
Chapter 8

Computational Complexity;

P and NP

8.1 The Class P

In the previous two chapters, we clarified what it means
for a problem to be decidable or undecidable.

In principle, if a problem is decidable, then there is an
algorithm (i.e., a procedure that halts for every input)
that decides every instance of the problem.

However, from a practical point of view, knowing that
a problem is decidable may be useless, if the number of
steps (time complexity) required by the algorithm is ex-
cessive, for example, exponential in the size of the input,
or worse.
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For instance, consider the traveling salesman problem ,
which can be formulated as follows:

We have a set {c1, . . . , cn} of cities, and an n⇥n matrix
D = (dij) of nonnegative integers, the distance matrix ,
where dij denotes the distance between ci and cj, which
means that dii = 0 and dij = dji for all i 6= j.

The problem is to find a shortest tour of the cities, that
is, a permutation ⇡ of {1, . . . , n} so that the cost

C(⇡) = d⇡(1)⇡(2) + d⇡(2)⇡(3) + · · · + d⇡(n�1)⇡(n) + d⇡(n)⇡(1)

is as small as possible (minimal).

One way to solve the problem is to consider all possible
tours, i.e., n! permutations.

Actually, since the starting point is irrelevant, we need
only consider (n� 1)! tours, but this still grows very fast.
For example, when n = 40, it turns out that 39! exceeds
1045, a huge number.
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Consider the 4 ⇥ 4 symmetric matrix given by

D =

0

BB@

0 2 1 1
2 0 1 1
1 1 0 3
1 1 3 0

1

CCA ,

and the budget B = 4.

The tour specified by the permutation

⇡ =

✓
1 2 3 4
1 4 2 3

◆

has cost 4, since

c(⇡) = d⇡(1)⇡(2) + d⇡(2)⇡(3) + d⇡(3)⇡(4) + d⇡(4)⇡(1)

= d14 + d42 + d23 + d31

= 1 + 1 + 1 + 1 = 4.

The cities in this tour are traversed in the order

(1, 4, 2, 3, 1).
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Thus, to capture the essence of practically feasible algo-
rithms, we must limit our computational devices to run
only for a number of steps that is bounded by a polyno-
mial in the length of the input.

We are led to the definition of polynomially bounded com-
putational models.

We talked about problems being decidable in polyno-
mial time. Obviously, this is equivalent to deciding some
property of a certain class of objects, for example, finite
graphs.

Our framework requires that we first encode these classes
of objects as strings (or numbers), since P consists of
languages.

Thus, when we say that a property is decidable in poly-
nomial time, we are really talking about the encoding of
this property as a language. Thus, we have to be careful
about these encodings, but it is rare that encodings cause
problems.
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Definition 8.1. A deterministic Turing machine M is
said to be polynomially bounded if there is a polynomial
p(X) so that the following holds: For every input x 2 ⌃⇤,
there is no ID IDn so that

ID0 ` ID1 `⇤ IDn�1 ` IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

A language L ✓ ⌃⇤ is polynomially decidable if there
is a polynomially bounded Turing machine that accepts
L. The family of all polynomially decidable languages is
denoted by P .
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Remark: Even though Definition 8.1 is formulated for
Turing machines, it can also be formulated for other mod-
els, such as RAM programs.

The reason is that the conversion of a Turing machine into
a RAM program (and vice versa) produces a program (or
a machine) whose size is polynomial in the original device.

The following lemma, although trivial, is useful:

Lemma 8.1.The class P is closed under complemen-
tation.

Of course, many languages do not belong to P . One way
to obtain such languages is to use a diagonal argument.
But there are also many natural languages that are not
in P , although this may be very hard to prove for some
of these languages.

Let us consider a few more problems in order to get a
better feeling for the family P .
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8.2 Directed Graphs, Paths

Recall that a directed graph , G, is a pair
G = (V, E), where E ✓ V ⇥ V .
Every u 2 V is called a node (or vertex) and a pair
(u, v) 2 E is called an edge of G.

We will restrict ourselves to simple graphs , that is, graphs
without edges of the form (u, u); equivalently, G = (V, E)
is a simple graph if whenever (u, v) 2 E, then u 6= v.

Given any two nodes u, v 2 V , a path from u to v is any
sequence of n + 1 edges (n � 0)

(u, v1), (v1, v2), . . . , (vn, v).

(If n = 0, a path from u to v is simply a single edge,
(u, v).)
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A graph G is strongly connected if for every pair (u, v) 2
V ⇥ V , there is a path from u to v. A closed path, or
cycle , is a path from some node u to itself.

We will restrict out attention to finite graphs, i.e. graphs
(V, E) where V is a finite set.

Definition 8.2. Given a graph G, an Eulerian cycle
is a cycle in G that passes through all the nodes (possi-
bly more than once) and every edge of G exactly once.
A Hamiltonian cycle is a cycle that passes through all
the nodes exactly once (note, some edges may not be
traversed at all).

Eulerian Cycle Problem: Given a graph G, is there an
Eulerian cycle in G?

Hamiltonian Cycle Problem: Given a graph G, is there
an Hamiltonian cycle in G?
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8.3 Eulerian Cycles

The following graph is a directed graph version of the
Königsberg bridge problem, solved by Euler in 1736.

The nodes A, B, C, D correspond to four areas of land
in Königsberg and the edges to the seven bridges joining
these areas of land.

B

A

C

D

Figure 8.1: A directed graph modeling the Königsberg bridge problem.

The problem is to find a closed path that crosses every
bridge exactly once and returns to the starting point.

