
On the Correspondence Between Proofs and λ-Terms

Jean Gallier∗

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St.
Philadelphia, PA 19104, USA

e-mail: jean@saul.cis.upenn.edu

December 17, 2010

Abstract. The correspondence between natural deduction proofs and λ-terms is presented and
discussed. A variant of the reducibility method is presented, and a general theorem for establishing
properties of typed (first-order) λ-terms is proved. As a corollary, we obtain a simple proof of the
Church-Rosser property, and of the strong normalization property, for the typed λ-calculus associ-
ated with the system of (intuitionistic) first-order natural deduction, including all the connectors
→, ×, +, ∀, ∃, and ⊥ (falsity) (with or without η-like rules).

∗This research was partially supported by ONR Grant NOOO14-88-K-0593.

1

Contents

1 Introduction 3

2 Natural Deduction, Simply-Typed λ-Calculus 5

3 Adding Conjunction, Negation, and Disjunction 11

4 First-Order Quantifiers 14

5 P-Candidates for the Arrow Type Constructor → 18

6 Adding Product and Sum Types × and + 23

7 Adding the Absurdity Type ⊥ 28

8 Adding First-Order Quantifiers ∀ and ∃ 35

9 Adding η-like Reduction Rules 51

2

1 Introduction

Curry ([2], 1958) made the remarkably insightful observation that certain typed combinators can
be viewed as representations of proofs (in a Hilbert system) of certain propositions. Building up
on this observation, Howard ([12], 1969) described a general correspondence between propositions
and types, proofs in natural deduction and certain typed λ-terms, and proof normalization and
β-reduction. This correspondence, usually referred to as the “Curry/Howard isomorphism” or
“formulae–as–types principle”, is fundamental and very fruitful. The Curry/Howard isomorphism
establishes a deep correspondence between the notion of proof and the notion of computation.
It is this correspondence that leads to various “semantics of proofs”, the most recent one being
Girard’s geometry of interaction [10]. However, a discussion of this subject would take us beyond
the scope of this paper, and we will restrict ourselves to a (thorough) discussion of the notion of
proof normalization.

The idea of proof normalization goes back to Gentzen ([6], 1935). Gentzen noted that (formal)
proofs can contain redundancies, or “detours”, and that most complications in the analysis of proofs
are due to these redundancies. Thus, Gentzen had the idea that the analysis of proofs would be
simplified if it was possible to show that every proof can be converted to an equivalent irredundant
proof, a proof in normal form. Gentzen proved a technical result to that effect, the “cut-elimination
theorem”, for a sequent-calculus formulation of first-order logic [6]. Cut-free proofs are direct, in
the sense that they never use auxiliary lemmas via the cut rule. It is important to note that
Gentzen’s result gives a particular algorithm to produce a proof in normal form. Thus, we know
that every proof can be reduced to some normal form using a specific strategy, but there may be
more than one normal form, and certain normalization strategies may not terminate.

About thirty years later, Prawitz ([16], 1965) reconsidered the issue of proof normalization,
but in the framework of natural deduction rather than the framework of sequent calculi.1 Prawitz
explained very clearly what redundancies are in systems of natural deduction, and he proved that
every proof can be reduced to a normal form. Furthermore, this normal form is unique. A few years
later, Prawitz ([17], 1971) showed that in fact, every reduction sequence terminates, a property also
called strong normalization.

Sometimes between 1965 and 1967, Tait ([20]) proved that β-reduction in the simply-typed
λ-calculus is strongly normalizing. For this, he used a method usually known as reducibility or
computability . The word computability already having a meaning in recursion theory, we prefer
to use the word reducibility. In view of the Curry-Howard isomorphism (which, although it only
appeared in print in 1969, was known to the experts earlier that 1969), it was to be expected that a
proof of strong normalization for natural deduction could be obtained using the reducibility method.
More specifically, by representing (natural deduction) proofs as certain λ-terms, and exploiting the
fact that proof normalization steps correspond to reduction steps in a certain typed λ-calculus, one
can translate properties of λ-terms in terms of properties of proofs. In fact, Girard did just that
(Girard [8] (1971), [9] (1972)), but he proved a much stronger result, namely strong normalization
for higher-order (intuitionistic) logic. A similar proof also appears in Stenlund [19]. Prawitz ([17],
1971) also uses a variant of the reducibility method for proving strong normalization of natural

1This is somewhat ironical, since Gentzen began his investigations using a natural deduction system, but decided
to switch to sequent calculi (known as Gentzen systems!) for technical reasons.

3

deduction for first-order intuitionistic logic. Prawitz also proves the confluence (Church-Rosser
property) of proof normalization.

The reducibility method is a very powerful method, but it is somewhat mysterious, and it has
several variations (Tait’s version, Girard’s version, Krivine’s version, etc). These variations have to
do with the choice of technical conditions on the so-called “candidates of reducibility”, as we shall
see later.

Nowadays, the reducibility method is rather well known for proving strong normalization (or
normalization), but the fact that it can also be used to prove confluence or other properties does not
seem to be as well known. Statman showed that various properties of the simply-typed λ-calculus
can be obtained using logical relations [18], but John Mitchell seems to be one of the first who
realized that reducibility can be used to prove more general properties than strong normalization.
The general idea is that if a unary predicate P expressing a property of (typed) λ-terms satisfies
the conditions for being a “candidate” (as alluded to earlier) and some other closure conditions
(typically, if P(Mx) then P(M), where x is a variable), then P holds of all λ-terms that type-check.
Although it is very nice, this approach has a defect, namely that it is too sensitive to the notion of
candidate chosen. This makes it difficult to generalize the method when we consider richer calculi.
Also, some of the closure conditions are not very “inductive”.

Recently, we came accross a paper by Koletsos [13] in which confluence results for various
typed λ-calculi are shown. What struck us, is that Koletsos uses a notion of candidate different
from all the others, and remarkably, this notion remains the same for all the calculi involved.
Furthermore, although specifically tailored for proving confluence, this notion works just as well
for strong normalization. In fact, we discovered that it was possible to prove a general theorem
about the typed λ-calculus associated with first-order intuitionistic logic. Basically, we show that if
a unary predicate P expressing a property of (typed) λ-terms satisfies certain inductive conditions,
then P holds of all λ-terms that type-check. In particular, strong normalization and confluence
satisfy these conditions, and thus they hold in this typed λ-calculus. In constrast to Mitchell’s
approach, it is not necessary to assert that P is a candidate. The conditions on P seem more
“inductive”.

Our plan is to prove the general theorem about the typed λ-calculus associated with first-
order intuitionistic natural deduction. First, we will begin with proof systems in natural deduction
style (originally due to Gentzen [6] and thoroughly investigated by Prawitz [16] in the sixties).
By adopting a description of natural deduction in terms of judgements, as opposed to the tagged
trees used by Gentzen and Prawitz, we are also led quite naturally to the encoding of proofs as
certain typed λ-terms, and to the correspondence between proof normalization and β-conversion
(the Curry/Howard isomorphism [12]). We will then present our version of the reducibity mehod
adpated from Koletsos. We will prove our general theorem incrementally, by first considering the
simply-typed λ-calculus, and then adding other type constructors in stages.

In writing this paper, we tried to uncover some of the intuitions that may either have been
lost or obscured in advanced papers on the subject, but we have also tried to present relatively
sophisticated material, because this is more exciting for the reader. Thus, we have assumed that
the reader has a certain familiarity with logic and the lambda calculus. If the reader does not
feel sufficiently comfortable with these topics, we suggest consulting Girard, Lafont, Taylor [7] or
Gallier [4] for background on logic, and Barendregt [1], Hindley and Seldin [11], or Krivine [14] for

4

background on the lambda calculus. For an in-depth study of constructivism in mathematics, we
highly recommend Troelstra and van Dalen [22].

2 Natural Deduction, Simply-Typed λ-Calculus

We first consider a syntactic variant of the natural deduction system for implicational propositions
due to Gentzen [6] and Prawitz [16].

In the natural deduction system of Gentzen and Prawitz, a deduction consists in deriving
a proposition from a finite number of packets of assumptions, using some predefined inference
rules. Technically, packets are multisets of propositions. During the course of a deduction, certain
packets of assumptions can be “closed”, or “discharged”. A proof is a deduction such that all the
assumptions have been discharged. In order to formalize the concept of a deduction, one faces the
problem of describing rigorously the process of discharging packets of assumptions. The difficulty
is that one is allowed to discharge any number of occurrences of the same proposition in a single
step, and this requires some form of tagging mechanism. At least two forms of tagging techniques
have been used.

• The first one, used by Gentzen and Prawitz, consists in viewing a deduction as a tree whose
nodes are labeled with propositions (for a lucid presentation, see van Dalen [23]). One is allowed
to tag any set of occurrences of some proposition with a natural number, which also tags the
inference that triggers the simultaneous discharge of all the occurrences tagged by that number.

• The second solution consists in keeping a record of all undischarged assumptions at every stage
of the deduction. Thus, a deduction is a tree whose nodes are labeled with expressions of the
form Γ − A, called sequents, where A is a proposition, and Γ is a record of all undischarged
assumptions at the stage of the deduction associated with this node.

Although the first solution is perhaps more natural from a human’s point of view and more
economical, the second one is mathematically easier to handle. In the sequel, we adopt the second
solution. It is convenient to tag packets of assumptions with labels, in order to discharge the
propositions in these packets in a single step. We use variables for the labels, and a packet labeled
with x consisting of occurrences of the proposition A is written as x:A. Thus, in a sequent Γ − A,
the expression Γ is any finite set of the form x1:A1, . . . , xm:Am, where the xi are pairwise distinct
(but the Ai need not be distinct). Given Γ = x1:A1, . . . , xm:Am, the notation Γ, x:A is only well
defined when x 6= xi for all i, 1 ≤ i ≤ m, in which case it denotes the set x1:A1, . . . , xm:Am, x:A.
We have the following axioms and inference rules.

Definition 2.1 The axioms and inference rules of the system N⊃m (implicational logic) are listed
below:

Γ, x:A − A

Γ, x:A − B
Γ − A ⊃ B

(⊃-intro)

Γ − A ⊃ B Γ − A
Γ − B

(⊃-elim)

5

In an application of the rule (⊃-intro), we say that the proposition A which appears as a
hypothesis of the deduction is discharged (or closed).2 It is important to note that the ability to
label packets consisting of occurrences of the same proposition with different labels is essential,
in order to be able to have control over which groups of packets of assumptions are discharged
simultaneously. Equivalently, we could avoid tagging packets of assumptions with variables if
we assumed that in a sequent Γ − C, the expression Γ, also called a context , is a multiset of
propositions. The following two examples illustrate this point.

Example 2.2 Let
Γ = x:A ⊃ (B ⊃ C), y:A ⊃ B, z:A.

Γ − A ⊃ (B ⊃ C) Γ − A
Γ − B ⊃ C

Γ − A ⊃ B Γ − A
Γ − B

x:A ⊃ (B ⊃ C), y:A ⊃ B, z:A − C

x:A ⊃ (B ⊃ C), y:A ⊃ B − A ⊃ C

x:A ⊃ (B ⊃ C) − (A ⊃ B) ⊃ (A ⊃ C)

− (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

In the above example, two occurrences of A are discharged simultaneously. Compare with the
example below where these occurrences are discharged in two separate steps.

Example 2.3 Let
Γ = x:A ⊃ (B ⊃ C), y:A ⊃ B, z1:A, z2:A.

Γ − A ⊃ (B ⊃ C) Γ − A
Γ − B ⊃ C

Γ − A ⊃ B Γ − A
Γ − B

x:A ⊃ (B ⊃ C), y:A ⊃ B, z1:A, z2:A − C

x:A ⊃ (B ⊃ C), y:A ⊃ B, z1:A − A ⊃ C

x:A ⊃ (B ⊃ C), z1:A − (A ⊃ B) ⊃ (A ⊃ C)

z1:A − (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

− A ⊃
(
(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

)

For the sake of comparison, we show what these two natural deductions look like in the system
of Gentzen and Prawitz, where packets of assumptions discharged in the same inference are tagged
with a natural number. Example 2.2 corresponds to the following tree:

2In this system, the packet of assumptions A is always discharged. This is not so in Prawitz’s system (as presented
for example in van Dalen [23]), but we also feel that this is a slightly confusing aspect of Prawitz’s system.

6

Example 2.4

(A ⊃ (B ⊃ C))3 A1

B ⊃ C
(A ⊃ B)2 A1

B

C
1

A ⊃ C
2

(A ⊃ B) ⊃ (A ⊃ C)
3

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

and Example 2.3 to the following tree:

Example 2.5

(A ⊃ (B ⊃ C))3 A1

B ⊃ C
(A ⊃ B)2 A4

B

C
1

A ⊃ C
2

(A ⊃ B) ⊃ (A ⊃ C)
3

(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
4

A ⊃
(
(A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))

)

It is clear that a context (the Γ in a sequent Γ − A) is used to tag packets of assumptions and
to record the time at which they are discharged. From now on, we stick to the presentation of
natural deduction using sequents.

Proofs may contain redundancies, for example when an elimination immediately follows an
introduction, as in the following example in which D1 denotes a deduction with conclusion Γ, x:A −
B and D2 denotes a deduction with conclusion Γ − A.

D1

Γ, x:A − B
Γ − A ⊃ B

D2

Γ − A
Γ − B

Intuitively, it should be possible to construct a deduction for Γ − B from the two deductions
D1 and D2 without using at all the hypothesis x:A. This is indeed the case. If we look closely at
the deduction D1, from the shape of the inference rules, assumptions are never created, and the
leaves must be labeled with expressions of the form Γ′,∆, x:A, y:C − C or Γ,∆, x:A − A, where

7

y 6= x and either Γ = Γ′ or Γ = Γ′, y:C. We can form a new deduction for Γ − B as follows: in
D1, wherever a leaf of the form Γ,∆, x:A − A occurs, replace it by the deduction obtained from
D2 by adding ∆ to the premise of each sequent in D2. Actually, one should be careful to first make
a fresh copy of D2 by renaming all the variables so that clashes with variables in D1 are avoided.
Finally, delete the assumption x:A from the premise of every sequent in the resulting proof. The
resulting deduction is obtained by a kind of substitution and may be denoted as D1[D2/x], with
some minor abuse of notation. Note that the assumptions x:A occurring in the leaves of the form
Γ′,∆, x:A, y:C − C were never used anyway. This illustrates the fact that not all assumptions are
necessarily used. Also, the same assumption may be used more than once, as we can see in the
(⊃-elim) rule. The step which consists in transforming the above redundant proof figure into the
deduction D1[D2/x] is called a reduction step or normalization step.

We now show that the simply-typed λ-calculus provides a natural notation for proofs in natural
deduction, and that β-conversion corresponds naturally to proof normalization. The trick is to
annotate inference rules with terms corresponding to the deductions being built, by placing these
terms on the righthand side of the sequent, so that the conclusion of a sequent appears to be
the “type of its proof”. This way, inference rules have a reading as “type-checking rules”. This
discovery due to Curry and Howard is known as the Curry/Howard isomorphism, or formulae-
as-types principle [12]. An early occurrence of this correspondence can be found in Curry and
Feys [2] (1958), Chapter 9E, pages 312-315. Furthermore, and this is the deepest aspect of the
Curry/Howard isomorphism, proof normalization corresponds to term reduction in the λ-calculus
associated with the proof system.

Definition 2.6 The type-checking rules of the λ-calculus λ⊃ (simply-typed λ-calculus) are listed
below:

Γ, x:A − x:A

Γ, x:A −M :B

Γ − (λx:A.M):A ⊃ B
(abstraction)

Γ −M :A ⊃ B Γ − N :A

Γ − (MN):B
(application)

Now, sequents are of the form Γ − M :A, where M is a simply-typed λ-term representing a
deduction of A from the assumptions in Γ. Such sequents are also called judgements, and Γ is
called a type assignment or context .

The example of redundancy is now written as follows:

Γ, x:A −M :B

Γ − (λx:A.M):A ⊃ B Γ − N :A

Γ − (λx:A.M)N :B

Now, D1 is incorporated in the deduction as the term M , and D2 is incorporated in the deduction
as the term N . The great bonus of this representation is that D1[D2/x] corresponds to M [N/x],
the result of performing a β-reduction step on (λx:A.M)N .

8

Example 2.7

x:P ⊃ (Q ⊃ P), u:P − u:P

x:P ⊃ (Q ⊃ P) − λu:P. u: (P ⊃ P)

− λx: (P ⊃ (Q ⊃ P)). λu:P. u: (P ⊃ (Q ⊃ P)) ⊃ (P ⊃ P)

y:P, z:Q − y:P

y:P − λz:Q. y: (Q ⊃ P)

− λy:P. λz:Q. y:P ⊃ (Q ⊃ P)

− (λx: (P ⊃ (Q ⊃ P)). λu:P. u)λy:P. λz:Q. y: (P ⊃ P)

The term (λx: (P ⊃ (Q ⊃ P)). λu:P. u)λy:P. λz:Q. y reduces to λu:P. u, which is indeed the
term representation of the natural deduction proof

u:P − P
− (P ⊃ P)

Thus, the simply-typed λ-calculus arises as a natural way to encode natural deduction proofs,
and β-reduction corresponds to proof normalization. The correspondence between proof normaliza-
tion and term reduction is the deepest and most fruitful aspect of the Curry/Howard isomorphism.
Indeed, using this correspondence, results about the simply-typed λ-calculus can be translated into
the framework of natural deduction proofs, a very nice property. On the other hand, one should
not be too dogmatic (or naive) about the Curry/Howard isomorphism and make it into some kind
of supreme commandment (as we say in French, “prendre ses désirs pour des réalités”). In the
functional style of programming, λ-reduction corresponds to parameter-passing, but more is going
on, in particular recursion. Thus, although it is fruitful to view a program as a proof, the speci-
fication of a program as the proposition proved by that proof, and the execution of a program as
proof normalization (or cut elimination, but it is confusing to say that, since in most cases we are
dealing with a natural deduction system), it is abusive to claim that this is what programming is
all about. In fact, I believe that statements to that effect are detrimental to our field. There are
plenty of smart people who are doing research in the theory of programming and programming lan-
guage design, and such statements will only make them skeptical (at best). Programming cannot
be reduced to the Curry/Howard isomorphism.

When we deal with the calculus λ⊃, rather than using ⊃, we usually use →, and thus, the
calculus is denoted as λ→. In order to avoid ambiguities, the delimiter used to separate the lefthand
side from the righthand side of a judgement Γ −M :A will be ., so that judgements are written as
Γ . M :A.

Before moving on to more fascinating topics, we cannot resist a brief digression on notation
(at least, we will spare the reader the moralistic lecture that we have inflicted upon students over
more than fourteen years!). Notation is supposed to help us, but the trouble is that it can also be
a handicap. This is because there is a very delicate balance between the explicit and the implicit.
Our philosophy is that the number of symbols used should be minimized, and that notation should
help remembering what things are, rather than force remembering what things are. The most
important thing is that notation should be as unambiguous as possible. Furthermore, we should
allow ourselves dropping certain symbols as long as no serious ambiguities arise, and we should
avoid using symbols that already have a standard meaning, although this is nearly impossible.

