Une extension de l’interprétation de Gödel à
l’analyse, et son application à l’élimination de coupures dans
l’analyse et la théorie des types. In J. E. Fenstad, editor, Pro-
ceedings of the Second Scandinavian Logic Symposium, pages
63–92. North-Holland Publishing Co., 1971.

[11] R. Hinze. Polytypic values possess polykinded types. Science
of Computer Programming, 43(2–3):129–159, 2002. MPC
Special Issue.

[12] P. Johann. A generalization of short-cut fution and its cor-
rectness proof. Higher-Order and Symbolic Computation,
15:273–300, 2002.

[13] M. P. Jones. A system of constructor classes: overloading and
implicit higher-order polymorphism. Journal of Functional
Programming, 5(1), Jan. 1995.

[14] M. P. Jones. Type classes with functional dependencies. In
Proceedings of the 9th European Symposium on Program-
ming, ESOP 2000, Berlin, Germany, number 1782 in LNCS.
Springer-Verlag, 2000.

[15] E. Meijer, M. M. Fokkinga, and R. Paterson. Functional pro-
gramming with bananas, lenses, envelopes and barbed wire.
In FPCA91: Conference on Functional Programming Lan-
guages and Computer Architecture, pages 124–144, 1991.

[16] E. Meijer and G. Hutton. Bananas in space: Extending fold
and unfold to exponential types. In FPCA95: Conference on
Functional Programming Languages and Computer Architec-
ture, pages 324–333, La Jolla, CA, June 1995.

[17] D. Miller. An extension to ML to handle bound variables
in data structures: Preliminary report. In Proceedings of the
Logical Frameworks BRA Workshop, May 1990.

[18] A. Nanevski. Meta-programming with names and neces-
sity. In Proceedings of the seventh ACM SIGPLAN inter-
national conference on Functional programming, pages 206–
217. ACM Press, 2002.

[19] S. Peyton Jones, editor. Haskell 98 Language and Libraries:
The Revised Report. Cambridge University Press, 2003.

[20] F. Pfenning and R. Davies. A judgmental reconstruction of
modal logic. Mathematical Structures in Computer Science,
11(4):511–540, Aug. 2001.

[21] F. Pfenning and C. Elliott. Higher-order abstract syntax. In

1988 ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 199–208, Atlanta, GA,
USA, June 1988.

[22] F. Pfenning and C. Schürmann. System description:
Twelf—a meta-logical framework for deductive systems. In
H. Ganzinger, editor, Proceedings of the 16th International
Conference on Automated Deduction (CADE-16), pages 202–
206, Trento, Italy, July 1999.

[23] A. M. Pitts and M. Gabbay. A metalanguage for program-
ming with bound names modulo renaming. In Mathematics
of Program Construction, pages 230–255, 2000.

[24] C. Schürmann, J. Despeyroux, and F. Pfenning. Primitive re-
cursion for higher-order abstract syntax. Theoretical Com-
puter Science, 266(1–2):1–58, Sept. 2001.

[25] C. Schürmann, R. Fontana, and Y. Liao. Delphin: Functional
programming with deductive systems. Available at http://
cs-www.cs.yale.edu/homes/carsten/, 2002.

[26] E. Sumii and N. Kobayashi. A hybrid approach to online and
offline partial evaluation. Higher-Order and Symbolic Com-
putation, 14(2/3):101–142, 2001.

[27] V. Trifonov, B. Saha, and Z. Shao. Fully reflexive intensional
type analysis. In Fifth ACM SIGPLAN International Con-
ference on Functional Programming, pages 82–93, Montreal,
Sept. 2000.

[28] P. Wadler. Theorems for free! In FPCA89: Conference on
Functional Programming Languages and Computer Architec-
ture, London, Sept. 1989.

[29] G. Washburn. Modal typing for specifying run-time code
generation. Available from http://www.cis.upenn.edu/
~geoffw/research/, 2001.

[30] S. Weirich. Higher-order intensional type analysis in
type-erasure semantics. Available from http://www.cis.
upenn.edu/~sweirich/, 2003.

[31] H. Xi, C. Chen, and G. Chen. Guarded recursive datatype con-
structors. In Thirtieth ACMSIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 224–235, New
Orleans, LA, USA, Jan. 2003.