In fact, the problem is unsolvable, as shown by Euler,
because some nodes do not have the same number of in-
coming and outgoing edges (in the undirected version of
the problem, some nodes do not have an even degree.)
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It may come as a surprise that the Eulerian Cycle Prob-
lem does have a polynomial time algorithm, but that so
far, not such algorithm is known for the Hamiltonian Cy-
cle Problem.

The reason why the Eulerian Cycle Problem is decidable
in polynomial time is the following theorem due to Euler:

Theorem 8.2. A graph G = (V, E) has an Eulerian
cycle i↵ the following properties hold:

(1) The graph G is strongly connected.

(2) Every node has the same number of incoming and
outgoing edges.

Proving that properties (1) and (2) hold if G has an Eu-
lerian cycle is fairly easy. The converse is harder, but not
that bad (try!).
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Theorem 8.2 shows that it is necessary to check whether
a graph is strongly connected. This can be done by com-
puting the transitive closure of E, which can be done in
polynomial time (in fact, O(n3)).

Checking property (2) can clearly be done in polynomial
time. Thus, the Eulerian cycle problem is in P .

Unfortunately, no theorem analogous to Theorem 8.2 is
known for Hamiltonian cycles.
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8.4 Hamiltonian Cycles

A game invented by Sir William Hamilton in 1859 uses
a regular solid dodecahedron whose twenty vertices are
labeled with the names of famous cities.

The player is challenged to “travel around the world” by
finding a closed cycle along the edges of the dodecahedron
which passes through every city exactly once (this is the
undirected version of the Hamiltonian cycle problem).
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In graphical terms, assuming an orientation of the edges
between cities, the graph D shown in Figure 8.2 is a
plane projection of a regular dodecahedron and we want
to know if there is a Hamiltonian cycle in this directed
graph.

Figure 8.2: A tour “around the world.”

Finding a Hamiltonian cycle in this graph does not appear
to be so easy!

A solution is shown in Figure 8.3 below:
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Figure 8.3: A Hamiltonian cycle in D.

A solution!
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8.5 Propositional Logic and Satisfiability

We define the syntax and the semantics of propositions
in conjunctive normal form (CNF).

The syntax has to do with the legal form of propositions
in CNF. Such propositions are interpreted as truth func-
tions, by assigning truth values to their variables.

We begin by defining propositions in CNF. Such proposi-
tions are constructed from a countable set, PV, of propo-
sitional (or boolean) variables , say

PV = {x1, x2, . . . , },

using the connectives ^ (and), _ (or) and ¬ (negation).
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Definition 8.3.We define a literal (or atomic propo-
sition), L, as L = x or L = ¬x, also denoted by x, where
x 2 PV.

A clause , C, is a disjunction of pairwise distinct literals,

C = (L1 _ L2 _ · · · _ Lm).

Thus, a clause may also be viewed as a nonempty set

C = {L1, L2, . . . , Lm}.

We also have a special clause, the empty clause, denoted
? or (or {}). It corresponds to the truth value false.

A proposition in CNF, or boolean formula, P , is a
conjunction of pairwise distinct clauses

P = C1 ^ C2 ^ · · · ^ Cn.
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Thus, a boolean formula may also be viewed as a nonempty
set

P = {C1, . . . , Cn},

but this time, the comma is interpreted as conjunction.
We also allow the proposition?, and sometimes the propo-
sition > (corresponding to the truth value true).

For example, here is a boolean formula:

P =

{(x1_x2_x3), (x1_x2), (x2_x3), (x3_x1), (x1_x2_x3)}.

In order to interpret boolean formulae, we use truth as-
signments.

Definition 8.4. We let BOOL = {F,T}, the set of
truth values, where F stands for false and T stands for
true. A truth assignment (or valuation), v, is any func-
tion v : PV ! BOOL.
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Example 8.1. The function vF : PV ! BOOL given
by

vF (xi) = F for all i � 1

is a truth assigmnent, and so is the function vT : PV !
BOOL given by

vT (xi) = T for all i � 1.

The function v : PV ! BOOL given by

v(x1) = T

v(x2) = F

v(x3) = T

v(xi) = T for all i � 4

is also a truth assignment.
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Definition 8.5. Given a truth assignment, v : PV !
BOOL, we define the truth value , bv(X), of a literal,
clause, and boolean formula, X , using the following re-
cursive definition:

(1) bv(?) = F, bv(>) = T.

(2) bv(x) = v(x), if x 2 PV.

(3) bv(x) = v(x), if x 2 PV, where v(x) = F if v(x) = T

and v(x) = T if v(x) = F.

(4) bv(C) = F if C is a clause and i↵ bv(Li) = F for all
literals Li in C, otherwise T.

(5) bv(P ) = T if P is a boolean formula and i↵ bv(Cj) = T

for all clauses Cj in P , otherwise F.
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Since a boolean formula P only contains a finite number
of variables, say {xi1, . . . , xin}, one should expect that
its truth value bv(P ) depends only on the truth values
assigned by the truth assignment v to the variables in
the set {xi1, . . . , xin}, and this is indeed the case.

The following proposition is easily shown by induction on
the depth of P (viewed as a tree).

Proposition 8.3. Let P be a boolean formula con-
taining the set of variables {xi1, . . . , xin}. If v1 : PV !
BOOL and v2 : PV ! BOOL are any truth assign-
ments agreeing on the set of variables {xi1, . . . , xin},
which means that

v1(xij) = v2(xij) for j = 1, . . . , n,

then bv1(P ) = bv2(P ).