9

Lambda-abstraction and substitution are particularly spicy illustrations. For example, the
notation λx:σM together with (MN) for application is unambiguous. However, when we see the
term (λx:σMN), we have to think a little (in fact, too much) to realize that this is indeed the
application of λx:σM to N , and not the abstraction λx:σ(MN). This is even worse if we look at
the term λx:σMN where the parentheses have been dropped. So, we may consider introducing
extra markers, just to help readability, although they are not strictly necessary. For example, we
can add a dot between σ and M : abstraction is then written as λx:σ. M . Similarly, universally
quantified formulae are written as ∀x:σ. A. Now, λx:σ. MN is a little better, but still requires an
effort. Thus, we will add parentheses around the lambda abstraction and write (λx:σ. M)N . Yes,
we are using more symbols than we really need, but we feel that we have removed the potential
confusion with λx:σ.MN (which should really be written as λx:σ.(MN)). Since we prefer avoiding
subscripts or superscripts unless they are really necessary, we favor the notation λx:σ.M over the
(slightly old-fashion) λxσ. M (we do not find the economy of one symbol worth the superscript).3

Now, let us present another choice of notation, a choice that we consider poor since it forces us
to remember something rather than help us. In this choice, abstraction is written as [x:σ]M , and
universal quantification as (x:σ)A. The problem is that the reader needs to remember which kind of
bracket corresponds to abstraction or to (universal) quantification. Since additional parentheses are
usually added when applications arise, we find this choice quite confusing. The argument that this
notation corresponds to some form of machine language is the worst that can be given. Humans are
not machines, and thus should not be forced to read machine code! An interesting variation on the
notations λx:σ. M and ∀x:σ. A is λ(x:σ)M and ∀(x:σ)A, which is quite defendable. Substitution
is an even more controversial subject! Our view is the following. After all, a substitution is
a function whose domain is a set of variables and which is the identity except on a finite set.
Furthermore, substitutions can be composed. But beware: composition of substitutions is not
function composition (indeed, a substitution ϕ induces a homomorphism ϕ̂, and the composition of
two substitutions ϕ and ψ is the function composition of ϕ̂ and ψ, and not of ϕ and ψ). Thus, the
choice of notation for composition of substitutions has an influence on the notation for substitution.
If we choose to denote composition of substitution in the order ϕ ;ψ, then it is more convenient to
denote the result of applying a substitution ϕ to a term M as Mϕ, or (M)ϕ, or as we prefer as M [ϕ].
Indeed, this way, M [ϕ][ψ] is equal to M [ϕ ;ψ]. Now, since a substitution is a function with domain
a finite set of variables, it can be denoted as [x1 7→M1, . . . , xn 7→Mn]. In retrospect, we regret not
having adopted this notation. If this was the case, applying a substitution to M would be denoted
as M [x1 7→ M1, . . . , xn 7→ Mn]. Instead, we use the notation [t1/x1, . . . , tn/xn] which has been
used for some time in automated theorem proving. Then, applying a substitution to M is denoted
as M [t1/x1, . . . , tn/xn] (think for just a second of the horrible clash if this notation was used
with [x:σ]M for abstraction!). Other authors denote substitutions as [x1: = M1, . . . , xn: = Mn].
Personally, we would prefer switching to [x1 7→ M1, . . . , xn 7→ Mn], because : = is also used for
denoting a function f whose value at some argument x is redefined to be a, as in f [x: = a]. Finally,
a word about sequents and judgements. To us, the turnstile symbol ` means provability. A sequent
consists of two parts Γ and ∆, and some separator is needed between them. In principle, anything
can do, and if the arrow→ was not already used as a type-constructor, we would adopt the notation
Γ→ ∆. Some authors denote sequents as Γ ` ∆. A problem then arises when we want to say that
a sequent is provable, since this is written as ` Γ ` ∆. The ideal is to use symbols of different size

3The notation λxσ. M seems to appear mostly in systems where contexts are not used, but instead where it is
assumed that each variable has been preassigned a type.

10

for the two uses of `. In fact, we noticed that Girard himself has designed his own ` which has a
thicker but smaller (in height) foot: −. Thus, we will use the “Girardian turnstile” − in writing
sequents as Γ − ∆. Judgements have three parts, Γ, M , and σ. Our view is that Γ and M actually
come together to form what we have called elsewhere a “declared term” (thinking of the context Γ
as a declaration of the variables). Again we need a way to put together Γ and M , and we use the
symbol ., thus forming Γ . M . Then, a declared term may have a type σ, and such a judgement
is written as Γ . M :σ. To say that a judgement is provable, we write ` Γ . M :σ. We find this
less confusing than the notation ` Γ ` M :σ, and this is why we favor Γ . M :σ over Γ ` M :σ
(but some authors use . for the reduction relation! We use −→). And please, avoid the notation
` Γ `M ∈ σ, which we find terribly confusing and cruel to ∈. But we have indulged too long into
this digression, and now back to more serious business.

3 Adding Conjunction, Negation, and Disjunction

First, we present the natural deduction systems, and then the corresponding extensions of the
simply-typed λ-calculus. As far as proof normalization is concerned, conjunction does not cause
any problem, but as we will see, negation and disjunction are more problematic. In order to
add negation, we add the new constant ⊥ (false) to the language, and define negation ¬A as an
abbreviation for A ⊃⊥.

Definition 3.1 The axioms and inference rules of the system N⊃,∧,∨,⊥i (intuitionistic propositional
logic) are listed below:

Γ, x:A − A

Γ −⊥
Γ − A

(⊥-elim)

Γ, x:A − B
Γ − A ⊃ B

(⊃-intro)

Γ − A ⊃ B Γ − A
Γ − B

(⊃-elim)

Γ − A Γ − B
Γ − A ∧B

(∧-intro)

Γ − A ∧B
Γ − A

(∧-elim)
Γ − A ∧B

Γ − B
(∧-elim)

Γ − A
Γ − A ∨B

(∨-intro)
Γ − B

Γ − A ∨B
(∨-intro)

Γ − A ∨B Γ, x:A − C Γ, y:B − C
Γ − C

(∨-elim)

11

Since the rule (⊥-elim) is trivial (does nothing) when A =⊥, from now on, we will assume that
A 6=⊥. Minimal propositional logic N⊃,∧,∨,⊥m is obtained by dropping the (⊥-elim) rule. In order
to obtain the system of classical propositional logic, denoted N⊃,∧,∨,⊥c , we add to N⊃,∧,∨,⊥m the
following inference rule corresponding to the principle of proof by contradiction (by-contra) (also
called reductio ad absurdum).

Γ, x:¬A −⊥
Γ − A

(by-contra)

Several useful remarks should be made.

(1) In classical propositional logic (N⊃,∧,∨,⊥c), the rule

Γ −⊥
Γ − A

(⊥-elim)

can be derived, since if we have a deduction of Γ −⊥, then for any arbitrary A we have a deduction
Γ, x:¬A −⊥, and thus a deduction of Γ − A by applying the (by-contra) rule.

(2) The proposition A ⊃ ¬¬A is derivable in N⊃,∧,∨,⊥m , but the reverse implication ¬¬A ⊃ A is

not derivable, even in N⊃,∧,∨,⊥i . On the other hand, ¬¬A ⊃ A is derivable in N⊃,∧,∨,⊥c :

x:¬¬A, y:¬A − ¬¬A x:¬¬A, y:¬A − ¬A
x:¬¬A, y:¬A −⊥

(by-contra)
x:¬¬A − A
− ¬¬A ⊃ A

(3) Using the (by-contra) inference rule together with (⊃-elim) and (∨-intro), we can prove
¬A ∨A (that is, (A ⊃⊥) ∨A). Let

Γ = x: ((A ⊃⊥) ∨A) ⊃⊥ .

We have the following proof for (A ⊃⊥) ∨A in N⊃,∧,∨,⊥c :

Γ − ((A ⊃⊥) ∨A) ⊃⊥

Γ, y:A − ((A ⊃⊥) ∨A) ⊃⊥

Γ, y:A − A

Γ, y:A − (A ⊃⊥) ∨A

Γ, y:A −⊥
Γ − A ⊃⊥

Γ − (A ⊃⊥) ∨A

Γ −⊥
(by-contra)

− (A ⊃⊥) ∨A

As in (2), ¬A ∨ A is not derivable in N⊃,∧,∨,⊥i . The reader might wonder how one shows that

¬¬A ⊃ A and ¬A∨A are not provable in N⊃,∧,∨,⊥i . In fact, this is not easy to prove directly. One
method is to use the fact (given by theorem 3.4 and theorem 3.5) that every proof-term reduces to

12

a unique normal form. Then, argue that if the above propositions have a proof in normal form, this
leads to a contradiction. Another even simpler method is to use cut-free Gentzen systems. The
interested reader is referred to Gallier [3].

The typed λ-calculus λ→,×,+,⊥ corresponding to N⊃,∧,∨,⊥i is given in the following definition.

Definition 3.2 The typed λ-calculus λ→,×,+,⊥ is defined by the following rules.

Γ, x:A . x:A

Γ . M :⊥
Γ .5A(M):A

(⊥-elim)

with A 6=⊥,
Γ, x:A .M :B

Γ . (λx:A.M):A→ B
(abstraction)

Γ . M :A→ B Γ . N :A

Γ . (MN):B
(application)

Γ . M :A Γ . N :B

Γ . 〈M,N〉:A×B
(pairing)

Γ . M :A×B
Γ . π1(M):A

(projection)
Γ . M :A×B
Γ . π2(M):B

(projection)

Γ . M :A

Γ . inl(M):A+B
(injection)

Γ . M :B

Γ . inr(M):A+B
(injection)

Γ . P :A+B Γ, x:A .M :C Γ, y:B . N :C

Γ . case(P, λx:A.M, λy:B. N):C
(by-cases)

A syntactic variant of case(P, λx:A.M, λy:B. N) often found in the literature is

case P of inl(x:A)⇒M | inr(y:B)⇒ N,

or even
case P of inl(x)⇒M | inr(y)⇒ N,

and the (by-cases) rule can be written as

Γ . P :A+B Γ, x:A .M :C Γ, y:B . N :C

Γ . (case P of inl(x:A)⇒M | inr(y:B)⇒ N):C
(by-cases)

We also have the following reduction rules.

13

Definition 3.3 The reduction rules of the system λ→,×,+,⊥ are listed below:

(λx:A.M)N −→M [N/x],

π1(〈M,N〉) −→M,

π2(〈M,N〉) −→ N,

case(inl(P), λx:A.M, λy:B. N) −→M [P/x], or

case inl(P) of inl(x:A)⇒M | inr(y:B)⇒ N −→M [P/x],

case(inr(P), λx:A.M, λy:B. N) −→ N [P/y], or

case inr(P) of inl(x:A)⇒M | inr(y:B)⇒ N −→ N [P/y],

5A→B(M)N −→ 5B(M),

π1(5A×B(M)) −→ 5A(M),

π2(5A×B(M)) −→ 5B(M),

case(5A+B(P), λx:A.M, λy:B. N) −→ 5C(P).

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up to α-renaming. This result was first proved by Prawitz [17] for

the system N⊃,∧,∨,⊥i .

Theorem 3.4 [Church-Rosser property, Prawitz (1971)] Reduction in λ→,×,+,⊥ (specified in Def-
inition 3.3) is confluent. Equivalently, conversion in λ→,×,+,⊥ is Church-Rosser.

A proof can be given by adapting the method of Tait and Martin-Löf [15] using a form of
parallel reduction (see also Barendregt [1], Hindley and Seldin [11], or Stenlund [19]). We will give
another proof in section 8.

Theorem 3.5 [Strong normalization, Prawitz (1971)] Reduction in λ→,×,+,⊥ (as in Definition
3.3) is strongly normalizing.

A proof can be given by adapting Tait’s reducibility method [20], [21], as done in Girard [8]
(1971), [9] (1972) (see also Gallier [5]). We will give another proof in section 8.

4 First-Order Quantifiers

We extend the system N⊃,∧,∨,⊥i to deal with the quantifiers.

Definition 4.1 The axioms and inference rules of the system N⊃,∧,∨,∀,∃,⊥i for intuitionistic first-
order logic are listed below:

Γ, x:A − A

Γ −⊥
Γ − A

(⊥-elim)

with A 6=⊥,
Γ, x:A − B
Γ − A ⊃ B

(⊃-intro)

14

Γ − A ⊃ B Γ − A
Γ − B

(⊃-elim)

Γ − A Γ − B
Γ − A ∧B

(∧-intro)

Γ − A ∧B
Γ − A

(∧-elim)
Γ − A ∧B

Γ − B
(∧-elim)

Γ − A
Γ − A ∨B

(∨-intro)
Γ − B

Γ − A ∨B
(∨-intro)

Γ − A ∨B Γ, x:A − C Γ, y:B − C
Γ − C

(∨-elim)

Γ − A[u/t]

Γ − ∀tA
(∀-intro)

Γ − ∀tA
Γ − A[τ/t]

(∀-elim)

where in (∀-intro), u does not occur free in Γ or ∀tA;

Γ − A[τ/t]

Γ − ∃tA
(∃-intro)

Γ − ∃tA z:A[u/t],Γ − C
Γ − C

(∃-elim)

where in (∃-elim), u does not occur free in Γ, ∃tA, or C.

The variable u is called the eigenvariable of the inference.

One should observe that we are now using two kinds of variables: term (or package) variables
(x, y, z, . . .), and individual (or type) variables (t, u, . . .).

The typed λ-calculus λ→,×,+,∀,∃,⊥ corresponding to N⊃,∧,∨,∀,∃,⊥i is given in the following defini-
tion.

Definition 4.2 The typed λ-calculus λ→,×,+,∀,∃,⊥ is defined by the following rules.

Γ, x:A . x:A

Γ . M :⊥
Γ .5A(M):A

(⊥-elim)

with A 6=⊥,
Γ, x:A .M :B

Γ . (λx:A.M):A→ B
(abstraction)

Γ . M :A→ B Γ . N :A

Γ . (MN):B
(application)

Γ . M :A Γ . N :B

Γ . 〈M,N〉:A×B
(pairing)

15

Γ . M :A×B
Γ . π1(M):A

(projection)
Γ . M :A×B
Γ . π2(M):B

(projection)

Γ . M :A

Γ . inl(M):A+B
(injection)

Γ . M :B

Γ . inr(M):A+B
(injection)

Γ . P :A+B Γ, x:A .M :C Γ, y:B . N :C

Γ . case(P, λx:A.M, λy:B. N):C
(by-cases)

or
Γ . P :A+B Γ, x:A .M :C Γ, y:B . N :C

Γ . (case P of inl(x:A)⇒M | inr(y:B)⇒ N):C
(by-cases)

Γ . M :A[u/t]

Γ . (λu: ι. M):∀tA
(∀-intro)

where u does not occur free in Γ or ∀tA;

Γ . M : ∀tA
Γ . Mτ :A[τ/t]

(∀-elim)

Γ . M :A[τ/t]

Γ . inx(τ,M):∃tA
(∃-intro)

Γ . M : ∃tA Γ, x:A[u/t] . N :C

Γ . casex(M,λu: ι. λx:A[u/t]. N):C
(∃-elim)

where u does not occur free in Γ, ∃tA, or C.

In the term (λu: ι. M), the type ι stands for the type of individuals. Note that

Γ . λu: ι. λx:A[u/t]. N :∀u(A[u/t]→ C).

The term λu: ι. λx:A[u/t]. N contains the type A[u/t] which is a dependent type, since it usually
contains occurrences of u. Observe that (λu: ι. λx:A[u/t]. N)τ reduces to λx:A[τ/t]. N [τ/u], in
which the type of x is now A[τ/t]. The term casex(M,λu: ι. λx:A[u/t]. N) is also denoted as
casex M of inx(u: ι, x:A[u/t]) ⇒ N , or even casex M of inx(u, x) ⇒ N , and the (∃-elim) rule
as

Γ . M : ∃tA Γ, x:A[u/t] . N :C

Γ . (casexM of inx(u: ι, x:A[u/t])⇒ N):C
(∃-elim)

where u does not occur free in Γ, ∃tA, or C.

Such a formalism can be easily generalized to many sorts (base types), if quantified formulae
are written as ∀t:σ. A and ∃t:σ. A, where σ is a sort (base type). A further generalization would
be to allow higher-order quantification as in Girard’s system Fω (see Girard [9] or Gallier [5]). We
also have the following reduction rules.

16

Definition 4.3 The reduction rules of the system λ→,×,+,∀,∃,⊥ are listed below:

(λx:A.M)N −→M [N/x],

π1(〈M,N〉) −→M,

π2(〈M,N〉) −→ N,

case(inl(P),M,N) −→MP, or

case inl(P) of inl(x:A)⇒M | inr(y:B)⇒ N −→M [P/x],

case(inr(P),M,N) −→ NP, or

case inr(P) of inl(x:A)⇒M | inr(y:B)⇒ N −→ N [P/y],

5A→B(M)N −→ 5B(M),

π1(5A×B(M)) −→ 5A(M),

π2(5A×B(M)) −→ 5B(M),

(λt: ι. M)τ −→M [τ/t],

5∀tA(M)τ −→ 5A[τ/t](M),

case(5A+B(P),M,N) −→ 5C(P),

casex(inx(τ, P),M) −→ (Mτ)P, or

casex inx(τ, P) of inx(t: ι, x:A)⇒ N −→ N [τ/t, P/x],

casex(5∃tA(P),M) −→ 5C(P).

A fundamental result about natural deduction is the fact that every proof (term) reduces to a
normal form, which is unique up to α-renaming. This result was first proved by Prawitz [17] for

the system N⊃,∧,∨,∀,∃,⊥i .

Theorem 4.4 [Church-Rosser property, Prawitz (1971)] Reduction in λ→,×,+,∀,∃,⊥ (specified in
Definition 4.3) is confluent. Equivalently, conversion in λ→,×,+,∀,∃,⊥ is Church-Rosser.

A proof can be given by adapting the method of Tait and Martin-Löf [15] using a form of
parallel reduction (see also Barendregt [1], Hindley and Seldin [11], or Stenlund [19]). We will give
another proof in section 8.

Theorem 4.5 [Strong normalization, Prawitz (1971)] Reduction in λ→,×,+,∀,∃,⊥ is strongly nor-
malizing.

A proof can be given by adapting Tait’s reducibility method [20], [21], as done in Girard [8]
(1971), [9] (1972) (see also Gallier [5]). We will give another proof in section 8.

If one looks carefully at the structure of proofs, one realizes that it is not unreasonable to declare
other proofs as being redundant, and thus to add some additional reduction rules. For example,
the proof term 〈π1(M), π2(M)〉 can be identified with M itself. Similarly, if x is not free in M , the
term λx:A. (Mx) can be identified with M . Thus, we have the following additional set of reduction
rules:

λx:A. (Mx) −→M, if x /∈ FV (M),

〈π1(M), π2(M)〉 −→M,

17

caseM of inl(x:A)⇒ inl(x) | inr(y:B)⇒ inr(y) −→M,

λt: ι. (Mt) −→M, if t /∈ FV (M),

casexM of inx(u: ι, x:A[u/t])⇒ inx(u, x) −→M, if u /∈ FV (M).

These rules are important in setting up categorical semantics for intuitionistic logic. However, a
discussion of this topic would take us far beyond the scope of this paper. Actually, in order to salvage
some form of subformula property ruined by the introduction of the connectives ∨, ∃, and ⊥, one
can add further conversions known as “commuting conversions” (or “permutative conversions”). A
lucid discussion of the necessity for such rules can be found in Girard [7]. Theorem 4.4 and theorem
4.5 can be extended to cover the reduction rules of definition 4.3 together with the new reductions
rules, but at the cost of rather tedious and rather noninstructive technical complications. Due to
the lack of space, we will not elaborate any further on this subject and simply refer the interested
reader to Prawitz [16], Girard [9], or Girard [7] for details.

5 P-Candidates for the Arrow Type Constructor →
We first motivate our version of the reducibility method. The situation is that we have a unary
predicate P describing a property of (typed) λ-terms, and a type-inference system S. For example,
P could be the property of being normalizable, or strongly normalizing, or that confluence holds
from any term, and S could be the system λ→, or λ→,×,+,⊥, or λ→,×,+,∀,∃,⊥. Our main goal is to
find sufficient conditions on the predicate P so that every term M that type-checks in S satisfies
the predicate P.