A Generic Haskell implementation of xmap

type XMap {[*]} t1 t2 = (t1 -> t2, t2 -> t1)
type XMap {[k -> l]} t1 t2 = forall u1 u2.
XMap {[k]} u1 u2 -> XMap {[l]}(t1 u1)(t2 u2)

xmap {| t :: k |} :: XMap {[k]} t t
xmap {| Unit |} = (id,id)
xmap {| :+: |} (xmapA1,xmapA2) (xmapB1,xmapB2) =

(\x -> case x of
(Inl a) -> Inl (xmapA1 a)
(Inr b) -> Inr (xmapB1 b),
\x -> case x of
(Inl a) -> Inl (xmapA2 a)
(Inr b) -> Inr (xmapB2 b))

xmap {| :*: |} (xmapA1,xmapA2) (xmapB1,xmapB2) =
(\(a :*: b) -> (xmapA1 a) :*: (xmapB1 b),
\(a :*: b) -> (xmapA2 a) :*: (xmapB2 b))

xmap {| (->) |} (xmapA1,xmapA2) (xmapB1,xmapB2) =
(\f -> xmapB1 . f . xmapA2,
\f -> xmapB2 . f . xmapA1)

xmap {| Int |} = (id, id)

xmap {| Bool |} = (id, id)
xmap {| IO |} (xmapA1,xmapA2) =

(fmap xmapA1, fmap xmapA2)
xmap {| [] |} (xmapA1,xmapA2) =

(map xmapA1, map xmapA2)

B Full encoding of SDP

B.1 Parameterization

τ〈b〉 , τ τ〈1〉 , 1

τ〈B1〉 , τ1 τ〈B2〉 , τ2

τ〈B1 → B2〉 , τ1 → τ2

τ〈B1〉 , τ1 τ〈B2〉 , τ2

τ〈B1 ×B2〉 , τ1 × τ2

B.2 Signatures

∀ci ∈ dom(Σ) Σ(ci) = Bi → b

τ〈Σ〉 , 〈L(c1) : τ〈B1〉, . . . ,L(cn) : τ〈Bn〉〉

B.3 Types

∆ ` τ
∆ ` bBτ Rec Σ∗ τ

α 6∈ ∆ ∆]{α : ? → ?} ` ABατ τ′

∆ ` �ABτ ∀α :? → ?.τ′

∆ ` 1Bτ 1(τ)
∆ ` A1 Bτ τ1 ∆ ` A2 Bτ τ2

∆ ` A1 → A2 Bτ τ1 → τ2

∆ ` A1 Bτ τ1 ∆ ` A2 Bτ τ2

∆ ` A1 ×A2 Bτ τ1 × τ2

B.4 Terms

x 6∈ Ξ
∆;Ξ ` x Bτ x

x ∈ Ξ
∆;Ξ ` x Bτ x[λα : ?.τ]

α 6∈ ∆ ∆]{α : ? → ?};Ξ ` M Bατ e

∆;Ξ ` boxM Bτ Λα :? → ?.e ∆;Ξ ` 〈〉Bτ 〈〉[τ]

Σ(c) = B → b ∆ ` BBτ τB

∆;Ξ ` cBτ λx : τB.roll[τ](injL(c) xof(Rec Σ∗ τ)〈Σ〉)

∆;Ξ ` M Bτ e ∆ ` A1 Bτ τ1

∆;Ξ ` λx : A1.M Bτ λx : τ1.e

∆;Ξ ` M1 Bτ e1 ∆;Ξ ` M2 Bτ e2

∆;Ξ ` M1M2 Bτ e1e2

∆ ` �A1 Bτ τ1
∆;Ξ ` M1 Bτ e1 ∆;Ξ]{x} ` M2 Bτ e2

∆;Ξ ` let box x : A1 = M1 inM2 Bτ (λx : ∀α.τ1.e2)e1

∆;Ξ ` M1 Bτ e1 ∆;Ξ ` M2 Bτ e2

∆;Ξ ` 〈M1,M2〉Bτ 〈e1,e2〉

∆;Ξ ` M Bτ e
∆;Ξ ` fstM Bτ fste

∆;Ξ ` M Bτ e
∆;Ξ ` sndM Bτ snde

∆ ` ABτ τA ∆;Ξ ` ΘB
τA
τ eΘ ∆;Ξ ` M Bτ eM

∆;Ξ ` iter [�B,A][Θ] M Bτ iter{|B∗|}[τ][τA] eΘ eM

B.5 Replacements

∀ci ∈ dom(Θ) ∆;Ξ ` Θ(ci)Bτ ei

∆;Ξ ` ΘB
τA
τ λx : Σ∗τA.casexof injL(c1) y1 in(e1y1)

. . .
injL(cn) yn in(enyn)