In view of Proposition 8.3, given any boolean formula P ,
we only need to specify the values of a truth assignment
v for the variables occurring on P .
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Example 8.2. Given the boolean formula

P =

{(x1_x2_x3), (x1_x2), (x2_x3), (x3_x1), (x1_x2_x3)},

we only need to specify v(x1), v(x2), v(x3). Thus there
are 23 = 8 distinct truth assignments:

F,F,F T,F,F

F,F,T T,F,T

F,T,F T,T,F

F,T,T T,T,T.

In general, there are 2n distinct truth assignments to n
distinct variables.
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Definition 8.6.We say that a truth assignment, v, sat-
isfies a boolean formula, P , if bv(P ) = T. In this case,
we also write

v |= P.

A boolean formula, P , is satisfiable if v |= P for some
truth assignment v, otherwise, it is unsatisfiable . A
boolean formula, P , is valid (or a tautology) if v |= P
for all truth assignments v, in which case we write

|= P.

One should check that the boolean formula

P =

{(x1_x2_x3), (x1_x2), (x2_x3), (x3_x1), (x1_x2_x3)}

is unsatisfiable.
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One may think that it is easy to test whether a proposi-
tion is satisfiable or not. Try it, it is not that easy!

As a matter of fact, the satisfiability problem , testing
whether a boolean formula is satisfiable, also denoted
SAT, is not known to be in P .

Moreover, it is an NP-complete problem. Most people
believe that the satisfiability problem is not in P , but a
proof still eludes us!

Before we explain what is the class NP , let us state the
following result.
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Proposition 8.4.The satisfiability problem for clauses
containing at most two literals (2-satisfiability, or 2-
SAT) is solvable in polynomial time.

The first step consists in observing that if every clause in
P contains at most two literals, then we can reduce the
problem to testing satisfiability when every clause has
exactly two literals.

Indeed, if P contains some clause (x), then any valuation
satisfying P must make x true. Then, all clauses con-
taining x will be true, and we can delete them, whereas
we can delete x from every clause containing it, since x
is false.

Similarly, if P contains some clause (x), then any valua-
tion satisfying P must make x false.

Thus in a finite number of steps, either all the clauses
were satisfied and P is satisfiable, or we get the empty
clause and P is unsatisfiable, or we get a set of clauses
with exactly two literals.
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The number of steps is clearly linear in the number of
literals in P .

For the second step, we construct a directed graph from
P . The nodes of this graph are the literals in P , and
edges are defined as follows:

(1) For every clause (x _ y), there is an edge from x to y
and an edge from y to x.

(2) For every clause (x _ y), there is an edge from x to y
and an edge from y to x

(3) For every clause (x _ y), there is an edge from x to y
and an edge from y to x.

Then, it can be shown that P is unsatisfiable i↵ there is
some x so that there is a cycle containing x and x.

As a consequence, 2-satisfiability is in P .
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8.6 The Class NP, Polynomial Reducibility,

NP-Completeness

One will observe that the hard part in trying to solve
either the Hamiltonian cycle problem or the satisfiability
problem, SAT, is to find a solution, but that checking
that a candidate solution is indeed a solution can be done
easily in polynomial time.

This is the essence of problems that can be solved non-
determistically in polynomial time: A solution can be
guessed and then checked in polynomial time.
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Definition 8.7. A nondeterministic Turing machine M
is said to be polynomially bounded if there is a polyno-
mial p(X) so that the following holds: For every input
x 2 ⌃⇤, there is no ID IDn so that

ID0 ` ID1 `⇤ IDn�1 ` IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

A language L ✓ ⌃⇤ is nondeterministic polynomially
decidable if there is a polynomially bounded nondeter-
ministic Turing machine that accepts L. The family of
all nondeterministic polynomially decidable languages is
denoted by NP .
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Observe that Definition 8.7 has to do with testing mem-
bership of a string w in a language L.

Here the language L consists of the strings encodings all
objects satisfying a given property P .

So in this sense, a reason (a certificate) why w 2 L is not
actually produced by the machine.

The machine just decides whetherw 2 L, that is, whether
the object coded by w satisfies the property P .
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For example, if the problem is the satisfiability of sets
of clauses, then L is the set SAT of strings encoding all
satisfiable propositions in CNF.

Given any proposition P in CNF encoded as a string
s(P ), a Turing machine accepting SAT will nondeter-
miniscally guess a truth assignment, and check in poly-
nomial time whether this truth assignment satisfies P .

However, such a truth assignment, called a certificate, is
not actually produced as output.

The machine simply accepts or rejects s(P ) depending on
whether P is satisfiable or not.

It is possible to give an alternate definition of NP that
explicitly involves certificates.
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This definition relies on the notion of a polynomially bal-
anced language ; see Section 9.3, Definition 9.3.

The trick is to consider strings of form x; y 2 ⌃⇤ (with
x, y 2 ⌃⇤, where ; is a special symbol not in ⌃), such that
for some given polynomial p(X), we have |y|  p(|x|).

If a language L0 consisting of strings of the form x; y with
|y|  p(|x|) (for some given p) is in P , then the language

L = {x 2 ⌃⇤ | (9y 2 ⌃⇤)(x; y 2 L0)}

is in NP , and every language in NP arises in this fash-
ion; see Theorem 9.1.

The set of strings {y 2 ⌃⇤ | x; y 2 L0} can be regarded
as the set of certificates for the fact that x 2 L.

The fact that |y|  p(|x|) ensures that the certificate y is
not too big, so that L0 can be accepted deterministically
in polynomial time.