As an example of the above general schema, conditions (P1), (P2), (P3) of definition 5.3 together
with conditions (P4) and (P5) of definition 5.7 are such conditions on P with respect to system
λ→ (see theorem 5.10). Another example is given by conditions (P1), (P2), (P3) of definition 8.4
together with conditions (P4) and (P5) of definition 8.8 with respect to system λ→,×,+,∀,∃,⊥ (see
theorem 8.11). Since the property of being strongly normalizing satisfies properties (P1)-(P5), as
a corollary, we have that every term that type-checks in λ→,×,+,∀,∃,⊥ is strongly normalizing (see
theorem 8.12). Similarly, we obtain that confluence holds (see theorem 8.13).

The main technique involved is a kind of realizability argument known as reducibility . The
crux of the reducibility method is to interpret every type σ as a set [[σ]] of λ-terms having certain
closure properties. One of the crucial properties is that for any type σ, the terms in [[σ]] satisfy the
predicate P. If the sets [[σ]] are defined right, then the following “realizability property” holds (for
example, see lemma 5.9):

If P is a predicate satisfying conditions (P1)-(P5), then for every term M that type-checks in
λ→ with type σ, for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every y: γ ∈ FV (M), we have
M [ϕ] ∈ [[σ]].

Now, if the properties (P1)-(P5) on the predicate P are right, every variable is in every [[σ]], and
thus, by chosing ϕ to be the identity substitution, we get that M ∈ [[σ]] whenever M type-checks in
λ→ with type σ. Furthermore, properties (P1)-(P5) imply that [[σ]] ⊆ P, and thus, we have shown
that M satisfies the predicate P whenever M type-checks in λ→.

Other examples of this schema are given by lemma 6.10, lemma 7.10, and lemma 8.10. In order
for an argument of this kind to go through, the sets [[σ]] must satisfy some inductive invariant. In

18

the literature, this is often referred to as being a candidate. Inspired by the paper by Koletsos
[13], we use the notion of a P-candidate defined in definition 5.4. This notion has the advantage of
not requiring the terms to be strongly normalizing (as in Girard [7]), or to involve rather strange
looking terms such as M [N/x]N1 . . . Nk (as in Tait, Mitchell, or Krivine). By isolating the dual
notions of I-terms and simple terms, we can give a definition that remains invariant no matter
what the definition of the sets [[σ]] is. Also, the definition of a P-candidate only requires that the
predicate P be satisfied, but nothing to do with the properties (P1)-(P5) on P. This separation is
helpful in understanding how to derive sufficient properties on P. In other presentations, properties
of the predicate P are often incorporated in the definition of a candidate, and this tends to obscure
the argument. Finally, our definition can be easily adapted to other type disciplines (conjunctive
types), or to higher-order types. Also, nice proofs of confluence can be obtained (see theorem 8.13).
We now proceed with the details.

Let T denote the set of (simple) types. The presentation will be simplified if we adopt the
definition of simply-typed λ-terms where all the variables are explicitly assigned types once and
for all. More precisely, we have a family X = (Xσ)σ∈T of variables, where each Xσ is a countably
infinite set of variables of type σ, and Xσ∩Xτ = ∅ whenever σ 6= τ . Using this definition, there is no
need to drag contexts along, and the most important feature of the proof, namely the reducibility
method, is easier to grasp. The type-checking rules of the system are summarized in the following
definition.

Definition 5.1 The terms of the typed λ-calculus λ→ are defined by the following rules.

x:σ, when x ∈ Xσ,

(we can also have c:σ, for a set of constants that have been preassigned types).

x:σ .M : τ

. (λx:σ. M):σ → τ
(abstraction)

. M :σ → τ . N :σ

. (MN): τ
(application)

From now on, when we refer to a λ-term, we mean a λ-term that type-checks. We let Λσ denote
the set of λ-terms of type σ. In this section, the only reduction rule considered is β-reduction:

(λx:σ. M)N −→β M [N/x].

It turns out that the behavior of a term depends heavily on the nature of the last typing
inference rule used in typing this term. A term created by an introduction rule, or I-term, plays
a crucial role, because when combined with another term (or several other terms in the case of
disjunctive terms), a new redex is created. On the other hand, for a term created by an elimination
rule, or simple term, no new redex is created when this term is combined with another term (or
several other terms in the case of disjunctive terms). This motivates the following definition.

Definition 5.2 An I-term is a term of the form λx:σ. M . A simple term (or neutral term) is a
term that is not an I-term. Thus, a simple term is either a variable x, a constant c, or an application
MN . A term M is stubborn iff it is simple and, either M is irreducible, or M ′ is a simple term

whenever M
+−→β M

′ (equivalently, M ′ is not an I-term).

19

Let P = (Pσ)σ∈T be a family of nonempty sets of simply-typed λ-terms.

Definition 5.3 Properties (P1)-(P3) are defined as follows:

(P1) x ∈ Pσ, c ∈ Pσ, for every variable x and constant c of type σ.

(P2) If M ∈ Pσ and M −→β N , then N ∈ Pσ.

(P3) If M is simple, M ∈ Pσ→τ , N ∈ Pσ, and (λx:σ. M ′)N ∈ Pτ whenever M
+−→β λx:σ. M ′,

then MN ∈ Pτ .

From now on, we only consider families P satisfying conditions (P1)-(P3) of definition 5.3.

Definition 5.4 A nonempty set C of terms of type σ is a P-candidate iff it satisfies the following
conditions:

(R1) C ⊆ Pσ.

(R2) If M ∈ C and M −→β N , then N ∈ C.

(R3) If M is simple, M ∈ Pσ, and λx: γ. M ′ ∈ C whenever M
+−→β λx: γ. M ′, then M ∈ C.

Note that (R3) and (P1) imply that for every type σ, any P-candidate C of type σ contains all
variables and all constants of type σ. More generally, (R3) implies that C contains all stubborn
terms in Pσ, and (P1) guarantees that variables and constants are stubborn terms in Pσ (for every
type σ).

By (P3), if M ∈ Pσ→τ is a stubborn term and N ∈ Pσ is any term, then MN ∈ Pτ . Furthermore,
MN is also stubborn since it is a simple term and since it can only reduce to an I-term (a λ-
abstraction) if M itself reduces to a λ-abstraction, i.e. an I-term. Thus, if M ∈ Pσ→τ is a stubborn
term and N ∈ Pσ is any term, then MN is a stubborn term in Pτ . As a consequence, since variables
are stubborn, for any terms N1, . . . , Nk in P, for every variable x, the term xN1 . . . Nk is a stubborn
term in P (assuming appropriate types for x and N1, . . . , Nk). Instead of (R3), a condition that
occurs frequently in reducibility arguments is the following:

(S2) If N ∈ Pγ and M [N/x]N1 . . . Nk ∈ C, then (λx: γ. M)NN1 . . . Nk ∈ C.

It can be shown easily that (R2) and (R3) imply (S2) (see the proof of lemma 5.8). Terms of
the form xN1 . . . Nk or M [N/x]N1 . . . Nk are known to play a role in reducibility arguments (for
example, by Tait, Mitchell, or Krivine), and it is no surprise that they crop up again. However, in
contrast with other presentations, we do not have to deal with them explicitly.

Given a family P, for every type σ, we define [[σ]] as follows.

Definition 5.5 The sets [[σ]] are defined as follows:

[[σ]] = Pσ, σ a base type,

[[σ → τ]] = {M | M ∈ Pσ→τ , and for all N , if N ∈ [[σ]] then MN ∈ [[τ]]}.

Lemma 5.6 If P is a family satisfying conditions (P1)-(P3), then each [[σ]] is a P-candidate
that contains all stubborn terms in Pσ.

20

Proof . We proceed by induction on types. If σ is a base type, [[σ]] = Pσ, and obviously, every
stubborn term in Pσ is in [[σ]]. Since [[σ]] = Pσ, (R1) is trivial, (R2) follows from (P2), and (R3) is
also trivial.4

We now consider the induction step.

(R1). By the definition of [[σ → τ]], (R1) is trivial.

(R2). Let M ∈ [[σ → τ]] and assume that M −→β M
′. Since M ∈ Pσ→τ by (R1), we have

M ′ ∈ Pσ→τ by (P2). For any N ∈ [[σ]], since M ∈ [[σ → τ]] we have MN ∈ [[τ]], and since
M −→β M

′ we have MN −→β M
′N . Then, applying the induction hypothesis at type τ , (R2)

holds for [[τ]], and thus M ′N ∈ [[τ]]. Thus, we have shown that M ′ ∈ Pσ→τ and that if N ∈ [[σ]],
then M ′N ∈ [[τ]]. By the definition of [[σ → τ]], this shows that M ′ ∈ [[σ → τ]], and (R2) holds at
type σ → τ .

(R3). Let M ∈ Pσ→τ be a simple term, and assume that λx:σ. M ′ ∈ [[σ → τ]] whenever

M
+−→β λx:σ. M ′. We prove that for every N , if N ∈ [[σ]], then MN ∈ [[τ]]. First, we prove that

MN ∈ Pτ , and for this we use (P3). First, assume that M ∈ Pσ→τ is stubborn, and let N be in
[[σ]]. By (R1), N ∈ Pσ. By the induction hypothesis, all stubborn terms in Pτ are in [[τ]]. Since
we have shown that MN is a stubborn term in Pτ whenever M ∈ Pσ→τ is stubborn and N ∈ Pτ ,

we have M ∈ [[σ → τ]]. Now, consider M ∈ Pσ→τ non stubborn. If M
+−→β λx:σ. M ′, then by

assumption, λx:σ.M ′ ∈ [[σ → τ]], and for any N ∈ [[σ]], we have (λx:σ.M ′)N ∈ [[τ]]. Since by (R1),
N ∈ Pσ and (λx:σ. M ′)N ∈ Pτ , by (P3), we have MN ∈ Pτ . Now, there are two cases.

If τ is a base type, then [[τ]] = Pτ and MN ∈ [[τ]].

If τ is not a base type, the term MN is simple. Thus, we prove that MN ∈ [[τ]] using (R3)
(which by induction, holds at type τ). The case where MN is stubborn follows from the induction

hypothesis. Otherwise, observe that if MN
+−→β Q, where Q = λy: γ. P is an I-term, then the

reduction is necessarily of the form

MN
+−→β (λx:σ. M ′)N ′ −→β M

′[N ′/x]
∗−→β Q,

where M
+−→β λx:σ. M ′ and N

∗−→β N
′. Since by assumption, λx:σ. M ′ ∈ [[σ → τ]] whenever

M
+−→β λx:σ. M ′, and by the induction hypothesis applied at type σ, by (R2), N ′ ∈ [[σ]], we

conclude that (λx:σ. M ′)N ′ ∈ [[τ]]. By the induction hypothesis applied at type τ , by (R2), we
have Q ∈ [[τ]], and by (R3), we have MN ∈ [[τ]].

Since M ∈ Pσ→τ and MN ∈ [[τ]] whenever N ∈ [[σ]], we conclude that M ∈ [[σ → τ]].

For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to (P1)-(P3).

Definition 5.7 Properties (P4) and (P5) are defined as follows:

(P4) If M ∈ Pτ , then λx:σ. M ∈ Pσ→τ .

(P5) If N ∈ Pσ and M [N/x] ∈ Pτ , then (λx:σ. M)N ∈ Pτ .

Lemma 5.8 If P is a family satisfying conditions (P1)-(P5) and for every N , (N ∈ [[σ]] implies
M [N/x] ∈ [[τ]]), then λx:σ. M ∈ [[σ → τ]].

4In fact, if [[σ]] = Pσ, (R3) holds trivially even at nonbase types. This remark is useful is we allow type variables.

21

Proof . We prove that λx:σ. M ∈ Pσ→τ and that for every every N , if N ∈ [[σ]], then
(λx:σ.M)N ∈ [[τ]]. We will need the fact that the sets of the form [[σ]] have the properties (R1)-(R3),
but this follows from lemma 5.6, since (P1)-(P3) hold. First, we prove that λx:σ. M ∈ Pσ→τ .

Since by lemma 5.6, x ∈ [[σ]] for every variable of type σ, by the assumption of lemma 5.8,
M [x/x] = M ∈ [[τ]]. Then, by (R1), M ∈ Pτ , and by (P4), we have λx:σ. M ∈ Pσ→τ .

Next, we prove that for every every N , if N ∈ [[σ]], then (λx:σ.M)N ∈ [[τ]]. Let us assume that
N ∈ [[σ]]. Then, by the assumption of lemma 5.8, M [N/x] ∈ [[τ]]. Thus, by (R1), we have N ∈ Pσ
and M [N/x] ∈ Pτ . By (P5), we have (λx:σ. M)N ∈ Pτ . Now, there are two cases.

If τ is a base type, then [[τ]] = Pτ . Since we just showed that (λx:σ. M)N ∈ Pτ , we have
(λx:σ. M)N ∈ [[τ]].

If τ is not a base type, then (λx:σ. M)N is simple. Thus, we prove that (λx:σ. M)N ∈
[[τ]] using (R3). The case where (λx:σ. M)N is stubborn is trivial. Otherwise, observe that if

(λx:σ.M)N
+−→β Q, where Q = λy: γ. P is an I-term, then the reduction is necessarily of the form

(λx:σ. M)N
∗−→β (λx:σ. M ′)N ′ −→β M

′[N ′/x]
∗−→β Q,

where M
∗−→β M

′ and N
∗−→β N

′. But M [N/x] ∈ [[τ]], and since

M [N/x]
∗−→β M

′[N ′/x]
∗−→β Q,

by (R2), we have Q ∈ [[τ]]. Since (λx:σ.M)N ∈ Pτ and Q ∈ [[τ]] whenever (λx:σ.M)N
+−→β Q, by

(R3), we have (λx:σ. M)N ∈ [[τ]].

Lemma 5.9 If P is a family satisfying conditions (P1)-(P5), then for every term M of type σ,
for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every y: γ ∈ FV (M), we have M [ϕ] ∈ [[σ]].

Proof . We proceed by induction on the structure of M . If M is a variable, then x[ϕ] = ϕ(x) ∈
[[σ]] by the assumption on ϕ. If c is a constant, then c[ϕ] = c, and c ∈ [[σ]] since this is true by
lemma 5.6.

If M = M1N1, where M1 has type σ → τ and N1 has type σ, by the induction hypothesis,
M1[ϕ] ∈ [[σ → τ]] and N1[ϕ] ∈ [[σ]]. By the definition of [[σ → τ]], we get M1[ϕ]N1[ϕ] ∈ [[τ]], which
shows that (M1N1)[ϕ] ∈ [[τ]], since M1[ϕ]N1[ϕ] = (M1N1)[ϕ].

If M = λx:σ. M1, consider any N ∈ [[σ]] and any substitution ϕ such that ϕ(y) ∈ [[γ]] for every
y: γ ∈ FV (λx:σ.M1). Thus, the substitution ϕ[x: = N] has the property that ϕ(y) ∈ [[γ]] for every
y: γ ∈ FV (M1). By suitable α-conversion, we can assume that x does not occur in any ϕ(y) for
every y ∈ dom(ϕ), and that N is substitutable for x in M1. Then, M1[ϕ[x: = N]] = M1[ϕ][N/x].
By the induction hypothesis applied to M1 and ϕ[x: = N], we have M1[ϕ[x: = N]] ∈ [[τ]], that is,
M1[ϕ][N/x] ∈ [[τ]]. Consequently, by lemma 5.8, (λx:σ.M1[ϕ]) ∈ [[σ → τ]], that is, (λx:σ.M1)[ϕ] ∈
[[σ → τ]], since (λx:σ. M1[ϕ]) = (λx:σ. M1)[ϕ].

Theorem 5.10 If P is a family of λ-terms satisfying conditions (P1)-(P5), then Pσ = Λσ for
every type σ (in other words, every term satisfies the unary predicate defined by P).

Proof . Apply lemma 5.9 to every term M of type σ and to the identity substitution, which is
legitimate since x ∈ [[σ]] for every variable of type σ (by lemma 5.6). Thus, M ∈ [[σ]] for every term
of type σ, that is Λσ ⊆ Pσ. Since obviously Pσ ⊆ Λσ, we have Pσ = Λσ.

22

6 Adding Product and Sum Types × and +

The type-checking rules of the system are summarized in the following definition.

Definition 6.1 The terms of the typed λ-calculus λ→,×,+ are defined by the following rules.

x:σ, when x ∈ Xσ,

(we can also have c:σ, for a set of constants that have been preassigned types).

x:σ .M : τ

. (λx:σ. M):σ → τ
(abstraction)

. M :σ → τ . N :σ

. (MN): τ
(application)

. M :σ . N : τ

. 〈M,N〉:σ × τ
(pairing)

. M :σ × τ

. π1(M):σ
(projection)

. M :σ × τ

. π2(M): τ
(projection)

. M :σ

. inl(M):σ + τ
(injection)

. M : τ

. inr(M):σ + τ
(injection)

. P :σ + τ x:σ .M : δ y: τ . N : δ

. (case P of inl(x:σ)⇒M | inr(y: τ)⇒ N): δ
(by-cases)

We also recall the reduction rules.

Definition 6.2 The reduction rules of the system λ→,×,+ are listed below:

(λx:σ. M)N −→M [N/x],

π1(〈M,N〉) −→M,

π2(〈M,N〉) −→ N,

case inl(P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→M [P/x],

case inr(P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→ N [P/y].

The reduction relation defined by the rules of definition 6.2 is still denoted as −→β (even though
there are reductions other that β-reduction). The definition of an I-term is extended as follows.

Definition 6.3 An I-term is a term of the form either λx:σ. M , 〈M,N〉, inl(M), or inr(M). A
simple term (or neutral term) is a term that is not an I-term. Thus, a simple term is either a
variable x, a constant c, an application MN , a projection π1(M) or π2(M), or a conditional term
case P of inl(x:σ)⇒M | inr(y: τ)⇒ N . A term M is stubborn iff it is simple and, either M is

irreducible, or M ′ is a simple term whenever M
+−→β M

′ (equivalently, M ′ is not an I-term).

23

Thus, an I-term is a proof-term corresponding to the conclusion of an introduction rule. The
beauty of I-terms is that they are just what makes condition (R3) work. We need to extend
definition 5.3, definition 5.4, definition 5.5, and definition 5.7, to take into account product types
σ × τ and sum types σ + τ .

Definition 6.4 Properties (P1)-(P3) are defined as follows:

(P1) x ∈ Pσ, c ∈ Pσ, for every variable x and constant c of type σ.

(P2) If M ∈ Pσ and M −→β N , then N ∈ Pσ.

(P3) If M is simple, then:

(1) If M ∈ Pσ→τ , N ∈ Pσ, and (λx:σ.M ′)N ∈ Pτ whenever M
+−→β λx:σ.M ′, then MN ∈ Pτ .

(2) If M ∈ Pσ×τ , and π1(〈M ′, N ′〉) ∈ Pσ and π2(〈M ′, N ′〉) ∈ Pτ whenever M
+−→β 〈M ′, N ′〉,

then π1(M) ∈ Pσ and π2(M) ∈ Pτ .

From now on, we only consider families P satisfying conditions (P1)-(P3) of definition 6.4. Note
that (P3) still implies that if M ∈ Pσ→τ is a stubborn term and N ∈ Pσ is any term, then MN
is a stubborn term in Pτ . It also implies that if M ∈ Pσ×τ is a stubborn term, then π1(M) is a
stubborn term in Pσ and π2(M) is a stubborn term in Pτ .

Definition 6.5 A nonempty set C of terms of type σ is a P-candidate iff it satisfies the following
conditions:

(R1) C ⊆ Pσ.

(R2) If M ∈ C and M −→β N , then N ∈ C.

(R3) If M is simple, M ∈ Pσ, and M ′ ∈ C whenever M
+−→β M

′ and M ′ is an I-term, then
M ∈ C.