8.6. THE CLASS NP , NP-COMPLETENESS 443

Of course, we have the inclusion

P ✓ NP ,

but whether or not we have equality is one of the most fa-
mous open problems of theoretical computer science and
mathematics.

In fact, the question P 6= NP is one of the open prob-
lems listed by the CLAY Institute, together with the
Poincaré conjecture and the Riemann hypothesis, among
other problems, and for which one million dollar is of-
fered as a reward!

It is easy to check that SAT is in NP , and so is the
Hamiltonian cycle problem.
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As we saw in recursion theory, where we introduced the
notion of many-one reducibility, in order to compare the
“degree of di�culty” of problems, it is useful to introduce
the notion of reducibility and the notion of a complete
set.

Definition 8.8. A function f : ⌃⇤ ! ⌃⇤ is polynomial-
time computable if there is a polynomial p(X) so that the
following holds: There is a deterministic Turing machine
M computing it so that for every input x 2 ⌃⇤, there is
no ID IDn so that

ID0 ` ID1 `⇤ IDn�1 ` IDn, with n > p(|x|),

where ID0 = q0x is the starting ID.

Given two languages L1, L2 ✓ ⌃⇤, a polynomial-time re-
duction from L1 to L2 is a polynomial-time computable
function f : ⌃⇤ ! ⌃⇤ so that for all u 2 ⌃⇤,

u 2 L1 i↵ f (u) 2 L2.

The notation L1 P L2 is often used to denote the fact
that there is polynomial-time reduction from L1 to L2.
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The following version of Proposition 2.8 for polynomial-
time reducibility is easy to prove.

Proposition 8.5. Let A, B, C be subsets of N (or ⌃⇤).
The following properties hold:

(1) If A P B and B P C, then A P C.

(2) If A P B then A P B.

(3) If A P B and B 2 NP, then A 2 NP.

(4) If A P B and A /2 NP, then B /2 NP.

(5) If A P B and B 2 P, then A 2 P.

(6) If A P B and A /2 P, then B /2 P.

Intuitively, we see that if L1 is a hard problem and L1

can be reduced to L2 in polynomial time, then L2 is also
a hard problem.

For example, one can construct a polynomial reduction
from the Hamiltonian cycle problem to SAT.
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Remarkably, every language in NP can be reduced to
SAT.

Thus, SAT is a hardest language in NP (Since it is in
NP).

Definition 8.9. A language L is NP-hard if there is a
polynomial reduction from every language L1 2 NP to
L. A language L is NP-complete if L 2 NP and L is
NP-hard.

Thus, an NP-hard language is as hard to decide as any
language in NP .

Remark: There are NP-hard languages that do not be-
long to NP . Such languages are really hard. A standard
example is K0, which encodes the halting problem.

The language K0 is listable but not computable. All lan-
guages in NP are computable, so K0 does not belong to
NP . It can be shown that K0 is NP-hard (SAT can be
reduced to K0 in polynomial time).
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The importance of NP-complete languages stems from
the following theorem which follows immediately from
Proposition 8.5.

Theorem 8.6. Let L be an NP-complete language.
Then, P = NP i↵ L 2 P.

There are analogies between P and the class of com-
putable sets, and NP and the class of listable sets, but
there are also important di↵erences.

One major di↵erence is that the family of computable sets
is properly contained in the family of listable sets, but it
is an open problem whether P is properly contained in
NP .

We also know that a set L is computable i↵ both L and
L are listable, but it is also an open problem whether if
both L 2 NP and L 2 NP , then L 2 P .
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This suggests defining

coNP = {L | L 2 NP},

that is, coNP consists of all complements of languages
in NP .

Since P ✓ NP and P is closed under complementation,

P ✓ coNP ,

and thus

P ✓ NP \ coNP ,

but nobody knows whether the inclusion is proper.
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There are languages in NP \ coNP not known to be in
P ; see Section 9.3.

It is unknown whether NP is closed under complemen-
tation, that is, nobody knows whether NP = coNP .

This is considered unlikely. We will come back to coNP
in Section 9.3.

Next, we prove a famous theorem of Steve Cook and
Leonid Levin (proved independently): SAT isNP-complete.
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8.7 The Bounded Tiling Problem is NP-Complete

Instead of showing directly that SAT is NP-complete,
which is rather complicated, we proceed in two steps, as
suggested by Lewis and Papadimitriou.

(1) First, we define a tiling problem adapted from H.
Wang (1961) by Harry Lewis, and we prove that it
is NP-complete.

(2) We show that the tiling problem can be reduced to
SAT.

We are given a finite set T = {t1, . . . , tp} of tile patterns ,
for short, tiles . Copies of these tile patterns may be used
to tile a rectangle of predetermined size 2s ⇥ s (s > 1).

However, there are constraints on the way that these tiles
may be adjacent horizontally and vertically.
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The horizontal constraints are given by a relation H ✓
T ⇥ T , and the vertical constraints are given by a rela-
tion V ✓ T ⇥ T .

Thus, a tiling system is a triple T = (T , V, H) with V
and H as above.

The bottom row of the rectangle of tiles is specified before
the tiling process begins.

For example, consider the following tile patterns:
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The horizontal and the vertical constraints are that the
letters on adjacent edges match (blank edges do not match).