Note that (R3) and (P1) imply that for every type σ, any P-candidate C of type σ contains all
variables and all constants of type σ.

Definition 6.6 The sets [[σ]] are defined as follows:

[[σ]] = Pσ, σ a base type,

[[σ → τ]] = {M | M ∈ Pσ→τ , and for all N , if N ∈ [[σ]] then MN ∈ [[τ]]},
[[σ × τ]] = {M | M ∈ Pσ×τ , π1(M) ∈ [[σ]], and π2(M) ∈ [[τ]]},
[[σ + τ]] = {M | M ∈ Pσ+τ , either M ′ ∈ [[σ]] whenever M

∗−→β inl(M ′), or

M ′′ ∈ [[τ]] whenever M
∗−→β inr(M ′′)}.

Note that [[σ × τ]] and [[σ + τ]] can also be defined as follows:

[[σ × τ]] = {M | M ∈ Pσ×τ , π1(M) ∈ [[σ]]} ∩ {M | M ∈ Pσ×τ , π2(M) ∈ [[τ]]},
[[σ + τ]] = {M | M ∈ Pσ+τ , M ′ ∈ [[σ]] whenever M

∗−→β inl(M ′)} ∪
{M | M ∈ Pσ+τ , M ′′ ∈ [[τ]] whenever M

∗−→β inr(M ′′)}.

We now prove a generalization of lemma 5.6.

24

Lemma 6.7 If P is a family satisfying conditions (P1)-(P3), then each [[σ]] is a P-candidate
that contains all stubborn terms in Pσ.

Proof . We proceed by induction on types. The base case is as in lemma 5.6. The induction
step has more cases since we also need to deal with product and sum types.

(R1). This is trivial by the definitions of [[σ → τ]], [[σ × τ]], and [[σ + τ]],

(R2). There are three cases depending on the type.

1. Arrow type σ → τ . The proof is as in lemma 5.6, since an I-term of type σ → τ is necessarily
of the form λx:σ. M .

2. Product type σ × τ . Assume that M −→β M
′ for M ∈ [[σ × τ]]. We need to prove that

M ′ ∈ Pσ×τ , π1(M
′) ∈ [[σ]], and π2(M

′) ∈ [[τ]]. Since M ∈ [[σ× τ]], by (R1), M ∈ Pσ×τ , and by (P2)
M ′ ∈ Pσ×τ . Since M ∈ [[σ × τ]], we have π1(M) ∈ [[σ]] and π2(M) ∈ [[τ]]. But π1(M) −→β π1(M

′)
and π2(M) −→β π2(M

′), and by the induction hypothesis, by (R2), we get π1(M
′) ∈ [[σ]] and

π2(M
′) ∈ [[τ]].

3. Sum type σ+τ . Assume that M −→β M
′ for M ∈ [[σ+τ]]. We need to prove that M ′ ∈ Pσ+τ ,

and that either M1 ∈ [[σ]] whenever M ′
∗−→β inl(M1), or M2 ∈ [[τ]] whenever M ′

∗−→β inr(M2).
Since M ∈ [[σ + τ]], by (R1), M ∈ Pσ+τ , and by (P2) M ′ ∈ Pσ+τ . Since M −→β M

′, we have

M
∗−→β inl(M1) whenever M ′

∗−→β inl(M1), and M
∗−→β inr(M2) whenever M ′

∗−→β inr(M2).

However, by definition of [[σ + τ]], either M1 ∈ [[σ]] whenever M
∗−→β inl(M1), or M2 ∈ [[τ]]

whenever M
∗−→β inr(M2). Thus, M1 ∈ [[σ]] whenever M ′

∗−→β inl(M1), or M2 ∈ [[τ]] whenever

M ′
∗−→β inr(M2).

(R3). Let M be a simple term. There are three cases depending on the type of M .

1. Arrow type σ → τ . The proof is as in lemma 5.6, since an I-term of type σ → τ is necessarily
of the form λx:σ. M , and we use (P3)(1).

2. Product type σ × τ . Let M ∈ Pσ×τ be a simple term, and assume that M ′ ∈ [[σ × τ]]

whenever M
+−→β M

′ and M ′ is an I-term. We need to show that π1(M) ∈ [[σ]] and π2(M) ∈ [[τ]].
If M ∈ Pσ×τ is stubborn, we have shown that π1(M) is a stubborn term in Pσ and that π2(M)
is a stubborn term in Pτ . By the induction hypothesis, all stubborn terms in Pσ are in [[σ]] and
all stubborn terms in Pτ are in [[τ]]. Thus, when M is stubborn, π1(M) ∈ [[σ]] and π2(M) ∈ [[τ]].
Next, assume that M is not stubborn. Now, an I-term of type σ × τ is necessarily of the form

〈M1, N1〉, and by the assumption, whenever M
+−→β 〈M1, N1〉, we have 〈M1, N1〉 ∈ [[σ × τ]]. This

implies that π1(〈M1, N1〉) ∈ [[σ]] and π2(〈M1, N1〉) ∈ [[τ]]. By (R1), we have π1(〈M1, N1〉) ∈ Pσ,
π2(〈M1, N1〉) ∈ Pτ , and by (P3)(2), we get π1(M) ∈ Pσ and π2(M) ∈ Pτ . If σ is a base type, then
[[σ]] = Pσ and π1(M) ∈ [[σ]]. Similarly, if τ is a base type, then [[τ]] = Pτ and π2(M) ∈ [[τ]].

Let us now consider the case where σ is not a base type, the case where τ is not a base type
being similar. Then, we know that π1(M) ∈ Pσ and π1(M) is a simple term. We use (R3) to prove
that π1(M) ∈ [[σ]]. The case where π1(M) is stubborn is trivial. Otherwise, we need to show that

M ′ ∈ [[σ]] whenever π1(M)
+−→β M

′ and M ′ is an I-term. Then, the reduction π1(M)
+−→β M

′

must be of the form
π1(M)

+−→β π1(〈M1, N1〉) −→β M1
∗−→β M

′,

25

where M
+−→β 〈M1, N1〉. Since 〈M1, N1〉 is an I-term, by the assumption, we have 〈M1, N1〉 ∈

[[σ × τ]]. This implies that π1(〈M1, N1〉) ∈ [[σ]], and by the induction hypothesis and (R2), we have
M ′ ∈ [[σ]]. By (R3), we conclude that π1(M) ∈ [[σ]].

3. Sum type σ+τ . If M ∈ Pσ+τ is stubborn, then by definition of [[σ+τ]], we have M ∈ [[σ+τ]].

Otherwise, let M ∈ Pσ+τ be a simple term, and assume that M ′ ∈ [[σ+τ]] whenever M
+−→β M

′ and

M ′ is an I-term. We need to show that either M1 ∈ [[σ]] whenever M
∗−→β inl(M1), or M2 ∈ [[τ]]

whenever M
∗−→β inr(M2). Assume that M

∗−→β inl(M1). Since inl(M1) is an I-term, by the
assumption, we have inl(M1) ∈ [[σ+τ]]. By definition of [[σ+τ]], we have either M ′1 ∈ [[σ]] whenever
inl(M1)

∗−→β inl(M ′1), or M ′2 ∈ [[τ]] whenever inl(M1)
∗−→β inr(M ′2). However, derivations of

the form inl(M1)
∗−→β inr(M ′2) are impossible. Thus, the first case applies, and we have M1 ∈ [[σ]],

since inl(M1)
∗−→β inl(M1). The case where M

∗−→β inr(M2) is similar.

Definition 6.8 Properties (P4) and (P5) are defined as follows:

(P4)
(1) If M ∈ Pτ , then λx:σ. M ∈ Pσ→τ .
(2) If M ∈ Pσ and N ∈ Pτ , then 〈M,N〉 ∈ Pσ×τ .
(3) If M ∈ Pσ, then inl(M) ∈ Pσ+τ , and if M ∈ Pτ , then inr(M) ∈ Pσ+τ .

(P5)
(1) If N ∈ Pσ and M [N/x] ∈ Pτ , then (λx:σ. M)N ∈ Pτ .
(2) If M ∈ Pσ and N ∈ Pτ , then π1(〈M,N〉) ∈ Pσ and π2(〈M,N〉) ∈ Pτ .
(3) If P ∈ Pσ+τ , M ∈ Pδ, N ∈ Pδ, M [P1/x] ∈ Pδ whenever P

∗−→β inl(P1), and N [P2/y] ∈ Pδ
whenever P

∗−→β inr(P2), then case P of inl(x:σ)⇒M | inr(y: τ)⇒ N ∈ Pδ.

It is easy to verify that case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N ∈ Pδ is a stubborn term in
Pδ, if P ∈ Pσ+τ is stubborn, M ∈ Pδ, and N ∈ Pδ.

Lemma 6.9 If P is a family satisfying conditions (P1)-(P5) then the following properties hold:
(1) If for every N , (N ∈ [[σ]] implies M [N/x] ∈ [[τ]]), then λx:σ.M ∈ [[σ → τ]]; (2) If M ∈ [[σ]] and
N ∈ [[τ]], then 〈M,N〉 ∈ [[σ×τ]]; (3) If P ∈ [[σ+τ]], for every P1, (P1 ∈ [[σ]] implies M [P1/x] ∈ [[δ]]),
and for every P2, (P2 ∈ [[τ]] implies N [P2/y] ∈ [[δ]]), then case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒
N ∈ [[δ]].

Proof . It is similar to the proof of lemma 5.8, except that we need to prove more clauses. By
lemma 6.7, we know that the sets of the form [[σ]] have the properties (R1)-(R3).

(1) This has already been proved in lemma 5.8.

(2) We need to prove that 〈M,N〉 ∈ Pσ×τ , and that π1(〈M,N〉) ∈ [[σ]] and π2(〈M,N〉) ∈ [[τ]].
Since M ∈ [[σ]] and N ∈ [[τ]], by (R1), M ∈ Pσ and N ∈ Pτ . By (P4)(2), we get 〈M,N〉 ∈ Pσ×τ .
By (P5)(2), we also have π1(〈M,N〉) ∈ Pσ and π2(〈M,N〉) ∈ Pτ . If σ is a base type then [[σ]] = Pσ
and π1(〈M,N〉) ∈ [[σ]]. Similarly, if τ is a base type then [[τ]] = Pτ and π2(〈M,N〉) ∈ [[τ]].

If both σ and τ are nonbase types, π1(〈M,N〉) ∈ Pσ and π2(〈M,N〉) ∈ Pτ are simple terms. We
prove that π1(〈M,N〉) ∈ [[σ]] and π2(〈M,N〉) ∈ [[τ]] using (R3). We consider the case of π1(〈M,N〉),
the case of π2(〈M,N〉) being similar. The case where π1(〈M,N〉) is stubborn is trivial. Otherwise,

26

we need to prove that Q ∈ [[σ]] whenever π1(〈M,N〉) +−→β Q and Q is an I-term. Then, the
reduction must be of the form

π1(〈M,N〉) ∗−→β π1(〈M1, N1〉) −→β M1
∗−→β Q,

where M
∗−→β M1 and N

∗−→β N1. Since M ∈ [[σ]] and

M
∗−→β M1

∗−→β Q,

by (R2), we have Q ∈ [[σ]].

(3) First, we prove that case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N ∈ Pδ. Assume that
the hypothesis of (3) holds. By the assumption, P ∈ [[σ + τ]], and also M = M [x/x] ∈ [[δ]] and
N = N [y/y] ∈ [[δ]], since by lemma 6.7, x ∈ [[σ]] and y ∈ [[τ]]. By (R1), we have P ∈ Pσ+τ , M ∈ Pδ,
and N ∈ Pδ. If P is stubborn, we have shown that case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N
is a stubborn term in Pδ, and thus case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N ∈ [[δ]] by (R3).
Otherwise, if P is not stubborn, and since P ∈ [[σ+τ]], by (R2), whenever P

∗−→β inl(P1), we have
inl(P1) ∈ [[σ+τ]]. By definition of [[σ+τ]], this implies that P1 ∈ [[σ]]. Then, by the assumption, we
have M [P1/x] ∈ [[δ]]. By (R1), we have P ∈ Pσ+τ , M ∈ Pδ, N ∈ Pδ, and M [P1/x] ∈ Pδ whenever
P

∗−→β inl(P1). A similar reasoning applies when P
∗−→β inr(P2), and we have N [P2/y] ∈ Pδ.

Then, by (P5)(3), we have case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N ∈ Pδ. If δ is a base type,
then [[δ]] = Pδ, and case P of inl(x:σ)⇒M | inr(y: τ)⇒ N ∈ [[δ]].

If δ is not a base type, then case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N ∈ Pδ is a simple
term. We use (R3) to prove that case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N ∈ [[δ]]. The case
where case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N is stubborn is trivial. Otherwise, assume that

case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N
+−→β Q and Q is an I-term. Then, the reduction is

either of the form

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inl(P1) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1

−→β M1[P1/x]
∗−→β Q,

where P
∗−→β inl(P1), M

∗−→β M1, and N
∗−→β N1, or

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inr(P2) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1

−→β N1[P2/y]
∗−→β Q,

where P
∗−→β inr(P2), M

∗−→β M1, and N
∗−→β N1. Consider the first case, the second one being

similar. Since P ∈ [[σ + τ]], by (R2), inl(P1) ∈ [[σ + τ]]. This implies that P1 ∈ [[σ]]. Then, by the
assumption, we have M [P1/x] ∈ [[δ]], and since

M [P1/x]
∗−→β M1[P1/x]

∗−→β Q,

by (R2), we getQ ∈ [[δ]]. Finally, by (R3), we have case P of inl(x:σ)⇒M | inr(y: τ)⇒ N ∈ [[δ]].

Lemma 6.10 If P is a family satisfying conditions (P1)-(P5), then for every term M of type σ,
for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every y: γ ∈ FV (M), we have M [ϕ] ∈ [[σ]].

27

Proof . We proceed by induction on the structure of M . Some of the cases have already been
covered in the proof of lemma 5.9, but we also need to handle the new terms.

If M = 〈M1, N1〉, where M1 has type σ and N1 has type τ , then by the induction hypothesis,
M1[ϕ] ∈ [[σ]] and N1[ϕ] ∈ [[τ]]. By lemma 6.9, we have 〈M1[ϕ], N1[ϕ]〉 ∈ [[σ × τ]], i.e. 〈M1, N1〉[ϕ] ∈
[[σ × τ]], since 〈M1[ϕ], N1[ϕ]〉 = 〈M1, N1〉[ϕ].

If M = π1(M1) where M1 has type σ×τ , then by the induction hypothesis, M1[ϕ] ∈ [[σ×τ]]. By
the definition of [[σ×τ]], this implies that π1(M1)[ϕ] ∈ [[σ]], since π1(M1)[ϕ] = π1(M1[ϕ]). Similarly,
we get π2(M1)[ϕ] ∈ [[τ]].

If M = inl(M1) where M has type σ + τ , then by the induction hypothesis, M1[ϕ] ∈ [[σ]].
By (P4)(3), we have inl(M1[ϕ]) ∈ Pσ+τ . We need to show that either N1 ∈ [[σ]] whenever
inl(M1[ϕ])

∗−→β inl(N1), or N2 ∈ [[τ]] whenever inl(M1[ϕ])
∗−→β inr(N2). The second derivation

is impossible, and in the first case, we must have M1[ϕ]
∗−→β N1. Since M1[ϕ] ∈ [[σ]], by (R2), we

have N1 ∈ [[σ]]. The case where M = inr(M1) is similar.

If M = case P of inl(x:σ) ⇒ M1 | inr(y: τ) ⇒ N1 is of type δ, consider any P1 ∈ [[σ]],
any P2 ∈ [[τ]], and any substitution ϕ such that ϕ(z) ∈ [[γ]] for every z: γ ∈ (FV (P) ∪ FV (M1) ∪
FV (N1)) − {x, y}. Thus, ϕ[x: = P1, y: = P2] has the property that ϕ(z) ∈ [[γ]] for every z: γ ∈
(FV (P)∪FV (M1)∪FV (N1)). By suitable α-conversion, we can assume that x and y do not occur
in any ϕ(z) for every z ∈ dom(ϕ), that P1 is substitutable for x in M1, and that P2 is substitutable
for y in N1. Then, M1[ϕ[x: = P1, y: = P2]] = M1[ϕ][P1/x], N1[ϕ[x: = P1, y: = P2]] = N1[ϕ][P2/y],
and P [ϕ[x: = P1, y: = P2]] = P [ϕ], since x /∈ FV (N1) ∪ FV (P) and y /∈ FV (M1) ∪ FV (P).
By the induction hypothesis applied to P , M1, N1, and ϕ[x: = P1, y: = P2] (for any arbitrary
P1 ∈ [[σ]] and P2 ∈ [[τ]]), we have M1[ϕ[x: = P1, y: = P2]] ∈ [[δ]], N1[ϕ[x: = P1, y: = P2]] ∈ [[δ]], and
P [ϕ[x: = P1, y: = P2]] ∈ [[σ + τ]], that is, M1[ϕ][P1/x] ∈ [[δ]], N1[ϕ][P2/y] ∈ [[δ]], and P [ϕ] ∈ [[σ + τ]].
Thus, by lemma 6.9, we have case P [ϕ] of inl(x:σ) ⇒ M1[ϕ] | inr(y: τ) ⇒ N1[ϕ] ∈ [[δ]], that is,
(case P of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1)[ϕ] ∈ [[δ]].

Theorem 6.11 If P is a family of λ-terms satisfying conditions (P1)-(P5), then Pσ = Λσ for
every type σ (in other words, every term satisfies the unary predicate defined by P).

Proof . Apply lemma 6.10 to every term M of type σ and to the identity substitution, which is
legitimate since x ∈ [[σ]] for every variable of type σ (by lemma 6.7).

7 Adding the Absurdity Type ⊥
The type-checking rules of the system are summarized in the following definition.

Definition 7.1 The terms of the typed λ-calculus λ→,×,+,⊥ are defined by the following rules.

x:σ, when x ∈ Xσ,

(we can also have c:σ, for a set of constants that have been preassigned types).

. M :⊥
. 5σ (M):σ

(⊥-elim)

28

with σ 6=⊥,
x:σ .M : τ

. (λx:σ. M):σ → τ
(abstraction)

. M :σ → τ . N :σ

. (MN): τ
(application)

. M :σ . N : τ

. 〈M,N〉:σ × τ
(pairing)

. M :σ × τ

. π1(M):σ
(projection)

. M :σ × τ

. π2(M): τ
(projection)

. M :σ

. inl(M):σ + τ
(injection)

. M : τ

. inr(M):σ + τ
(injection)

. P :σ + τ x:σ .M : δ y: τ . N : δ

. (case P of inl(x:σ)⇒M | inr(y: τ)⇒ N): δ
(by-cases)

We also recall the reduction rules.

Definition 7.2 The reduction rules of the system λ→,×,+,⊥ are listed below:

(λx:σ. M)N −→M [N/x],

π1(〈M,N〉) −→M,

π2(〈M,N〉) −→ N,

case inl(P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→M [P/x],

case inr(P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→ N [P/y],

5σ→τ (M)N −→ 5τ (M),

π1(5σ×τ (M)) −→ 5σ(M),

π2(5σ×τ (M)) −→ 5τ (M),

case 5σ+τ (P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→ 5δ(P).

The reduction relation defined by the rules of definition 7.2 is still denoted as −→β (even though
there are reductions other that β-reduction). Definition 6.3 is extended as follows. Notice that the
addition of the type ⊥ does not change the set of simple terms.

Definition 7.3 An I-term is a term of the form either λx:σ. M , 〈M,N〉, inl(M), or inr(M), or
5σ(M). A simple term (or neutral term) is a term that is not an I-term. Thus, a simple term is
either a variable x, a constant c, an application MN , a projection π1(M) or π2(M), or a conditional
term case P of inl(x:σ)⇒ M | inr(y: τ)⇒ N . A term M is stubborn iff it is simple and, either

M is irreducible, or M ′ is a simple term whenever M
+−→β M

′ (equivalently, M ′ is not an I-term).