Let us try to find a 6⇥3 tiling with the initial row shown
on the next page.
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For s = 3, given the bottom row
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e

we have the tiling shown below:
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The problem is then as follows:

The Bounded Tiling Problem

Given any tiling system (T , V, H), any integer s > 1,
and any initial row of tiles �0 (of length 2s)

�0 : {1, 2, . . . , s, s + 1, . . . , 2s} ! T ,

find a 2s ⇥ s-tiling � extending �0, i.e., a function

� : {1, 2, . . . , s, s + 1, . . . , 2s} ⇥ {1, . . . , s} ! T

so that

(1) �(m, 1) = �0(m), for all m with 1  m  2s.

(2) (�(m, n), �(m + 1, n)) 2 H , for all m with
1  m  2s � 1, and all n, with 1  n  s.

(3) (�(m, n), �(m, n + 1)) 2 V , for all m with
1  m  2s, and all n, with 1  n  s � 1.
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Formally, an instance of the tiling problem is a triple,
((T , V, H), bs, �0), where (T , V, H) is a tiling system, bs is
the string representation of the number s � 2, in binary
and �0 is an initial row of tiles (the bottom row).

For example, if s = 1025 (as a decimal number), then its
binary representation is bs = 10000000001. The length of
bs is log2 s + 1.

Recall that the input must be a string. This is why the
number s is represented by a string in binary.

If we only included a single tile �0 in position (s + 1, 1),
then the length of the input ((T , V, H), bs, �0) would be
log2 s+1+C+1 = log2 s+C+2 for some constant C cor-
responding to the length of the string encoding (T , V, H).
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However, the rectangular grid has size 2s2, which is ex-
ponential in the length log2 s + C + 2 of the input
((T , V, H), bs, �0). Thus, it is impossible to check in poly-
nomial time that a proposed solution is a tiling.

However, if we include in the input the bottom row �0 of
length 2s, then the length of input is log2 s+1+C+2s =
log2 s + C + 2s + 1, and the size of the grid is indeed
polynomial in the size of the input.

Theorem 8.7. The tiling problem defined earlier is
NP-complete.

Proof. Let L ✓ ⌃⇤ be any language in NP and let u be
any string in ⌃⇤. Assume that L is accepted in polynomial
time bounded by p(|u|).
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We show how to construct an instance of the tiling prob-
lem, ((T , V, H)L, bs, �0), where s = p(|u|) + 2, and where
the bottom row encodes the starting ID, so that u 2 L
i↵ the tiling problem ((T , V, H)L, bs, �0) has a solution.

First, note that the problem is indeed in NP , since we
have to guess a rectangle of size 2s2, and that checking
that a tiling is legal can indeed be done in O(s2), where s
is bounded by the the size of the input ((T , V, H), bs, �0),
since the input contains the bottom row of 2s symbols
(this is the reason for including the bottom row of 2s
tiles in the input!).
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The idea behind the definition of the tiles is that, in a
solution of the tiling problem, the labels on the horizontal
edges between two adjacent rows represent a legal ID,
xpay.

In a given row, the labels on vertical edges of adjacent
tiles keep track of the change of state and direction.

Let � be the tape alphabet of the TM, M . As before, we
assume that M signals that it accepts u by halting with
the output 1 (true).

From M , we create the following tiles:

(1) For every a 2 �, tiles

a

a
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(2) For every a 2 �, the bottom row uses tiles

a
,

q0, a

where q0 is the start state.

(3) For every instruction (p, a, b, R, q) 2 �, for every c 2
�, tiles

b
q, R

p, a
,

q, c
q, R

c
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(4) For every instruction (p, a, b, L, q) 2 �, for every c 2
�, tiles

q, c
q, L

c
,

b
q, L

p, a

(5) For every halting state, p, tiles

p, 1

p, 1

The purpose of tiles of type (5) is to fill the 2s⇥s rectangle
i↵ M accepts u. Since s = p(|u|) + 2 and the machine
runs for at most p(|u|) steps, the 2s ⇥ s rectangle can be
tiled i↵ u 2 L.

The vertical and the horizontal constraints are that adja-
cent edges have the same label (or no label).
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If u = u1 · · · uk, the initial bottom row �0, of length 2s,
is:

B
· · ·

q0, u1

· · ·
uk

· · ·
B

where the tile labeled q0, u1 is in position s + 1.

The example below illustrates the construction:

B

B
. . .

B
f, R

q, c

f, 1
f, R

1
. . .

B

B
B

B
. . .

q, c
q, L

c

1
q, L

p, a
. . .

B

B
B

B
. . .

c
p, R

r, b

p, a
p, R

a
. . .

B

B
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It is not hard to check that u = u1 · · · uk is accepted by
M i↵ the tiling problem just constructed has a solution.
This is because s = p(|u|) + 2 and the machine runs for
at most p(|u|) steps. So the 2s ⇥ s rectangle can be tiled
i↵ tiles of type (5) are used i↵ M accepts u (prints 1).

Remarks.

(1) The problem becomes harder if we only specify a sin-
gle tile �0 as input, instead of a row of length 2s. If s is
specified in binary (or any other base, but not in tally
notation), then the 2s2 grid has size exponential in the
length log2 s + C + 2 of the input ((T , V, H), bs, �0),
and this tiling problem is actually NEXP-complete!

It can be shown that the tiling problem with a single
tile as input is a computable NP-hard problem not
in NP .

(2) If we relax the finiteness condition and require that the
entire upper half-plane be tiled, i.e., for every s > 1,
there is a solution to the 2s ⇥ s-tiling problem, then
the problem is undecidable.

In 1972, Richard Karp published a list of 21NP-complete
problems.
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8.8 The Cook–Levin Theorem: SAT is NP-Complete

We finally prove the Cook-Levin theorem.