29

Definition 7.4 Properties (P1)-(P3) are defined as follows:

(P1) x ∈ Pσ, c ∈ Pσ, for every variable x and constant c of type σ.

(P2) If M ∈ Pσ and M −→β N , then N ∈ Pσ.

(P3) If M is simple, then:

(1) If M ∈ Pσ→τ , N ∈ Pσ, (λx:σ.M ′)N ∈ Pτ whenever M
+−→β λx:σ.M ′, and 5σ→τ (M ′)N ∈

Pτ whenever M
+−→β 5σ→τ (M ′), then MN ∈ Pτ .

(2) If M ∈ Pσ×τ , π1(〈M ′, N ′〉) ∈ Pσ and π2(〈M ′, N ′〉) ∈ Pτ whenever M
+−→β 〈M ′, N ′〉, and

π1(5σ×τ (M ′)) ∈ Pσ and π2(5σ×τ (M ′)) ∈ Pτ whenever M
+−→β 5σ×τ (M ′), then π1(M) ∈

Pσ and π2(M) ∈ Pτ .

From now on, we only consider families P satisfying conditions (P1)-(P3) of definition 7.4. The
remarks on stubborn terms made after definition 6.4 also apply here. Definition 6.5 remains the
same, except that terms of the form 5σ(M) are also I-terms.

Definition 7.5 A nonempty set C of terms of type σ is a P-candidate iff it satisfies the following
conditions:

(R1) C ⊆ Pσ.

(R2) If M ∈ C and M −→β N , then N ∈ C.

(R3) If M is simple, M ∈ Pσ, and M ′ ∈ C whenever M
+−→β M

′ and M ′ is an I-term, then
M ∈ C.

Definition 7.6 The sets [[σ]] are defined as follows:

[[σ]] = Pσ, σ a base type,

[[σ → τ]] = {M | M ∈ Pσ→τ , and for all N , if N ∈ [[σ]] then MN ∈ [[τ]]},
[[σ × τ]] = {M | M ∈ Pσ×τ , π1(M) ∈ [[σ]], and π2(M) ∈ [[τ]]},
[[σ + τ]] = {M | M ∈ Pσ+τ , M ′ ∈ [[σ]] whenever M

∗−→β inl(M ′)} ∪
{M | M ∈ Pσ+τ , M ′′ ∈ [[τ]] whenever M

∗−→β inr(M ′′)} ∪
{M | M ∈ Pσ+τ , M1 ∈ P⊥ whenever M

∗−→β 5σ+τ (M1)}.

We now prove a generalization of lemma 6.7.

Lemma 7.7 If P is a family satisfying conditions (P1)-(P3), then each [[σ]] is a P-candidate
that contains all stubborn terms in Pσ.

Proof . We proceed by induction on types. The base case is as in lemma 5.6. The induction
step has more cases since for every nonbase type σ, 5σ(M) is an I-term of type σ.

(R1). This is trivial by the definitions of [[σ]].

(R2). We need to consider the new case when M ∈ [[σ + τ]]. Assume that M −→β M
′. We

show that M ′ ∈ Pσ+τ and M1 ∈ P⊥ whenever M ′
∗−→β 5σ+τ (M1). By (P2), M ′ ∈ Pσ+τ . Since

30

M −→β M ′, whenever M ′
∗−→β 5σ+τ (M1), we have M

∗−→β 5σ+τ (M1). But then, since
M ∈ [[σ + τ]], we have M1 ∈ P⊥, as desired.

(R3). Let M ∈ Pσ be a simple term, and assume that Q ∈ [[σ]] whenever M
+−→β Q and Q is

an I-term. There are new cases since 5σ(M) is an I-term for every type σ.

1. Arrow type σ → τ . Let M ∈ Pσ→τ be a simple term, and assume that Q ∈ [[σ → τ]] whenever

M
+−→β Q and Q is an I-term. We prove that MN ∈ [[τ]] for every N ∈ [[σ]]. By (R1), if N ∈ [[σ]]

then N ∈ Pσ. The case where M is stubborn is handled as in lemma 5.6.

Assume that M
+−→β Q where Q is an I-term. Then, either Q = λx:σ.M ′ or Q = 5σ→τ (M1). If

Q = λx:σ.M ′, since λx:σ.M ′ ∈ [[σ → τ]], we have (λx:σ.M ′)N ∈ [[τ]], and by (R1), (λx:σ.M ′)N ∈
Pτ . If Q = 5σ→τ (M1), then since 5σ→τ (M1) ∈ [[σ → τ]], we have 5σ→τ (M1)N ∈ [[τ]], and by
(R1), 5σ→τ (M1)N ∈ Pτ . By (P3)(1), MN ∈ Pτ .

If τ is a base type, then [[τ]] = Pτ and MN ∈ [[τ]].

If τ is not a base type, the term MN is simple. Thus, we prove that MN ∈ [[τ]] using (R3)
(which by induction, holds at type τ). The case where MN is stubborn is trivial. Otherwise,

assume that MN
+−→β Q1, where Q1 is an I-term. Observe that the reduction MN

+−→β Q1 is
necessarily either of the form

MN
+−→β (λx:σ. M1)N1 −→β M1[N1/x]

∗−→β Q1,

where M
+−→β λx:σ. M1 and N

∗−→β N1, or of the form

MN
+−→β 5σ→τ (M1)N1 −→β 5τ (M1)

∗−→β Q1,

where M
+−→β 5σ→τ (M1) and N

∗−→β N1.

The first case has already been covered in the proof of lemma 5.6, and Q1 ∈ [[τ]]. In the second
case, by assumption, 5σ→τ (M1) ∈ [[σ → τ]]. Since by the induction hypothesis applied at type σ,
by (R2), N1 ∈ [[σ]], we have 5σ→τ (M1)N1 ∈ [[τ]]. By the induction hypothesis applied at type τ ,
by (R2), we have Q1 ∈ [[τ]]. Since Q1 ∈ [[τ]] in all cases, by the induction hypothesis and (R3), we
have MN ∈ [[τ]]. But then, M ∈ [[σ → τ]].

2. Product type σ×τ . Let M ∈ Pσ×τ be a simple term, and assume that M ′ ∈ [[σ×τ]] whenever

M
+−→β M

′ and M ′ is an I-term. We prove that π1(M) ∈ [[σ]] and π2(M) ∈ [[τ]]. The case where
M is stubborn is handled as in lemma 6.7.

Assume thatM
+−→β M

′ whereQ is an I-term. Then, eitherM ′ = 〈M1, N1〉 orM ′ = 5σ×τ (M1).
If M ′ = 〈M1, N1〉, then 〈M1, N1〉 ∈ [[σ×τ]], and we have π1(〈M1, N1〉) ∈ [[σ]] and π2(〈M1, N1〉) ∈ [[τ]].
By (R1), π1(〈M1, N1〉) ∈ Pσ and π2(〈M1, N1〉) ∈ Pτ . If M ′ = 5σ×τ (M1), then5σ×τ (M1) ∈ [[σ×τ]],
and we have π1(5σ×τ (M1)) ∈ [[σ]] and π2(5σ×τ (M1)) ∈ [[τ]]. By (R1), π1(5σ×τ (M1)) ∈ Pσ and
π2(5σ×τ (M1)) ∈ Pτ . By (P3)(2), we have π1(M) ∈ Pσ and π2(M) ∈ Pτ .

If σ is a base type, then [[σ]] = Pσ and π1(M) ∈ [[σ]]. Similarly, if τ is a base type, then [[τ]] = Pτ
and π2(M) ∈ [[τ]].

Let us now consider the case where σ is not a base type, the case where τ is not a base type
being similar. Then, we know that π1(M) ∈ Pσ and π1(M) is a simple term. We use (R3) to

31

prove that π1(M) ∈ [[σ]]. The case where π1(M) is stubborn is trivial. Otherwise, assume that

π1(M)
+−→β Q where Q is an I-term. Observe that the reduction π1(M)

+−→β Q is necessarily
either of the form

π1(M)
+−→β π1(〈M1, N1〉) −→β M1

∗−→β Q,

where M
+−→β 〈M1, N1〉, or of the form

π1(M)
+−→β π1(5σ×τ (Q1)) −→β 5σ(Q1)

∗−→β Q,

where M
+−→β 5σ×τ (Q1).

The first case has already been covered in the proof of lemma 6.7, and Q ∈ [[σ]]. In the second
case, by assumption, 5σ×τ (Q1) ∈ [[σ × τ]]. Thus, π1(5σ×τ (Q1)) ∈ [[σ]], and by the induction
hypothesis and (R2), we have Q ∈ [[σ]]. Since Q ∈ [[σ]] in all cases, by the induction hypothesis and
(R3), we have π1(M) ∈ [[σ]]. Similarly, we show that π2(M) ∈ [[τ]]. But then, M ∈ [[σ × τ]].

3. Sum type σ + τ . The case where M is stubborn is handled as in lemma 6.7. Otherwise,

let M ∈ Pσ+τ be a simple term, and assume that M ′ ∈ [[σ + τ]] whenever M
+−→β M

′ and M ′

is an I-term. We need to show that either M1 ∈ [[σ]] whenever M
∗−→β inl(M1), or M2 ∈ [[τ]]

whenever M
∗−→β inr(M2), or M3 ∈ P⊥ whenever M

∗−→β 5σ+τ (M3). The first two kinds of

derivations have already been covered in the proof of lemma 6.7. Assume that M
∗−→β 5σ+τ (M3).

Since 5σ+τ (M3) is an I-term, by the assumption, we have 5σ+τ (M3) ∈ [[σ + τ]]. By definition
of [[σ + τ]], we have either M ′1 ∈ [[σ]] whenever 5σ+τ (M3)

∗−→β inl(M ′1), or M ′2 ∈ [[τ]] whenever

5σ+τ (M3)
∗−→β inr(M ′2), or M ′3 ∈ P⊥ whenever 5σ+τ (M3)

∗−→β 5σ+τ (M ′3). However, the first
two kinds of derivations are impossible. Thus, the third case applies, and we have M3 ∈ P⊥.

Definition 7.8 Properties (P4) and (P5) are defined as follows:

(P4)
(1) If M ∈ Pτ , then λx:σ. M ∈ Pσ→τ .
(2) If M ∈ Pσ and N ∈ Pτ , then 〈M,N〉 ∈ Pσ×τ .
(3) If M ∈ Pσ, then inl(M) ∈ Pσ+τ , and if M ∈ Pτ , then inr(M) ∈ Pσ+τ .
(4) If M ∈ P⊥, then 5σ(M) ∈ Pσ.

(P5)
(1) If N ∈ Pσ and M [N/x] ∈ Pτ , then (λx:σ. M)N ∈ Pτ .
(2) If M ∈ Pσ and N ∈ Pτ , then π1(〈M,N〉) ∈ Pσ and π2(〈M,N〉) ∈ Pτ .
(3) If P ∈ Pσ+τ , M ∈ Pδ, N ∈ Pδ, M [P1/x] ∈ Pδ whenever P

∗−→β inl(P1), N [P2/y] ∈ Pδ
whenever P

∗−→β inr(P2), and P1 ∈ P⊥ whenever P
∗−→β 5σ+τ (P1), then

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N ∈ Pδ.
(4) If M1 ∈ P⊥ and N ∈ Pσ, then 5σ→τ (M1)N ∈ Pτ . If M1 ∈ P⊥, then π1(5σ×τ (M1)) ∈ Pσ

and π2(5σ×τ (M1)) ∈ Pτ .

It is still the case that case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N ∈ Pδ is a stubborn term in
Pδ, if P ∈ Pσ+τ is stubborn, M ∈ Pδ, and N ∈ Pδ.

32

Lemma 7.9 If P is a family satisfying conditions (P1)-(P5) then the following properties hold:
(1) If for every N , (N ∈ [[σ]] implies M [N/x] ∈ [[τ]]), then λx:σ.M ∈ [[σ → τ]]; (2) If M ∈ [[σ]] and
N ∈ [[τ]], then 〈M,N〉 ∈ [[σ×τ]]; (3) If P ∈ [[σ+τ]], for every P1, (P1 ∈ [[σ]] implies M [P1/x] ∈ [[δ]]),
and for every P2, (P2 ∈ [[τ]] implies N [P2/y] ∈ [[δ]]), then case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒
N ∈ [[δ]]; (4) If M ∈ P⊥, then 5σ(M) ∈ [[σ]] for every type σ.

Proof . It is similar to the proof of lemma 6.9, except that we need to treat the case where
P

∗−→β 5σ+τ (P1) in (3), and we need to prove (4). By lemma 7.7, we know that the sets of the
form [[σ]] have the properties (R1)-(R3).

(1) This has already been proved in lemma 6.9.

(2) This has already been proved in lemma 6.9.

(3) Assume that the hypothesis of (3) holds. First, we prove that case P of inl(x:σ) ⇒
M | inr(y: τ) ⇒ N ∈ Pδ. The case where P is stubborn is handled as in lemma 6.9. We
need to consider the new case where P

∗−→β 5σ+τ (P ′). Since P ∈ [[σ + τ]], by (R2), we have
5σ+τ (P ′) ∈ [[σ+ τ]]. By definition of [[σ+ τ]], this implies that P ′ ∈ P⊥. Then, by the assumption,
we have M = M [x/x] ∈ [[δ]], and N = N [y/y] ∈ [[δ]], since by lemma 7.7, x ∈ [[σ]] and y ∈ [[τ]]. By
(R1), we have P ∈ Pσ+τ , M ∈ Pδ, N ∈ Pδ, and P ′ ∈ P⊥ whenever P

∗−→β 5σ+τ (P ′). Thus, by
(P5)(3), we have case P of inl(x:σ)⇒M | inr(y: τ)⇒ N ∈ Pδ.

If δ is a base type, then [[δ]] = Pδ, and case P of inl(x:σ)⇒M | inr(y: τ)⇒ N ∈ [[δ]].

If δ is not a base type, then case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N ∈ Pδ is a simple
term. We use (R3) to prove that case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N ∈ [[δ]]. The case
where case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N is stubborn is trivial. Otherwise, assume that

case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N
+−→β Q and Q is an I-term. Then, the reduction is

either of the form

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inl(P1) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1

−→β M1[P1/x]
∗−→β Q,

where P
∗−→β inl(P1), M

∗−→β M1, and N
∗−→β N1, or

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inr(P2) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1

−→β N1[P2/y]
∗−→β Q,

where P
∗−→β inr(P2), M

∗−→β M1, and N
∗−→β N1, or

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case 5σ+τ (P1) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1 −→β 5δ(P1)

∗−→β Q,

where P
∗−→β 5σ+τ (P1), M

∗−→β M1, and N
∗−→β N1. The first two cases have already been

treated in the proof of lemma 6.9.

In the third case, since P ∈ [[σ + τ]], by (R2), 5σ+τ (P1) ∈ [[σ + τ]]. This implies that P1 ∈ P⊥.
Then, by (4) (of this lemma), 5δ(P1) ∈ [[δ]]. By (R2), we get Q ∈ [[δ]]. Finally, by (R3), we have
case P of inl(x:σ)⇒M | inr(y: τ)⇒ N ∈ [[δ]].

33

(4) We prove it by induction on σ. When σ is a base type, since 5σ(M) ∈ Pσ by (P4)(4) and
since [[σ]] = Pσ, we have 5σ(M) ∈ [[σ]].

1. Arrow type σ → τ . We prove that 5σ→τ (M)N ∈ [[τ]] for every N ∈ [[σ]]. Since M ∈ P⊥
and by (R1) N ∈ Pσ, by (P5)(4), we have 5σ→τ (M)N ∈ Pτ . If τ is a base type, [[τ]] = Pτ and
5σ→τ (M)N ∈ [[τ]]. Otherwise, 5σ→τ (M)N ∈ Pτ is a simple term and we use (R3). The case

where 5σ→τ (M)N is stubborn is trivial. Otherwise, a reduction 5σ→τ (M)N
+−→β Q where Q is

an I-term must be of the form

5σ→τ (M)N
∗−→β 5σ→τ (M1)N1 −→β 5τ (M1)

∗−→β Q,

where M
∗−→β M1 and N

∗−→β N1. By the induction hypothesis, 5τ (M1) ∈ [[τ]], and by (R2), we
have Q ∈ [[τ]]. Thus, by (R3), we have 5σ→τ (M)N ∈ [[τ]].

2. Product type σ × τ . We prove that π1(5σ×τ (M)) ∈ [[σ]] and π2(5σ×τ (M)) ∈ [[τ]]. Since
M ∈ P⊥, by (P5)(4), we have π1(5σ×τ (M)) ∈ Pσ and π2(5σ×τ (M)) ∈ Pτ . If σ is a base type,
then [[σ]] = Pσ and π1(5σ×τ (M)) ∈ [[σ]]. Similarly, if τ is a base type, then [[τ]] = Pτ and
π2(5σ×τ (M)) ∈ [[τ]].

If σ is not a base type, then π1(5σ×τ (M)) ∈ Pσ is a simple term and we use (R3). The case

where π1(5σ×τ (M)) is stubborn is trivial. Otherwise, a reduction π1(5σ×τ (M))
+−→β Q where Q

is an I-term must be of the form

π1(5σ×τ (M))
∗−→β π1(5σ×τ (M1)) −→β 5σ(M1)

∗−→β Q,

where M
∗−→β M1. Since by the induction hypothesis, 5σ(M1) ∈ [[σ]], by (R2), we have Q ∈ [[σ]].

By (R3), we have π1(5σ×τ (M)) ∈ [[σ]]. A similar argument applies to π2(5σ×τ (M)).

3. Sum type σ + τ . By (P4)(4), since M ∈ P⊥, we have 5σ+τ (M) ∈ Pσ+τ . The case where
5σ+τ (M) is stubborn is trivial. Otherwise, by the definition of the third component in the union
constituting [[σ + τ]], since M ∈ P⊥, we have 5σ+τ (M) ∈ [[σ + τ]].

Lemma 7.10 If P is a family satisfying conditions (P1)-(P5), then for every term M of type σ,
for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every y: γ ∈ FV (M), we have M [ϕ] ∈ [[σ]].

Proof . We proceed by induction on the structure of M . If M = M1N1, M = π1(M1), M =
π2(M1), M = 〈M1, N1〉, M = λx:σ. M1, or M = case P of inl(x:σ)⇒ M1 | inr(y: τ)⇒ N1, the
proof remains the same and uses lemma 7.9.

If M = inl(M1) where M has type σ + τ , then by the induction hypothesis, M1[ϕ] ∈ [[σ]].
By (P4)(3), we have inl(M1[ϕ]) ∈ Pσ+τ . We need to show that either N1 ∈ [[σ]] whenever
inl(M1[ϕ])

∗−→β inl(N1), or N2 ∈ [[τ]] whenever inl(M1[ϕ])
∗−→β inr(N2), or N3 ∈ P⊥ whenever

inl(M1[ϕ])
∗−→β 5σ+τ (N3). The second and third derivations are impossible, and in the first

case, we must have M1[ϕ]
∗−→β N1. Since M1[ϕ] ∈ [[σ]], by (R2), we have N1 ∈ [[σ]]. The case where

M = inr(M1) is similar.

If M = 5σ(M1), then by the induction hypothesis, M1[ϕ] ∈ [[⊥]] = P⊥. By lemma 7.9 (4), we
get 5σ(M1)[ϕ] ∈ [[σ]].

34

Theorem 7.11 If P is a family of λ-terms satisfying conditions (P1)-(P5), then Pσ = Λσ for
every type σ (in other words, every term satisfies the unary predicate defined by P).