Theorem 8.8. (Cook, 1971, Levin, 1973) The satis-
fiability problem SAT is NP-complete.

Proof. We reduce the tiling problem to SAT. Given a
tiling problem, ((T , V, H), bs, �0), we introduce boolean
variables

xmnt,

for all m with 1  m  2s, all n with 1  n  s, and
all tiles t 2 T .

The intuition is that xmnt = T i↵ tile t occurs in some
tiling � so that �(m, n) = t.

We define the following clauses:
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(1) For all m, n in the correct range, as above,

(xmnt1 _ xmnt2 _ · · · _ xmntp),

for all p tiles in T .

This clause states that every position in � is tiled.

(2) For any two distinct tiles t 6= t0 2 T , for all m, n in
the correct range, as above,

(xmnt _ xmnt0).

This clause states that a position may not be occupied
by more than one tile.
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(3) For every pair of tiles (t, t0) 2 T ⇥ T � H , for all m
with 1  m  2s � 1, and all n, with 1  n  s,

(xmnt _ xm+1 nt0).

This clause enforces the horizontal adjacency constraints.

(4) For every pair of tiles (t, t0) 2 T ⇥ T � V , for all m
with 1  m  2s, and all n, with 1  n  s � 1,

(xmnt _ xm n+1 t0).

This clause enforces the vertical adjacency constraints.

(5) For all m with 1  m  2s,

(xm1�0(m)).

This clause states that the bottom row is correctly
tiled with �0.
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It is easily checked that the tiling problem has a solution
i↵ the conjunction of the clauses just defined is satisfiable.
Thus, SAT is NP-complete.

We sharpen Theorem 8.8 to prove that 3-SAT is also NP-
complete. This is the satisfiability problem for clauses
containing at most three literals.

We know that we can’t go further and retain
NP-completeteness, since 2-SAT is in P .

Theorem 8.9. (Cook, 1971) The satisfiability prob-
lem 3-SAT is NP-complete.
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Proof. We have to break “long clauses”

C = (L1 _ · · · _ Lk),

i.e., clauses containing k � 4 literals, into clauses with
at most three literals, in such a way that satisfiability is
preserved.

For example, consider the following clause with k = 6
literals:

C = (L1 _ L2 _ L3 _ L4 _ L5 _ L6).

We create 3 new boolean variables y1, y2, y3, and the 4
clauses

(L1 _ L2 _ y1), (y1 _ L3 _ y2),

(y2 _ L4 _ y3), (y3 _ L5 _ L6).

Let C 0 be the conjunction of these clauses.
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We claim that C is satisfiable i↵ C 0 is.

Assume that C 0 is satisfiable but C is not. If so, in any
truth assigment v, v(Li) = F, for i = 1, 2, . . . , 6.

To satisfy the first clause, we must have v(y1) = T.

Then to satisfy the second clause, we must have v(y2) =
T, and similarly satisfy the third clause, we must have
v(y3) = T.

However, since v(L5) = F and v(L6) = F, the only
way to satisfy the fourth clause is to have v(y3) = F,
contradicting that v(y3) = T.

Thus, C is indeed satisfiable.



8.8. THE COOK-LEVIN THEOREM 469

Let us now assume that C is satisfiable. This means that
there is a smallest index i such that Li is satisfied.

Say i = 1, so v(L1) = T. Then if we let v(y1) = v(y2) =
v(y3) = F, we see that C 0 is satisfied.

Say i = 2, so v(L1) = F and v(L2) = T.

Again if we let v(y1) = v(y2) = v(y3) = F, we see that
C 0 is satisfied.

Say i = 3, so v(L1) = F, v(L2) = F, and v(L3) = T.

If we let v(y1) = T and v(y2) = v(y3) = F, we see that
C 0 is satisfied.

Say i = 4, so v(L1) = F, v(L2) = F, v(L3) = F, and
v(L4) = T.

If we let v(y1) = T, v(y2) = T and v(y3) = F, we see
that C 0 is satisfied.
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Say i = 5, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) =
F, and v(L5) = T.

If we let v(y1) = T, v(y2) = T and v(y3) = T, we see
that C 0 is satisfied.

Say i = 6, so v(L1) = F, v(L2) = F, v(L3) = F, v(L4) =
F, v(L5) = F, and v(L6) = T.

Again, if we let v(y1) = T, v(y2) = T and v(y3) = T,
we see that C 0 is satisfied.

Therefore if C is satisfied, then C 0 is satisfied in all cases.

In general, for every long clause (with k � 4), create k�3
new boolean variables y1, . . . yk�3, and the k � 2 clauses

(L1 _ L2 _ y1), (y1 _ L3 _ y2), (y2 _ L4 _ y3), · · · ,

(yk�4 _ Lk�2 _ yk�3), (yk�3 _ Lk�1 _ Lk).

Let C 0 be the conjunction of these clauses. We claim that
C is satisfiable i↵ C 0 is.
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Assume that C 0 is satisfiable, but that C is not. Then,
for every truth assignment v, we have v(Li) = F, for
i = 1, . . . , k.

However, C 0 is satisfied by some v, and the only way this
can happen is that v(y1) = T, to satisfy the first clause.
Then, v(y1) = F, and we must have v(y2) = T, to satisfy
the second clause.

By induction, we must have v(yk�3) = T, to satisfy the
next to the last clause. However, the last clause is now
false, a contradiction.

Thus, if C 0 is satisfiable, then so is C.



472 CHAPTER 8. COMPUTATIONAL COMPLEXITY; P AND NP

Conversely, assume that C is satisfiable. If so, there is
some truth assignment, v, so that v(C) = T, and thus,
there is a smallest index i, with 1  i  k, so that
v(Li) = T (and so, v(Lj) = F for all j < i).

Let v0 be the assignment extending v defined so that

v0(yj) = F if max{1, i � 1}  j  k � 3,

and v0(yj) = T, otherwise.

It is easily checked that v0(C 0) = T.

Another version of 3-SAT can be considered, in which
every clause has exactly three literals. We will call this
the problem exact 3-SAT.



8.8. THE COOK-LEVIN THEOREM 473

Theorem 8.10. (Cook, 1971) The satisfiability prob-
lem for exact 3-SAT is NP-complete.

Proof. A clause of the form (L) is satisfiable i↵ the fol-
lowing four clauses are satisfiable:

(L _ u _ v), (L _ u _ v), (L _ u _ v), (L _ u _ v).

A clause of the form (L1_L2) is satisfiable i↵ the following
two clauses are satisfiable:

(L1 _ L2 _ u), (L1 _ L2 _ u).

Thus, we have a reduction of 3-SAT to exact 3-SAT.

We nowmake some remarks about the conversion of propo-
sitions to CNF and about the satisfiability of arbitrary
propositions.
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8.9 Satisfiability of Arbitrary Propositions and CNF

The satisfiability problem for arbitrary propositions be-
longs to NP because if we can guess a truth assignment
v satisfying a proposition A, then evaluating the truth
value of A under v can certainly be done in polynomial
time.

Since a proposition in CNF is a special kind of proposition
and since the satisfiability problem for propositions in
CNF (SAT) is NP-complete, the satisfiability problem
for arbitrary propositions is also NP-complete .

Since the satisfiability problem for propositions in CNF is
NP-complete, there is a polynomial-time reduction that
takes an arbitrary proposition A and produces a propo-
sition A0 in CNF such that A is satisfiable i↵ A0 is satis-
fiable.
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In general, given a proposition A, a proposition A0 in
CNF equivalent to A may have an exponential length in
the size of A.

However, using new variables, there is an algorithm to
convert a proposition A to another proposition A0 (con-
taining the new variables) whose length is polynomial in
the length of A and such that A is satisfiable i↵ A0 is
satisfiable.

We will explain how to convert an arbitrary proposition
A to an equivalent proposition in CNF, and also how to
construct in polynomial time a proposition A0 such that
A is satisfiable i↵ A0 is satisfiable.
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We also briefly discuss the issue of uniqueness of the CNF.
In short, it is not unique!

Recall the definition of arbitrary propositions.

Definition 8.10. The set of propositions (over the con-
nectives _, ^, and ¬) is defined inductively as follows:

(1) Every propositional letter, x 2 PV, is a proposition
(an atomic proposition).

(2) If A is a proposition, then ¬A is a proposition.

(3) If A and B are propositions, then (A_B) is a propo-
sition.

(4) If A and B are propositions, then (A^B) is a propo-
sition.

Two propositions A and B are equivalent , denoted
A ⌘ B, if

v |= A i↵ v |= B

for all truth assignments, v.
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It is easy to show that A ⌘ B i↵ the proposition

(¬A _ B) ^ (¬B _ A)

is valid.

Definition 8.11. A proposition P is in conjunctive
normal form (CNF ) if it is a conjunction P = C1 ^
· · · ^ Cn of propositions Cj which are disjunctions of lit-
erals (a literal is either a variable x or the negation ¬x
(also denoted x) of a variable x).

A proposition P is in disjunctive normal form (DNF )
if it is a disjunction P = D1 _ · · · _ Dn of propositions
Dj which are conjunctions of literals.
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There are propositions such that any equivalent proposi-
tion in CNF has size exponential in terms of the original
proposition.

Example 8.3. Here is such an example:

A = (x1 ^ x2) _ (x3 ^ x4) _ · · · _ (x2n�1 ^ x2n).

Observe that it is in DNF. We will prove a little later that
any CNF for A contains 2n occurrences of variables.

Proposition 8.11. Every proposition A is equivalent
to a proposition A0 in CNF.

There are several ways of proving Proposition 8.11.

One method is algebraic, and consists in using the alge-
braic laws of boolean algebra.
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First one may convert a proposition to negation normal
form , or nnf .

Definition 8.12. A proposition is in negation normal
form or nnf if all occurrences of ¬ only appear in front
of propositional variables, but not in front of compound
propositions.

Any proposition can be converted to an equivalent one in
nnf by using the de Morgan laws:

¬(A _ B) ⌘ (¬A ^ ¬B)

¬(A ^ B) ⌘ (¬A _ ¬B)

¬¬A ⌘ A.

Observe that if A has n connectives, then the equivalent
formula A0 in nnf has at most 2n � 1 connectives. Then
a proposition in nnf can be converted to CNF,
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A nice method to convert a proposition in nnf to CNF is
to construct a tree whose nodes are labeled with sets of
propositions using the following (Gentzen-style) rules:

P,� Q,�

(P ^ Q),�
and

P, Q,�

(P _ Q),�

where � stands for any set of propositions (even empty),
and the comma stands for union.

Thus, it is assumed that (P ^ Q) /2 � in the first case,
and that (P _ Q) /2 � in the second case.

Since we interpret a set, �, of propositions as a disjunc-
tion, a valuation, v, satisfies � i↵ it satisfies some propo-
sition in �.
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Observe that a valuation v satisfies the conclusion of a
rule i↵ it satisfies both premises in the first case, and the
single premise in the second case.