Proof . Apply lemma 7.10 to every term M of type σ and to the identity substitution, which is
legitimate since x ∈ [[σ]] for every variable of type σ (by lemma 7.7).

8 Adding First-Order Quantifiers ∀ and ∃
The type-checking rules of the system are summarized in the following definition.

Definition 8.1 The terms of the typed λ-calculus λ→,×,+,∀,∃,⊥ are defined by the following rules.

x:σ, when x ∈ Xσ,

(we can also have c:σ, for a set of constants that have been preassigned types).

. M :⊥
. 5σ (M):σ

(⊥-elim)

with σ 6=⊥,
x:σ .M : τ

. (λx:σ. M):σ → τ
(abstraction)

. M :σ → τ . N :σ

. (MN): τ
(application)

. M :σ . N : τ

. 〈M,N〉:σ × τ
(pairing)

. M :σ × τ

. π1(M):σ
(projection)

. M :σ × τ

. π2(M): τ
(projection)

. M :σ

. inl(M):σ + τ
(injection)

. M : τ

. inr(M):σ + τ
(injection)

. P :σ + τ x:σ .M : δ y: τ . N : δ

. (case P of inl(x:σ)⇒M | inr(y: τ)⇒ N): δ
(by-cases)

. M :σ[u/t]

. (λu: ι. M):∀t. σ
(∀-intro)

where u does not occur free in the type of any term variable free in M , or in ∀t. σ;

. M : ∀t. σ
. Mτ :σ[τ/t]

(∀-elim)

. M :σ[τ/t]

. inx(τ,M):∃t. σ
(∃-intro)

. M : ∃t. σ x:σ[u/t] . N : δ

. (casexM of inx(u: ι, x:σ[u/t])⇒ N): δ
(∃-elim)

where u does not occur free in the type of any term variable free in M , or in ∃t. σ, or in δ.

35

We also recall the reduction rules.

Definition 8.2 The reduction rules of the system λ→,×,+,∀,∃,⊥ are listed below:

(λx:σ. M)N −→M [N/x],

π1(〈M,N〉) −→M,

π2(〈M,N〉) −→ N,

case inl(P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→M [P/x],

case inr(P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→ N [P/y],

5σ→τ (M)N −→ 5τ (M),

π1(5σ×τ (M)) −→ 5σ(M),

π2(5σ×τ (M)) −→ 5τ (M),

(λt: ι. M)τ −→M [τ/t],

5∀t. σ(M)τ −→ 5σ[τ/t](M),

case 5σ+τ (P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→ 5δ(P),

casex inx(τ, P) of inx(t: ι, x:σ)⇒ N −→ N [τ/t, P/x],

casex 5∃t. σ (P) of inx(t: ι, x:σ)⇒M −→ 5δ(P).

The reduction relation defined by the rules of definition 8.2 is still denoted as −→β (even though
there are reductions other that β-reduction). For notational convenience, we assume that there is a
single sort ι and that all type variables (which are first-order) are of this sort. The generalization to
the many-sorted case is straightforward, but would require writing ∀t: s. σ and ∃t: s. σ. We simply
write ∀t. σ and ∃t. σ.

The definition of an I-term is extended as follows.

Definition 8.3 An I-term is a term of the form either λx:σ.M , 〈M,N〉, inl(M), inr(M),5σ(M),
λt: ι. M , or inx(τ,M). A simple term (or neutral term) is a term that is not an I-term. Thus, a
simple term is either a variable x, a constant c, an application MN , a projection π1(M) or π2(M),
a conditional term case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N , a type application Mτ , or a term
casex P of inx(t: ι, x:σ)⇒ N . A term M is stubborn iff it is simple and, either M is irreducible,

or M ′ is a simple term whenever M
+−→β M

′ (equivalently, M ′ is not an I-term).

Actually, the universal type ∀t. σ behaves much like the arrow type σ → τ , and the existential
type ∃x.σ behaves much like the sum type σ+ τ . This will be reflected in the conditions (P1)-(P5)
and in the definition of [[∀t. σ]] and [[∃t. σ]]. Furthermore, the proofs are also practically identical,
and since we have already given complete proofs, we will only give brief sketches. Recall that T
denotes the set of all types.

Definition 8.4 Properties (P1)-(P3) are defined as follows:

(P1) x ∈ Pσ, c ∈ Pσ, for every variable x and constant c of type σ.

(P2) If M ∈ Pσ and M −→β N , then N ∈ Pσ.

(P3) If M is simple, then:

36

(1) If M ∈ Pσ→τ , N ∈ Pσ, (λx:σ.M ′)N ∈ Pτ whenever M
+−→β λx:σ.M ′, and 5σ→τ (M ′)N ∈

Pτ whenever M
+−→β 5σ→τ (M ′), then MN ∈ Pτ .

(2) If M ∈ Pσ×τ , π1(〈M ′, N ′〉) ∈ Pσ and π2(〈M ′, N ′〉) ∈ Pτ whenever M
+−→β 〈M ′, N ′〉, and

π1(5σ×τ (M ′)) ∈ Pσ and π2(5σ×τ (M ′)) ∈ Pτ whenever M
+−→β 5σ×τ (M ′), then π1(M) ∈

Pσ and π2(M) ∈ Pτ .

(3) If M ∈ P∀t. σ, τ ∈ T , (λt: ι. M ′)τ ∈ Pσ[τ/t] whenever M
+−→β λt: ι. M

′, and 5∀t. σ(M ′)τ ∈
Pσ[τ/t] whenever M

+−→β 5∀t. σ (M ′), then Mτ ∈ Pσ[τ/t].

The remarks on stubborn terms made after definition 7.4 also apply here. Furthermore, if
M ∈ P∀t. σ is stubborn, then Mτ is a stubborn term in Pσ[τ/t]. Definition 7.5 remains the same,
except that terms of the form λt: ι. M or inx(τ,M) are also I-terms.

Definition 8.5 A nonempty set C of terms of type σ is a P-candidate iff it satisfies the following
conditions:

(R1) C ⊆ Pσ.

(R2) If M ∈ C and M −→β N , then N ∈ C.

(R3) If M is simple, M ∈ Pσ, and M ′ ∈ C whenever M
+−→β M

′ and M ′ is an I-term, then
M ∈ C.

Definition 8.6 The sets [[σ]] are defined as follows:

[[σ]] = Pσ, σ a base type,

[[σ → τ]] = {M | M ∈ Pσ→τ , and for all N , if N ∈ [[σ]] then MN ∈ [[τ]]},
[[σ × τ]] = {M | M ∈ Pσ×τ , π1(M) ∈ [[σ]], and π2(M) ∈ [[τ]]},
[[σ + τ]] = {M | M ∈ Pσ+τ , M ′ ∈ [[σ]] whenever M

∗−→β inl(M ′)} ∪
{M | M ∈ Pσ+τ , M ′′ ∈ [[τ]] whenever M

∗−→β inr(M ′′)} ∪
{M | M ∈ Pσ+τ , M1 ∈ P⊥ whenever M

∗−→β 5σ+τ (M1)},
[[∀t. σ]] = {M | M ∈ P∀t. σ, and ∀τ ∈ T , Mτ ∈ [[σ[τ/t]]]},
[[∃t. σ]] = {M | M ∈ P∃t. σ, and ∃τ ∈ T , M ′ ∈ [[σ[τ/t]]] whenever M

∗−→β inx(τ,M ′)} ∪
{M | M ∈ P∃t. σ, M1 ∈ P⊥ whenever M

∗−→β 5∃t. σ (M1)}.

We now prove a generalization of lemma 7.7.

Lemma 8.7 If P is a family satisfying conditions (P1)-(P3), then each [[σ]] is a P-candidate
that contains all stubborn terms in Pσ.

Proof . The types ∀t. σ and ∃t. σ need to be handled. However, as we already remarked earlier,
the proof for the type ∀t. σ is almost exactly identical to the proof for the type σ → τ , and the
proof for the type ∃t. σ is almost exactly identical to the proof for the type σ + τ (see the proof of
lemma 5.6 and lemma 7.7). We trust that the reader can fill in the details.

37

Definition 8.8 Properties (P4) and (P5) are defined as follows:

(P4)
(1) If M ∈ Pτ , then λx:σ. M ∈ Pσ→τ .
(2) If M ∈ Pσ and N ∈ Pτ , then 〈M,N〉 ∈ Pσ×τ .
(3) If M ∈ Pσ, then inl(M) ∈ Pσ+τ , and if M ∈ Pτ , then inr(M) ∈ Pσ+τ .
(4) If M ∈ P⊥, then 5σ(M) ∈ Pσ.
(5) If M ∈ Pσ, then λt: ι. M ∈ P∀t. σ.
(6) If M ∈ Pσ[τ/t], then inx(τ,M) ∈ P∃t. σ.

(P5)
(1) If N ∈ Pσ and M [N/x] ∈ Pτ , then (λx:σ. M)N ∈ Pτ .
(2) If M ∈ Pσ and N ∈ Pτ , then π1(〈M,N〉) ∈ Pσ and π2(〈M,N〉) ∈ Pτ .
(3) If P ∈ Pσ+τ , M ∈ Pδ, N ∈ Pδ, M [P1/x] ∈ Pδ whenever P

∗−→β inl(P1), N [P2/y] ∈ Pδ
whenever P

∗−→β inr(P2), and P1 ∈ P⊥ whenever P
∗−→β 5σ+τ (P1), then

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N ∈ Pδ.
(4) If M1 ∈ P⊥ and N ∈ Pσ, then 5σ→τ (M1)N ∈ Pτ . If M1 ∈ P⊥, then π1(5σ×τ (M1)) ∈ Pσ

and π2(5σ×τ (M1)) ∈ Pτ . If M1 ∈ P⊥ and τ ∈ T , then 5∀t. σ(M1)τ ∈ Pσ[τ/t].
(5) If τ ∈ T and M [τ/t] ∈ Pσ[τ/t], then (λt: ι. M)τ ∈ Pσ[τ/t].
(6) If P ∈ P∃t. σ, N ∈ Pδ, N [P1/x, τ/t] ∈ Pδ whenever P

∗−→β inx(τ, P1), and P1 ∈ P⊥ whenever

P
∗−→β 5∃t. σ (P1), then casex P of inx(t: ι, x:σ)⇒ N ∈ Pδ.

The remark on stubborn terms made after definition 7.8 also applies here. Furthermore, if
P ∈ P∃t. σ is stubborn and N ∈ Pδ, then casex P of inx(t: ι, x:σ)⇒ N is a stubborn term in Pδ.

Lemma 8.9 If P is a family satisfying conditions (P1)-(P5) then the following properties hold:
(1) If for every N , (N ∈ [[σ]] implies M [N/x] ∈ [[τ]]), then λx:σ.M ∈ [[σ → τ]]; (2) If M ∈ [[σ]] and
N ∈ [[τ]], then 〈M,N〉 ∈ [[σ×τ]]; (3) If P ∈ [[σ+τ]], for every P1, (P1 ∈ [[σ]] implies M [P1/x] ∈ [[δ]]),
and for every P2, (P2 ∈ [[τ]] implies N [P2/y] ∈ [[δ]]), then case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒
N ∈ [[δ]]; (4) If M ∈ P⊥, then 5σ(M) ∈ [[σ]] for every type σ. (5) If for every τ , (τ ∈ T implies
M [τ/t] ∈ [[σ[τ/t]]]), then λt: ι. M ∈ [[∀t. σ]]; (6) If P ∈ [[∃t. σ]], and for every P1, for every τ ∈ T ,
(P1 ∈ [[σ[τ/t]]] implies N [P1/x, τ/t] ∈ [[δ]]), then casex P of inx(t: ι, x:σ)⇒ N ∈ [[δ]].

Proof . It is similar to the proof of lemma 7.9, but we need to cover (5) and (6). Actually, the
proof of (5) is almost exactly identical to the proof of (1), and the proof of (6) is almost exactly
identical to the proof of (3) (see the proof of lemma 7.9). We trust that the reader can fill in the
details.

For the next lemma, we need to consider substitutions ϕ whose domain is the union of a finite set
of term variables and a finite set of type variables. Such substitutions assign types to type variables
and terms to term variables. We let FV (M) denote the set of free type and term variables in the
term M .

Lemma 8.10 If P is a family satisfying conditions (P1)-(P5), then for every term M of type
σ, for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every term variable y: γ ∈ FV (M), we have
M [ϕ] ∈ [[σ[ϕ]]].

38

Proof . A minor difference with the proof of lemma 7.10 is that the substitution ϕ is applied
to the type σ in [[σ[ϕ]]] (actually, the type-substitution part of ϕ is applied to σ). The proof that
(λt: ι. M)[ϕ] ∈ [[(∀t. σ)[ϕ]]] is very similar to the proof that (λx:σ. M)[ϕ] ∈ [[(σ → τ)[ϕ]]], and
the proof that (Mτ)[ϕ] ∈ [[σ[τ/t][ϕ]]] is very similar to the proof that (MN)[ϕ] ∈ [[τ [ϕ]]]. The
only (minor) difference is that we consider substitutions ϕ[t: = τ] (instead of ϕ[x: = N]). The
proof that inx(τ,M)[ϕ] ∈ [[(∃t. σ)[ϕ]]] is very similar to the proof that inl(M)[ϕ] ∈ [[(σ + τ)[ϕ]]]
and inr(M)[ϕ] ∈ [[(σ + τ)[ϕ]]]. The proof that (casex P of inx(t: ι, x:σ) ⇒ N)[ϕ] ∈ [[δ[ϕ]]] is
very similar to the proof that (case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N)[ϕ] ∈ [[δ[ϕ]]]. The only
(minor) difference is that we consider substitutions ϕ[t: = τ, x: = P1] (instead of ϕ[x: = P1, y: = P2]).
We trust that the reader can fill in the details.

Theorem 8.11 If P is a family of λ-terms satisfying conditions (P1)-(P5), then Pσ = Λσ for
every type σ (in other words, every term satisfies the unary predicate defined by P).

Proof . Apply lemma 8.10 to every term M of type σ and to the identity substitution, which is
legitimate since x ∈ [[σ]] for every variable of type σ (by lemma 8.7).

As a consequence of theorem 8.11, we can prove that reduction in the system λ→,×,+,∀,∃,⊥ is
strongly normalizing (SN) and confluent. These are nontrivial results.

Theorem 8.12 The reduction relation
∗−→β of the system λ→,×,+,∀,∃,⊥ is strongly normalizing.

Proof . Let P be the family defined such that Pσ = SNσ is the set of strongly normalizing
terms of type σ. By theorem 8.11, we just have to check that P satisfies the 17 conditions of
(P1)-(P5)! Actually, this is quite easy, as we shall see. First, we make the following observation
that will simplify the proof. Since there is only a finite number of redexes in any term, for any
term M , the reduction tree5 for M is finitely branching. Thus, if M is any strongly normalizing
term (abbreviated as SN term from now on), every path in its reduction tree is finite, and since
this tree is finite branching, by König’s lemma, this reduction tree is finite. Thus, for any SN term
M , the depth6 of its reduction tree is a natural number, and we will denote it as d(M). We now
check the conditions (P1)-(P5). (P1) and (P2) are obvious.

(P3)(1) Since M ∈ SNσ→τ and N ∈ SNσ, d(M) and d(N) are finite. We prove by induction on
d(M) + d(N) that MN is SN. We consider all possible ways that MN −→β P . Since M is simple,
MN itself is not a redex, and so P = M1N1 where either N = N1 and M −→β M1, or M = M1

and N −→β N1.

If M1 is simple or M1 = M , d(M1) + d(N1) < d(M) + d(N), and by the induction hypothesis,
P = M1N1 is SN. Otherwise, there are two cases. If M1 = λx:σ. M ′, N1 = N , by assumption
(λx:σ. M ′)N is SN, and so P is SN. If M1 = 5σ→τ (M ′), N1 = N , by assumption, 5σ→τ (M ′)N is
SN, and so is P . Thus, P = M1N1 is SN in all cases, and MN is SN.

(P3)(2) Since M ∈ Pσ×τ is SN, d(M) is finite. We prove by induction on d(M) that π1(M) is
SN (and that π2(M) is SN). Since M is simple, π1(M) itself is not a redex, and if π1(M) −→β P ,
then P = π1(M1) and M −→β M1. If M1 is simple, then d(M1) < d(M), and by the induction

5the tree of reduction sequences from M
6the length of a longest path in the tree, counting the number of edges

39

hypothesis, π1(M1) is SN. Otherwise, there are two cases. If M1 = 〈M ′, N ′〉, by assumption,
P = π1(〈M ′, N ′〉) is SN. If M1 = 5σ×τ (M ′), by assumption, P = π1(5σ×τ (〈M ′, N ′〉)) is SN. Then,
in all cases, P is SN, and so π1(M) is SN. A similar argument applies to π2(M).

(P3)(3) This case is quite similar to (P3)(1). Since M ∈ SNσ→τ , d(M) is finite. We prove
by induction on d(M) that Mτ is SN. We consider all possible ways that Mτ −→β P . Since
M is simple, Mτ itself is not a redex, and so P = M1τ where M −→β M1. If M1 is simple,
d(M1) < d(M), and by the induction hypothesis, P ′ = M1τ is SN. Otherwise, there are two cases.
If M1 = λt: ι. M ′, by assumption, P = (λt: ι. M ′)τ is SN. If M1 = 5∀t. σ(M ′), by assumption,
P = 5∀t. σ(M ′)τ is SN. But then, P = M1τ is SN in all cases, and so Mτ is SN.

(P4) These cases are all similar, and hold because a reduction cannot apply at the outermost
level.

(P4)(1) Any reduction from λx:σ. M must be of the form λx:σ. M
+−→β λx:σ. M ′ where

M
+−→β M

′. We use a simple induction on d(M).

(P4)(2) Any reduction from 〈M,N〉 is of the form 〈M,N〉 ∗−→β 〈M ′, N ′〉 where M
∗−→β M

′

and N
∗−→β N

′. We use a simple induction on d(M) + d(N).

(P4)(3) Any reduction from inl(M) is of the form inl(M)
+−→β inl(M ′) where M

+−→β M
′.

We use a simple induction on d(M). The case of inr(M) is similar.

(P4)(4) Similar to (P4)(3).

(P4)(5) Similar to (P4)(1).

(P4)(6) Similar to (P4)(3).

(P5) The proof of these cases is rather similar to the proof used in (P3).

(P5)(1) Since N ∈ SNσ and M [N/x] ∈ SNτ , the term M itself is SN. Thus, d(M) and d(N)
are finite. We prove by induction on d(M) +d(N) that (λx:σ.M)N is SN. We consider all possible
ways that (λx:σ.M)N −→β P . Either P = (λx:σ.M1)N where M −→β M1, or P = (λx:σ.M)N1

where N −→β N1, or P = M [N/x]. In the first two cases, d(M1) + d(N) < d(M) + d(N),
d(M) + d(N1) < d(M) + d(N), and by the induction hypothesis, P is SN. In the third case, by
assumption M [N/x] is SN. But then, P is SN in all cases, and so (λx:σ. M)N is SN.

(P5)(2) Since M ∈ SNσ and N ∈ SNσ, then d(M) and d(N) are finite. We prove by induction
on d(M) + d(N) that π1(〈M,N〉) ∈ SNσ and π2(〈M,N〉) ∈ SNτ . If π1(〈M,N〉) −→β P , then
either P = π1(〈M1, N〉) and M −→β M1, or P = π1(〈M,N1〉) and N −→β N1, or P = M .

In the first two cases, d(M1) + d(N) < d(M) + d(N), d(M) + d(N1) < d(M) + d(N), and by
the induction hypothesis, P is SN. In the third case, by assumption M is SN. But then, P is SN in
all cases, and so π1(〈M,N〉) is SN. A similar argument applies to π2(〈M,N〉).

(P5)(3) Since P ∈ SNσ+τ , M ∈ SNδ, and N ∈ SNδ, d(P), d(M), and d(N) are finite. We
prove by induction on d(P) + d(M) + d(N) that case P of inl(x:σ)⇒M | inr(y: τ)⇒ N is SN.
If case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N −→β Q, then either Q = case P1 of inl(x:σ) ⇒
M | inr(y: τ) ⇒ N and P −→β P1, or Q = case P of inl(x:σ) ⇒ M1 | inr(y: τ) ⇒ N and
M −→β M1, or Q = case P of inl(x:σ)⇒ M | inr(y: τ)⇒ N1 and N −→β N1, or P = inl(P1)
and Q = M [P1/x], or P = inr(P2) and Q = N [P2/y], or P = 5σ+τ (P1) and Q = 5δ(P1).

40

In the first three cases, d(P1) + d(M) + d(N) < d(P) + d(M) + d(N), d(P) + d(M1) + d(N) <
d(P) + d(M) + d(N), and d(P) + d(M) + d(N1) < d(P) + d(M) + d(N), and by the induction
hypothesis, Q is SN. In the fourth case, by the assumption M [P1/x] = Q is SN. In the fifth case, by
the assumption N [P2/y] = Q is SN. In the sixth case, by the assumption, P1 is SN, which implies
that Q = 5δ(P1) is SN. In all cases, Q is SN, and thus case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
is SN.

(P5)(4) Since M1 ∈ SN⊥ and N ∈ SNσ, d(M1) and d(N) are finite. We prove by induction
on d(M1) + d(N) that 5σ→τ (M1)N is SN. If 5σ→τ (M1)N −→β P , then either M1 −→β M2,
or N −→β N1, or P = 5τ (M1). In the first two cases, since d(M2) + d(N) < d(M1) + d(N)
and d(M1) + d(N1) < d(M1) + d(N), we conclude by applying the induction hypothesis. When
P = 5τ (M1), since M1 is SN and reductions cannot apply at the outermost level, P must be SN
too. Thus, P is SN in all cases, and 5σ→τ (M1)N is SN.

If M1 is SN, then d(M1) is finite. We prove by induction on d(M1) that π1(5σ×τ (M1)) and
π2(5σ×τ (M1)) are SN. If π1(5σ×τ (M1)) −→β P , then either M1 −→β M2, or P = 5σ(M1). In
the first case, d(M2) < d(M1) and we apply the induction hypothesis. When P = 5σ(M1), since
M1 is SN, so is P = 5σ(M1). Thus, P is SN in all cases, and π1(5σ×τ (M1)) is SN. A similar proof
applies to π2(5σ×τ (M1)).

If M1 ∈ SN⊥ then d(M1) is finite. We prove by induction on d(M1) that 5∀t. σ(M1)τ is
SN. If 5∀t. σ(M1)τ −→β P , then either M1 −→β M2, or P = 5σ[τ/t](M1). In the first case,
d(M2) < d(M1) and we apply the induction hypothesis. When P = 5σ[τ/t](M1), since M1 is SN,
so is P = 5σ[τ/t](M1). Thus, P is SN in all cases, and so is 5∀t. σ(M1)τ .

(P5)(5) This case is quite similar to (P5)(1). Since M [τ/t] ∈ SNσ[τ/t], the term M itself is
SN. Thus, d(M) is finite. We prove by induction on d(M) that (λt: ι. M)τ is SN. We consider all
possible ways that (λt: ι. M)τ −→β P . Either P = (λt: ι. M1)τ where M −→β M1, or P = M [τ/t].
In the first case, d(M1) < d(M), and by the induction hypothesis, P is SN. In the second case, by
assumption M [τ/t] is SN. But then, P is SN in all cases, and so (λt: ι. M)τ is SN.

(P5)(6) This case is quite similar to (P5)(3). Since P ∈ SN∃t. σ and N ∈ SNδ, d(P) and d(N)
are finite. We prove by induction on d(P) + d(N) that casex P of inx(t: ι, x:σ) ⇒ N is SN. If
casex P of inx(t: ι, x:σ) ⇒ N −→β Q, then either Q = casex P1 of inx(t: ι, x:σ) ⇒ N and
P −→β P1, or Q = casex P of inx(t: ι, x:σ) ⇒ N1 and N −→β N1, or P = inx(τ, P1) and
Q = N [P1/x, τ/t], or P = 5∃t. σ(P1) and Q = 5δ(P1).

In the first two cases, d(P1) + d(N) < d(P) + d(N) and d(P) + d(N1) < d(P) + d(N), and by
the induction hypothesis, Q is SN. In the third case, by the assumption N [P1/x, τ/t] = Q is SN.
In the fourth case, by the assumption, P1 is SN, which implies that Q = 5δ(P1) is SN. In all cases,
Q is SN, and thus casex P of inx(t: ι, x:σ)⇒ N is SN.

This concludes all 17 cases, and the proof!

Theorem 8.13 The reduction relation
∗−→β of the system λ→,×,+,∀,∃,⊥ is confluent.

Proof . Let P be the family defined such that Pσ is the set of terms of type σ from which
confluence holds, i.e., terms M such that if M

∗−→β M1 and M
∗−→β M2, then there is some M3

such that M1
∗−→β M3 and M2

∗−→β M3. By theorem 8.11, we just have to check that P satisfies
the 17 conditions of (P1)-(P5)! Conditions (P1) and (P2) are trivial.

41

(P3)(1) A reduction MN
∗−→β Q either has the property that Q = M1N1, M

∗−→β M1 and

N
∗−→β N1, in which case we say that M and N have independent reductions, or that

MN
+−→β (λx:σ. M1)N

∗−→β (λx:σ. M1)N1 −→β M1[N1/x]
∗−→β Q,

or
MN

+−→β 5σ→τ (M1)N
∗−→β 5σ→τ (M1)N1 −→β 5τ (M1)

∗−→β Q,

in which case we say that there is a top level redex. By assumption, confluence holds from M and N .

This implies that we cannot have “mixed” reductions M
+−→β 5σ→τ (M1) and M

+−→β λx:σ.M2.
There are seven subcases.

(1) Two reductions in which M and N have independent reductions: MN
∗−→β M1N1 and

MN
∗−→β M2N2.

Since confluence holds fromM andN , there areM3 andN3 such thatM1
∗−→β M3, M2

∗−→β M3,

N1
∗−→β N3, and N2

∗−→β N3. Then M3N3 is such that M1N1
∗−→β M3N3 and M2N2

∗−→β M3N3.

(2) Two reductions, each with a top level redex:

MN
+−→β (λx:σ. M1)N

∗−→β (λx:σ. M1)N1 −→β M1[N1/x]
∗−→β Q1

and
MN

+−→β (λx:σ. M2)N
∗−→β (λx:σ. M2)N2 −→β M2[N2/x]

∗−→β Q2.

Since confluence holds from M , there is an M3 such that λx:σ.M1
∗−→β M3, and λx:σ.M2

∗−→β M3.
Then,

(λx:σ. M1)N
∗−→β P and (λx:σ. M2)N

∗−→β P,

with P = M3N . Thus, we have reductions

(λx:σ. M1)N
∗−→β Q1 and (λx:σ. M1)N

∗−→β P.

By assumption, confluence holds from (λx:σ. M1)N , and there is some Q3 such that Q1
∗−→β Q3

and P
∗−→β Q3. Now, we also have reductions

(λx:σ. M2)N
∗−→β Q2 and (λx:σ. M2)N

∗−→β P
∗−→β Q3.

By assumption, confluence holds from (λx:σ.M2)N , and there is some Q4 such that Q2
∗−→β Q4 and

Q3
∗−→β Q4. Putting the reductions Q1

∗−→β Q3 and Q3
∗−→β Q4 together, and have a reduction

Q1
∗−→β Q4, and we see that there is conluence in Q4 since Q1

∗−→β Q4 and Q2
∗−→β Q4.

The above reductions are indicated in the following diagram.

42

MN

↙ ↘

(λx:σ. M1)N (λx:σ. M2)Ny ↘ ↙ ↘y P (λx:σ. M2)N2

(λx:σ. M1)N1

y yy y yy y y
Q1

y y
↘

y y
Q3 Q2

↘ ↙

Q4

(3) Two reductions, one with a top level redex, the other with independence:

MN
+−→β (λx:σ. M1)N

∗−→β (λx:σ. M1)N1 −→β M1[N1/x]
∗−→β Q1

and
MN

∗−→β M2N2 = Q2.

As in case (2), using confluence from M and N , we get a P such that

(λx:σ. M1)N
∗−→β P and Q2 = M2N2

∗−→β P.

Since by assumption, confluence holds from (λx:σ.M1)N , there is a Q3 such that Q1
∗−→β Q3 and

P
∗−→β Q3, which yields confluence.

The above reductions are indicated in the following diagram.

43

MN

↙ ↘

(λx:σ. M1)N Q2 = M2N2y ↘ ↙y P

(λx:σ. M1)N1

yy yy y
Q1

y
↘

y
Q3

(4) Symmetric to case (3).

(5)

MN
+−→β 5σ→τ (M1)N

∗−→β 5σ→τ (M1)N1 −→β 5τ (M1)
∗−→β Q1,

and
MN

+−→β 5σ→τ (M2)N
∗−→β 5σ→τ (M2)N2 −→β 5τ (M2)

∗−→β Q2.

Since confluence holds from M , there is some M3 such that

5σ→τ (M1)
∗−→β M3 and 5σ→τ (M2)

∗−→β M3.

Then, letting P = M3N , we have

5σ→τ (M1)N
∗−→β P and 5σ→τ (M2)N

∗−→β P.

Since we also have 5σ→τ (M1)N
∗−→β Q1, and by assumption, confluence holds from 5σ→τ (M1)N ,

there is some Q3 such that Q1
∗−→β Q3 and P

∗−→β Q3. But now,

5σ→τ (M2)N
∗−→β P

∗−→β Q3 and 5σ→τ (M2)N
∗−→β Q2.

Since by assumption, confluence holds from 5σ→τ (M2)N , there is some Q4 such that Q2
∗−→β Q4

and Q3
∗−→β Q4, and we have confluence in Q4.

The above reductions are indicated in the following diagram.

44

MN

↙ ↘

5σ→τ (M1)N 5σ→τ (M2)Ny ↘ ↙ ↘y P 5σ→τ (M2)N2

5σ→τ (M1)N1

y yy y yy y y
Q1

y y
↘

y y
Q3 Q2

↘ ↙

Q4

(6)

MN
+−→β 5σ→τ (M1)N

∗−→β 5σ→τ (M1)N1 −→β 5τ (M1)
∗−→β Q1,

and
MN

∗−→β M2N2 = Q2.

Since confluence holds from M , there is some M3 such that

5σ→τ (M1)
∗−→β M3 and M2

∗−→β M3.

Then, letting P = M3N , we have

5σ→τ (M1)N
∗−→β P and Q2 = M2N2

∗−→β P.

Since by assumption, confluence holds from 5σ→τ (M1)N , there is some Q3 such that Q1
∗−→β Q3

and P
∗−→β Q3.

The above reductions are indicated in the following diagram.

45

MN

↙ ↘

5σ→τ (M1)N Q2 = M2N2y ↘ ↙y P

5σ→τ (M1)N1

yy yy y
Q1

y
↘

y
Q3

(7) Symmetric to case (6).

By now, a pattern of proof should have emerged. There are four possibilities. Let M be some
compound simple term.

(1) M
∗−→β Q1 and M

∗−→β Q2 contain no top level reductions. In this case, the reductions
from the maximal subterms forming M are independent, and we easily obtain confluence using the
induction hypothesis.

(2) M
∗−→β Q1 and M

∗−→β Q2 both contain a top level reduction. In this case, we must have

M
+−→β R1

∗−→β R
′
1 −→β S1

∗−→β Q1,

and
M

+−→β R2
∗−→β R

′
2 −→β S2

∗−→β Q2,

where R1 and R2 are the first occurrences of top level redexes, R′1 and R′2 the top level redexes
that are actually reduced, and S1 and S2 the results of these top level reductions.

In this case, the reductions M
+−→β R1 and M

+−→β R2 are as in case 1, and by the induction
hypothesis, we can find a P such that

R1
∗−→β P and R2

∗−→β P.

But then, because R1 is a top level redex, by the assumption, confluence holds from R1, and we
get some Q3 such that

Q1
∗−→β Q3 and P

∗−→β Q3.

Then, R2
∗−→β Q2 and R2

∗−→β P
∗−→β Q3. Again, because R2 is a top level redex, by the

assumption, confluence holds from R2, and we get some Q4 such that

Q2
∗−→β Q4 and Q3

∗−→β Q4.

46

We have confluence in Q4.

The above reductions are indicated in the following diagram.

MN

↙ ↘

R1 R2y ↘ ↙ ↘y P R′2

R′1

y yy y yy y y
Q1

y y
↘

y y
Q3 Q2

↘ ↙

Q4

(3) M
∗−→β Q1 and M

∗−→β Q2, where the first reduction has a top level reduction but the
second one does not. In this case, we must have

M
+−→β R1

∗−→β R
′
1 −→β S1

∗−→β Q1,

and
M

∗−→β Q2,

where R1 is the first occurrence of a top level redex, R′1 is the top level redex that is actually
reduced, and S1 the result of this top level reduction.

In this case, the reductions M
+−→β R1 and M

∗−→β Q2 are as in case 1, and by the induction
hypothesis, we can find a P such that

R1
∗−→β P and Q2

∗−→β P.

But then, because R1 is a top level redex, by the assumption, confluence holds from R1, and we
get some Q3 such that

Q1
∗−→β Q3 and P

∗−→β Q3.

We have confluence in Q3.

The above reductions are indicated in the following diagram.

47

MN

↙ ↘

R1 Q2y ↘ ↙y P

R′1

yy yy y
Q1

y
↘

y
Q3

(4) M
∗−→β Q1 and M

∗−→β Q2, where the first reduction does not have a top level reduction
but the second one does. This case is the symmetric of (3).

The reader will easily verify that the above pattern applies to (P3)(2) and (P3)(3).

(P4) These cases are all similar, and hold because a reduction cannot apply at the top level.
For example, asuming that confluence holds from M , note that we have λx:σ. M

∗−→β λx:σ. M ′

iff M
∗−→β M

′, and thus confluence holds from λx:σ. M .

(P5) There is a similar pattern for (P5)(1), (P5)(2), (P5)(4), and (P5)(5). There are four
possibilities.

(1) M
∗−→β Q1 and M

∗−→β Q2 contain no top level reduction. In this case, Q1 and Q2

are top level redexes, and we can extend the above reductions by actually reducing Q1 and Q2:
M

∗−→β Q1 −→β S1 and M
∗−→β Q2 −→β S2.

(2) M
∗−→β Q1 and M

∗−→β Q2 both contain a top level reduction. In this case, we must have

M
∗−→β R1 −→β S1

∗−→β Q1,

and
M

∗−→β R2 −→β S2
∗−→β Q2,

where R1 and R2 are the first occurrences of top level reductions and S1 and S2 the results of these
top level reductions.

(3) M
∗−→β Q1 and M

∗−→β Q2 where the first reduction has a top level reduction but the
second one does not. In this case, we must have

M
∗−→β R1 −→β S1

∗−→β Q1,

and
M

∗−→β Q2,

48

where R1 is the first occurrence of a top level reduction, and S1 the result of this top level reduction.
We can extend the second reduction by actually reducing the top level redex Q2: M

∗−→β Q2 −→β

S2.

(4) M
∗−→β Q1 and M

∗−→β Q2, where the first reduction does not have a top level reduction
but the second one does. This case is the symmetric of (3).

Thus, in all cases, we can assume that we have reductions as in case (2). Then, because M
itself is a top level redex, we have the reduction M −→β M

′, and the crucial fact is that because
of the structure of the redexes M , R1 and R2, we have reductions

M ′
∗−→β S1

∗−→β Q1 and M ′
∗−→β S2

∗−→β Q2.

However, by assumption, confluence holds from M ′, and we get a Q3 such that

Q1
∗−→β Q3 and Q2

∗−→β Q3.

The above reductions are indicated in the following diagram.

M

↙
y ↘

R1 M ′ R2y ↙ ↘
y

S1 S2y y
Q1 Q2

↘ ↙

Q3

We illustrate the above scheme in the case of M = (λx:σ. M1)N1, leaving the remaining cases
to the reader. Then, M ′ = M1[N1/x], S1 = M2[N2/x], and S2 = M3[N3/x], where M1

∗−→β M2,

M1
∗−→β M3, N1

∗−→β N2, N1
∗−→β N3.

(P5)(3) and (P5)(6). These two cases are very similar, and we only treat (P5)(3). There are
four main cases.

(1) The reductions

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β Q1

and
case P of inl(x:σ)⇒M | inr(y: τ)⇒ N

∗−→β Q2

contain no top level reductions.

49

Then, Q1 = case P1 of inl(x:σ) ⇒ M1 | inr(y: τ) ⇒ N1 and Q2 = case P2 of inl(x:σ) ⇒
M2 | inr(y: τ) ⇒ N2, where P

∗−→β P1, P
∗−→β P2, M

∗−→β M1, M
∗−→β M2, N

∗−→β N1, and

N
∗−→β N2. Since confluence holds from P , M , and N , there are some P3, M3, and N3 that achieve

confluence, and thus we have confluence in Q3 = case P3 of inl(x:σ)⇒M3 | inr(y: τ)⇒ N3.

(2) The reductions

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β Q1

and
case P of inl(x:σ)⇒M | inr(y: τ)⇒ N

∗−→β Q2

both contain top level reductions.

In this case, P reduces to a term of the form inl(P ′), or inr(P ′), or 5σ+τ (P ′). We treat the
first case, the others being similar. We must have

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inl(P1) of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inl(P1) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1

−→β M1[P1/x]
∗−→β Q1,

and

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inl(P2) of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inl(P2) of inl(x:σ)⇒M2 | inr(y: τ)⇒ N2

−→β M2[P2/x]
∗−→β Q2.

Since confluence holds from P , there is some P3 such that P1
∗−→β P3 and P2

∗−→β P3. Then, we
have

M [P1/x]
∗−→β M [P3/x] and M [P2/x]

∗−→β M [P3/x],

and also

M [P1/x]
∗−→β M1[P1/x]

∗−→β Q1 and M [P2/x]
∗−→β M2[P2/x]

∗−→β Q2.

Since by the assumption, confluence holds from M [P1/x], there is some Q3 such that

Q1
∗−→β Q3 and M [P3/x]

∗−→β Q3.

Then, we have M [P2/x]
∗−→β M [P3/x]

∗−→β Q3, and since by the assumption, confluence holds

from M [P2/x], there is some Q4 such that Q2
∗−→β Q4 and Q3

∗−→β Q4.

(3) The reduction

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β Q1

50

contains a top level reduction, but

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β Q2

does not.

In this case, P reduces to a term of the form inl(P ′), or inr(P ′), or 5σ+τ (P ′). We treat the
first case, the others being similar. In this case, we have

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inl(P1) of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case inl(P1) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1

−→β M1[P1/x]
∗−→β Q1,

and

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β case P2 of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β Q2 = case P2 of inl(x:σ)⇒M2 | inr(y: τ)⇒ N2.

The rest of the proof is similar to the previous case, but is simpler. Since confluence holds from P ,
there is some P3 such that P1

∗−→β P3 and P2
∗−→β inl(P3). Then the reduction

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β Q2 = case P2 of inl(x:σ)⇒M2 | inr(y: τ)⇒ N2

can be extended to

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→β Q2 = case P2 of inl(x:σ)⇒M2 | inr(y: τ)⇒ N2

∗−→β case inl(P3) of inl(x:σ)⇒M2 | inr(y: τ)⇒ N2

∗−→β M2[P3/x].

As in the previous case, we use the fact that confluence holds from M [P1/x].

(4) This is the symmetric of case 3.