Using these rules, we can build a finite tree whose leaves
are labeled with sets of literals.

By the above observation, a valuation v satisfies the propo-
sition labeling the root of the tree i↵ it satisfies all the
propositions labeling the leaves of the tree.

But then, a CNF for the original proposition A (in nnf,
at the root of the tree) is the conjunction of the clauses
appearing as the leaves of the tree.

We may exclude the clauses that are tautologies, and we
may discover in the process that A is a tautology (when
all leaves are tautologies).
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Example 8.4. An illustration of the above method to
convert the proposition

A = (x1 ^ y1) _ (x2 ^ y2)

is shown below:
x1, x2 x1, y2

x1, x2 ^ y2

y1, x2 y1, y2

y1, x2 ^ y2

x1 ^ y1, x2 ^ y2

(x1 ^ y1) _ (x2 ^ y2)

We obtain the CNF

B = (x1 _ x2) ^ (x1 _ y2) ^ (y1 _ x2) ^ (y1 _ y2).

Remark: Rules for dealing for ¬ can also be created.
In this case, we work with pairs of sets of propositions,

� ! �,

where, the propositions in � are interpreted conjunctively,
and the propositions in � are interpreted disjunctively.

We obtain a sound and complete proof system for propo-
sitional logic (a “Gentzen-style” proof system, see Logic
for Computer Science, Gallier [?]).
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Going back to our “bad” proposition A from Example 8.3,
by induction, we see that any tree for A has 2n leaves.

However, the following result holds.

Proposition 8.12. For any proposition A, we can
construct in polynomial time a formula A0 in CNF,
so that A is satisfiable i↵ A0 is satisfiable, by creating
new variables.

Sketch of proof. First we convert A to nnf, which yields
a proposition at most twice as long.

Then we proceed recursively. For a conjunction C ^ D,
we apply recursively the procedure to C and D.

The trick is that for a disjunction C _ D, first we apply
recursively the procedure to C and D obtain

(C1 ^ · · · ^ Cm) _ (D1 ^ · · · ^ Dn)

where the Ci’s and the Dj’s are clauses.

Then we create

(C1 _ y) ^ · · · ^ (Cm _ y) ^ (D1 _ y) ^ · · · ^ (Dn _ y),

where y is a new variable.



484 CHAPTER 8. COMPUTATIONAL COMPLEXITY; P AND NP

It can be shown that the number of new variables required
is at most quadratic in the size of A. For details on
this construction see Hopcroft, Motwani and Ullman [?]
(Section 10.3.3), but beware that the proof on page 455
contains a mistake. Repair the mistake.

Example 8.5. Consider the proposition

A = (x1 ^ ¬x2) _ ((¬x1 ^ x2) _ (x2 _ x3)).

First, since x1 and ¬x2 are clauses, we get

A1 = x1 ^ ¬x2.

Since ¬x1, x2 and x2 _ x3 are clauses, from (¬x1 ^ x2)_
(x2 _ x3) we construct

A2 = (¬x1 _ y1) ^ (x2 _ y1) ^ (x2 _ x3 _ ¬y1).

Next, since A1 and A2 are conjunctions of clauses, we
construct

A0 = (x1 _ y2) ^ (¬x2 _ y2) ^ (¬x1 _ y1 _ ¬y2)

^ (x2 _ y1 _ ¬y2) ^ (x2 _ x3 _ ¬y1 _ ¬y2),

a conjunction of clauses which is satisfiable i↵ A is satis-
fiable.
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Warning: In general, the proposition A0 is not equiv-
alent to the proposition A.

Remark: Other authors, including Hoprcoft, Motwani,
and Ullman, prove that the satisfiability problem for ar-
bitrary propositions is NP-complete, by showing how
the computation of a nondeterministic Turing machine
(operating in polynomial time) can be simulated using
propositions.

For this simulation to work, it appears that propositions
that are not in CNF are required. Then Proposition 8.12
is used to show that the satisfiability problem for propo-
sitions in CNF (SAT) is also NP-complete.

In our approach, since we have already shown that the
bounded tiling problem is NP-complete, in the second
step to reduce the tiling problem to SAT we only need
clauses to perform the reduction.

Thus we don’t need Proposition 8.12 to prove that SAT
is NP-complete.
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The question of uniqueness of the CNF is a bit tricky.

For example, the proposition

A = (u ^ (x _ y)) _ (¬u ^ (x _ y))

has

A1 = (u _ x _ y) ^ (¬u _ x _ y)

A2 = (u _ ¬u) ^ (x _ y)

A3 = x _ y,

as equivalent propositions in CNF!
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We can get a unique CNF equivalent to a given proposi-
tion if we do the following:

(1) Let Var(A) = {x1, . . . , xm} be the set of variables
occurring in A.

(2) Define amaxterm w.r.t. Var(A) as any disjunction of
m pairwise distinct literals formed from Var(A), and
not containing both some variable xi and its negation
¬xi.

(3) Then, it can be shown that for any proposition A
that is not a tautology, there is a unique proposi-
tion in CNF equivalent to A, whose clauses consist
of maxterms formed from Var(A).

The above definition can yield strange results. For in-
stance, the CNF of any unsatisfiable proposition with m
distinct variables is the conjunction of all of its 2m max-
terms!

The above notion does not cope well with minimality.
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For example, according to the above, the CNF of

A = (u ^ (x _ y)) _ (¬u ^ (x _ y))

should be

A1 = (u _ x _ y) ^ (¬u _ x _ y).