This concludes all the cases, and the proof.

9 Adding η-like Reduction Rules

We now show that the method extends without difficulties to η-like reduction rules.

Definition 9.1 The set of η-like reduction rules is defined as follows.

λx:σ. (Mx) −→M, if x /∈ FV (M),

〈π1(M), π2(M)〉 −→M,

caseM of inl(x:σ)⇒ inl(x) | inr(y: τ)⇒ inr(y) −→M,

λt: ι. (Mt) −→M, if t /∈ FV (M),

casexM of inx(u: ι, x:σ[u/t])⇒ inx(u, x) −→M, if u /∈ FV (M).

51

We will denote the reduction relation defined by the union of the rules of definition 8.2 and of
definition 9.1 as −→βη (even though there are reductions other that β-reduction and η-reduction).
The definition of an I-term remains identical to that given in definition 8.3, and similarly for
stubborn terms. Properties (P1)-(P3) also remain the same, but they are stated with respect to

the new reduction relation
+−→βη .

Definition 9.2 Properties (P1)-(P3) are defined as follows:

(P1) x ∈ Pσ, c ∈ Pσ, for every variable x and constant c of type σ.

(P2) If M ∈ Pσ and M −→βη N , then N ∈ Pσ.

(P3) If M is simple, then:

(1) If M ∈ Pσ→τ , N ∈ Pσ, (λx:σ.M ′)N ∈ Pτ whenever M
+−→βη λx:σ.M ′, and 5σ→τ (M ′)N ∈

Pτ whenever M
+−→βη 5σ→τ (M ′), then MN ∈ Pτ .

(2) If M ∈ Pσ×τ , π1(〈M ′, N ′〉) ∈ Pσ and π2(〈M ′, N ′〉) ∈ Pτ whenever M
+−→βη 〈M ′, N ′〉,

and π1(5σ×τ (M ′)) ∈ Pσ and π2(5σ×τ (M ′)) ∈ Pτ whenever M
+−→βη 5σ×τ (M ′), then

π1(M) ∈ Pσ and π2(M) ∈ Pτ .

(3) If M ∈ P∀t. σ, τ ∈ T , (λt: ι. M ′)τ ∈ Pσ[τ/t] whenever M
+−→βη λt: ι. M

′, and 5∀t. σ(M ′)τ ∈
Pσ[τ/t] whenever M

+−→βη 5∀t. σ (M ′), then Mτ ∈ Pσ[τ/t].

Definition 8.5 remains the same, except that it uses the new reduction relation −→βη.

Definition 9.3 A nonempty set C of terms of type σ is a P-candidate iff it satisfies the following
conditions:

(R1) C ⊆ Pσ.

(R2) If M ∈ C and M −→βη N , then N ∈ C.

(R3) If M is simple, M ∈ Pσ, and M ′ ∈ C whenever M
+−→βη M

′ and M ′ is an I-term, then
M ∈ C.

Definition 8.6 is now stated in terms of the reduction relation −→βη.

Definition 9.4 The sets [[σ]] are defined as follows:

[[σ]] = Pσ, σ a base type,

[[σ → τ]] = {M | M ∈ Pσ→τ , and for all N , if N ∈ [[σ]] then MN ∈ [[τ]]},
[[σ × τ]] = {M | M ∈ Pσ×τ , π1(M) ∈ [[σ]], and π2(M) ∈ [[τ]]},
[[σ + τ]] = {M | M ∈ Pσ+τ , M ′ ∈ [[σ]] whenever M

∗−→βη inl(M ′)} ∪
{M | M ∈ Pσ+τ , M ′′ ∈ [[τ]] whenever M

∗−→βη inr(M ′′)} ∪
{M | M ∈ Pσ+τ , M1 ∈ P⊥ whenever M

∗−→βη 5σ+τ (M1)},
[[∀t. σ]] = {M | M ∈ P∀t. σ, and ∀τ ∈ T , Mτ ∈ [[σ[τ/t]]]},
[[∃t. σ]] = {M | M ∈ P∃t. σ, and ∃τ ∈ T , M ′ ∈ [[σ[τ/t]]] whenever M

∗−→βη inx(τ,M ′)} ∪
{M | M ∈ P∃t. σ, M1 ∈ P⊥ whenever M

∗−→βη 5∃t. σ (M1)}.

52

Lemma 8.7 still holds.

Lemma 9.5 If P is a family satisfying conditions (P1)-(P3), then each [[σ]] is a P-candidate
that contains all stubborn terms in Pσ.

Proof . Careful inspection reveals that the proof of lemma 8.7 remains unchanged. This is
because, for a simple term M :

(1) If M ∈ Pσ→τ and there is a reduction MN
+−→βη Q where Q is an I-term, we must have

either
M

+−→βη λx:σ. M1,

or
M

+−→βη 5σ→τ (M1),

even w.r.t. the reduction relation
+−→βη .

(2) If M ∈ Pσ×τ and there is a reduction π1(M)
+−→βη Q where Q is an I-term, we must have

either
M

+−→βη 〈M1, N1〉,

or
M

+−→βη 5σ×τ (Q1).

The case of the type σ + τ is also unchanged.

Properties (P4), (P5) are unchanged, but they are stated for the reduction relation
+−→βη .

Definition 9.6 Properties (P4) and (P5) are defined as follows:

(P4)
(1) If M ∈ Pτ , then λx:σ. M ∈ Pσ→τ .
(2) If M ∈ Pσ and N ∈ Pτ , then 〈M,N〉 ∈ Pσ×τ .
(3) If M ∈ Pσ, then inl(M) ∈ Pσ+τ , and if M ∈ Pτ , then inr(M) ∈ Pσ+τ .
(4) If M ∈ P⊥, then 5σ(M) ∈ Pσ.
(5) If M ∈ Pσ, then λt: ι. M ∈ P∀t. σ.
(6) If M ∈ Pσ[τ/t], then inx(τ,M) ∈ P∃t. σ.

(P5)
(1) If N ∈ Pσ and M [N/x] ∈ Pτ , then (λx:σ. M)N ∈ Pτ .
(2) If M ∈ Pσ and N ∈ Pτ , then π1(〈M,N〉) ∈ Pσ and π2(〈M,N〉) ∈ Pτ .
(3) If P ∈ Pσ+τ , M ∈ Pδ, N ∈ Pδ, M [P1/x] ∈ Pδ whenever P

∗−→βη inl(P1), N [P2/x] ∈ Pδ
whenever P

∗−→βη inr(P2), and P1 ∈ P⊥ whenever P
∗−→βη 5σ+τ (P1), then

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N ∈ Pδ.
(4) If M1 ∈ P⊥ and N ∈ Pσ, then 5σ→τ (M1)N ∈ Pτ . If M1 ∈ P⊥, then π1(5σ×τ (M1)) ∈ Pσ

and π2(5σ×τ (M1)) ∈ Pτ . If M1 ∈ P⊥ and τ ∈ T , then 5∀t. σ(M1)τ ∈ Pσ[τ/t].
(5) If τ ∈ T and M [τ/t] ∈ Pσ[τ/t], then (λt: ι. M)τ ∈ Pσ[τ/t].
(6) If P ∈ P∃t. σ, N ∈ Pδ, N [P1/x, τ/t] ∈ Pδ whenever P

∗−→βη inx(τ, P1), and P1 ∈ P⊥
whenever P

∗−→βη 5∃t. σ (P1), then casex P of inx(t: ι, x:σ)⇒ N ∈ Pδ.

53

Lemma 9.7 If P is a family satisfying conditions (P1)-(P5) then the following properties hold:
(1) If for every N , (N ∈ [[σ]] implies M [N/x] ∈ [[τ]]), then λx:σ.M ∈ [[σ → τ]]; (2) If M ∈ [[σ]] and
N ∈ [[τ]], then 〈M,N〉 ∈ [[σ×τ]]; (3) If P ∈ [[σ+τ]], for every P1, (P1 ∈ [[σ]] implies M [P1/x] ∈ [[δ]]),
and for every P2, (P2 ∈ [[τ]] implies N [P2/y] ∈ [[δ]]), then case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒
N ∈ [[δ]]; (4) If M ∈ P⊥, then 5σ(M) ∈ [[σ]] for every type σ. (5) If for every τ , (τ ∈ T implies
M [τ/t] ∈ [[σ[τ/t]]]), then λt: ι. M ∈ [[∀t. σ]]; (6) If P ∈ [[∃t. σ]], and for every P1, for every τ ∈ T ,
(P1 ∈ [[σ[τ/t]]] implies N [P1/x, τ/t] ∈ [[δ]]), then casex P of inx(t: ι, x:σ)⇒ N ∈ [[δ]].

Proof . This time, a few changes to the proof of lemma 8.9 have to be made to take the reduction
rules of definition 9.1 into account.

(1) We need to reexamine the case where

(λx:σ. M)N
+−→βη Q

and Q is an I-term. The reduction is necessarily of the form either

(λx:σ. M)N
∗−→βη (λx:σ. M ′)N ′ −→βη M

′[N ′/x]
∗−→βη Q,

where M
∗−→βη M

′ and N
∗−→βη N

′, or

(λx:σ. M)N
∗−→βη (λx:σ. (M ′x))N ′ −→βη M

′N ′
∗−→βη Q,

where M
∗−→βη M

′x, with x /∈ FV (M ′), and N
∗−→βη N

′.

The first case is as in lemma 8.9. In the second case, since x /∈ FV (M ′), note that M ′N ′ =
(M ′x)[N ′/x]. Since M

∗−→βη M
′x and N

∗−→βη N
′, we have

M [N/x]
∗−→βη (M ′x)[N ′/x] = M ′N ′

∗−→βη Q,

and by (R2), we have Q ∈ [[τ]].

(2) We need to reexamine the case where

π1(〈M,N〉) +−→βη Q

and Q is an I-term. The reduction is necessarily of the form either

π1(〈M,N〉) ∗−→βη π1(〈M1, N1〉) −→βη M1
∗−→βη Q,

where M
∗−→βη M1 and N

∗−→βη N1, or

π1(〈M,N〉) ∗−→βη π1(〈π1(P), π2(P)〉) −→βη π1(P)
∗−→βη Q,

where M
∗−→βη π1(P) and N

∗−→βη π2(P).

The first case is as in lemma 8.9. In the second case, we get M
∗−→βη Q, and since M ∈ [[σ]],

we have Q ∈ [[σ]].

(3) We need to reexamine the case where

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
+−→βη Q

54

and Q is an I-term. The reduction is necessarily of the form either

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→βη case inl(P1) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1

−→βη M1[P1/x]
∗−→βη Q,

where P
∗−→βη inl(P1), M

∗−→βη M1, and N
∗−→βη N1, or

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→βη case inr(P2) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1

−→βη N1[P2/y]
∗−→βη Q,

where P
∗−→βη inr(P2), M

∗−→βη M1, and N
∗−→βη N1, or

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→βη case 5σ+τ (P1) of inl(x:σ)⇒M1 | inr(y: τ)⇒ N1 −→βη 5δ(P1)

∗−→βη Q,

where P
∗−→βη 5σ+τ (P1), M

∗−→βη M1, and N
∗−→βη N1, or

case P of inl(x:σ)⇒M | inr(y: τ)⇒ N
∗−→βη case P1 of inl(x:σ)⇒ inl(x) | inr(y: τ)⇒ inr(y) −→βη P1

∗−→βη Q,

where P
∗−→βη P1, M

∗−→βη inl(x), and N
∗−→βη inr(y) (and δ = σ + τ).

The first three cases are as in lemma 8.9. In the last case, we have P
∗−→βη Q, and since

P ∈ [[σ + τ]], by (R2), Q ∈ [[σ + τ]].

(4) The proof is exactly as in lemma 8.9.

(5) This case is very similar to case (1).

(6) This case is very similar to case (3).

Since lemma 9.5 and lemma 9.7 hold, so does the extension of lemma 8.10 to the reduction
relation −→βη.

Lemma 9.8 If P is a family satisfying conditions (P1)-(P5), then for every term M of type
σ, for every substitution ϕ such that ϕ(y) ∈ [[γ]] for every term variable y: γ ∈ FV (M), we have
M [ϕ] ∈ [[σ[ϕ]]].

Finally, since lemma 9.7 and lemma 9.8 hold, our main theorem holds for the reduction relation
including η-like rules.

Theorem 9.9 If P is a family of λ-terms satisfying conditions (P1)-(P5), then Pσ = Λσ for
every type σ (in other words, every term satisfies the unary predicate defined by P).

As a consequence of theorem 9.9, we can extend theorem 8.12 and theorem 8.13 to the reduction
relation

∗−→βη in the system λ→,×,+,∀,∃,⊥. For strong normalization, this is a fairly trivial extension,
but for confluence, this requires a little bit of work (but it it still less work that checking local
confluence). In both cases, it is the verification of (P4) that requires more work.

55

Theorem 9.10 The reduction relation
∗−→βη of the system λ→,×,+,∀,∃,⊥ is strongly normalizing.

Proof . (P1) and (P2) are still trivial. One can easily verify that the proof for (P3) given in
theorem 8.12 remains unchanged. For (P4) and (P5), we need to consider η-like reductions. The
reader will verify that the proof for (P5) given in lemma 8.12 can easily be adpated using the
technique of theorem 9.7 to handle η-like reductions. It remains to check (P4).

(P4)(1) If M is SN then d(M) is finite. We prove by induction on d(M) that λx:σ. M is
SN. Note that λx:σ. M −→βη P if either P = λx:σ. M1 and M −→βη M1, or M = M ′x where
x /∈ FV (M ′) and P = M ′. In the first case, d(M1) < d(M), and by the induction hypothesis, P is
SN. In the second case, since M = M ′x is SN, so is M ′ = P . Thus, P is SN in all cases, and so is
λx:σ. M

(P4)(2) If M and N are SN, then d(M) and d(N) are finite. We prove by induction on d(M) +
d(N) that 〈M,N〉 is SN. Note that 〈M,N〉 −→βη P if either P = 〈M1, N〉 and M −→βη M1, or
P = 〈M,N1〉 and N −→βη N1, or M = π1(Q), N = π2(Q), and P = Q. In the first two cases,
d(M1) +d(N) < d(M) +d(N) and d(M) +d(N1) < d(M) +d(N), and by the induction hypothesis,
P is SN. In the third case, since M = π1(Q) is SN, so is P = Q. Thus, P is SN in all cases, and so
is 〈M,N〉.

(P4)(3) If M is SN, by an obvious induction on d(M), inl(M) and inr(M) are SN.

(P4)(4) If M is SN, by an obvious induction on d(M), 5σ(M) is SN.

(P4)(5) Similar to (P4)(1).

(P4)(6) Similar to (P4)(3).

Theorem 9.11 The reduction relation
∗−→βη of the system λ→,×,+,∀,∃,⊥ is confluent.

Proof . (P1) and (P2) are still trivial. One can easily verify that the proof for (P3) and (P5)
given in theorem 8.13 can easily be adpated using the technique of theorem 9.7 to handle η-like
reductions. It remains to check that (P4) holds. This requires a little bit of work. For example,
assuming that confluence holds from M , we need to show that confluence holds from λx:σ.M . The
complication caused by η-like reductions is that we can have reductions

λx:σ. M
∗−→βη λx:σ. (M1x) −→βη M1

∗−→βη Q1,

where M
∗−→βη M1x and x /∈ FV (M1). The problem is that it is not immediately obvious that

confluence from M implies confluence from M1. Actually, because x /∈ FV (M1) in such situations,
it is possible to prove that confluence holds from λx:σ. M . Such a verification is carried out in
Appendix 2 (page 196-198) of Gallier [5]. The other cases can also be handled, and are left to the
(perseverant) reader (in fact, they are easier!).

One should realize that the Church-Rosser property in the presence of η-like reductions fails for
terms that do not type-check. For example, the term M = λx:σ. ((λy: τ. y)x) where σ 6= τ reduces
to λx:σ. x under β-reduction and to λy: τ. y under η-reduction. Both terms are in normal form,
but since σ 6= τ , they are not α-equivalent. The reason for the failure of confluence is that the term
M does not type-check. This shows that one cannot use the fact that the Church-Rosser property

56

holds for untyped terms under βη-reduction to prove the Church-Rosser property for typed λ-terms
under βη-reduction. In our approach, terms must type-check, and the above problem does not arise.

The reducibility method presented in this paper immediately extends to the second-order λ-
calculus, or to Girard’s system Fω (as presented in [5]). It can also easily be adapted to the systems
of conjunctive types due to Coppo and Dezani as presented in Krivine [14] (system DΩ and system
D for pure λ-terms). However, we will now grant our reader a well deserved break, and treat such
extensions elsewhere.

References

[1] H.P. Barendregt. The Lambda Calculus, volume 103 of Studies in Logic. North-Holland, second
edition, 1984.

[2] H.B. Curry and R. Feys. Combinatory Logic, Vol. I. Studies in Logic. North-Holland, third
edition, 1974.

[3] Jean Gallier. Constructive Logics. Part I: A Tutorial on Proof Systems and Typed λ-Calculi.
Theoretical Computer Science, 1993.

[4] Jean H. Gallier. Logic for Computer Science. Harper and Row, New York, 1986.

[5] Jean H. Gallier. On Girard’s “candidats de reductibilité”. In P. Odifreddi, editor, Logic And
Computer Science, pages 123–203. Academic Press, London, New York, May 1990.

[6] G. Gentzen. Investigations into logical deduction. In M.E. Szabo, editor, The Collected Papers
of Gerhard Gentzen. North-Holland, 1969.

[7] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in
Theoretical Computer Science. Cambridge University Press, 1989.

[8] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application à
l’élimination des coupures dans l’analyse et la théorie des types. In J.E. Fenstad, editor, Proc.
2nd Scand. Log. Symp., pages 63–92. North-Holland, 1971.

[9] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université de Paris VII, June 1972. Thèse de Doctorat d’Etat.

[10] Jean-Yves Girard. Geometry of interaction I: Interpretation of system F. In Ferro Bonotto,
Valentini, and Zanardo, editors, Logic Colloquium ’88, pages 221–260. North-Holland, Elsevier,
1989.

[11] J.R. Hindley and J.P. Seldin. Introduction to Combinators and λ-Calculus, volume 1 of London
Mathematical Society Student texts. Cambridge University Press, 1986.

[12] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 479–490. Academic Press, London, 1980. Reprint of manuscript first published in 1969.

57

[13] G. Koletsos. Church-Rosser theorem for typed functional systems. J. Symbolic Logic,
50(3):782–790, 1985.

[14] J.L. Krivine. Lambda-Calcul, types et modèles. Etudes et recherches en informatique. Masson,
1990.

[15] P. Martin-Löf. An intuitionistic theory of types. Technical report, University of Stokholm,
Stockholm, Sweden, 1972. Privately circulated manuscript.

[16] D. Prawitz. Natural deduction, a proof-theoretical study. Almquist & Wiksell, Stockholm,
1965.

[17] D. Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Proc. 2nd Scand. Log.
Symp., pages 235–307. North-Holland, 1971.

[18] R. Statman. Logical Relations and the Typed λ-Calculus. Information and Control,
65(2/3):85–97, 1985.

[19] S. Stenlund. Combinators, Lambda Terms, and Proof Theory. D. Reidel, Dordrecht, Holland,
1972.

[20] W.W. Tait. Intensional interpretation of functionals of finite type I. J. Symbolic Logic, 32:198–
212, 1967.

[21] W.W. Tait. A realizability interpretation of the theory of species. In R. Parikh, editor, Logic
Colloquium, volume 453 of Lecture Notes in Math., pages 240–251. Springer Verlag, 1975.

[22] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction, Vol. I and
II, volume 123 of Studies in Logic. North-Holland, 1988.

[23] D. van Dalen. Logic and Structure. Universitext. Springer Verlag, second edition, 1980.

58

