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COMPLETE SETS OF TRANSFORMATIONS
FOR GENERAL E-UNIFICATION

Jean H. Gallier and Wayne Snyder

Abstract: This paper is concerned with E-unification in arbitrary equational

theories. We extend the method of transformations on systems of terms, devel-

oped by Martelli-Montanari for standard unification, to E-unification by giving

two sets of transformations, BT and T , which are proved to be sound and com-

plete in the sense that a complete set of E-unifiers for any equational theory E

can be enumerated by either of these sets. The set T is an improvement of BT ,

in that many E-unifiers produced by BT will be weeded out by T . In addition,

we show that a generalization of surreduction (also called narrowing) combined

with the computation of critical pairs is complete. A new representation of equa-

tional proofs as certain kinds of trees is used to prove the completeness of the

set BT in a rather direct fashion that parallels the completeness of the transfor-

mations in the case of (standard) unification. The completeness of T and the

generalization of surreduction is proved by a method inspired by the concept of

unfailing completion, using an abstract (and simpler) notion of the completion

of a set of equations.
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1 Introduction

This paper is concerned with E-unification in arbitrary equational theories using the method

of transformations on term systems. We present several sets of transformations and show

them to be sound and complete, in the sense that given any equational theory E, a complete

set of E-unifiers will be enumerated using transformations in any of these sets.

Given a (finite) set E of equations and two terms u and v, a substitution θ is an

E-unifier of u and v iff θ(u) and θ(v) are provably equal under the equations in E, that is,

congruent modulo the least stable congruence
∗←→E containing E. The problem of finding

E-unifiers is called the E-unification problem. When E = ∅, σ is called a unifier of u and v,

and the problem is called the unification problem (see [36]). The importance of unification

and E-unification stems from the fact that unification is one of the most crucial operations

used in theorem provers and logic program interpreters. For instance, unification is the

basic mechanism for computing answers of queries used by Prolog. In view of the inherent

inefficiency of theorem proving methods in the presence of equality, Robinson [37] and then

Plotkin [34] suggested that theorem provers be stratified into a (non-equational) refutation

mechanism, and an E-unification mechanism, which performs equational reasoning during

unification steps. More recently, E-unification has been proposed as the theoretical basis of

the incorporation of functional and equational languages into the basic paradigm of logic

programming [10,12].

Unification and E-unification differ considerably in complexity. Unification is decid-

able and fast unification algorithms exist (in fact, linear time algorithms are known [33]),

but E-unification is undecidable, due to the undecidability of the word problem for semi-

groups. Another major difference has to do with the existence of most general unifiers. In

the case of unification, if two terms are unifiable then they have a most general unifier , or

mgu, a unifier σ such that every other unifier θ may be obtained by composing σ with some

other substitution (θ = σ ◦ η for some η). Unification algorithms produce mgu’s. Unfortu-

nately, for an arbitrary E, if u and v are E-unifiable there may not be a single mgu. Instead,

sets of mgu’s must be considered. In simple terms, we say that a set U of substitutions is a

complete set of unifiers for u, v iff every σ ∈ U is a E-unifier of u, v, and for every E-unifier

θ of u, v, there is some σ in U and some substitution η such that θ =E σ ◦ η[V ar(u, v)].

Thus, complete sets of E-unifiers play the role of mgu’s. Unfortunately, complete sets of

E-unifiers are not necessarily finite. At best, they are partially recursive (if E is recursive).

In the case of unification, there is an elegant and powerful method due to Martelli

and Montanari [30] (but already sketched in Herbrand’s thesis [13]) for finding mgu’s: the

method of transformations on term systems. This method consists of a set ST of four simple

transformations (three, if two-element multisets instead of ordered pairs are considered) that
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are used to decompose and solve simple term systems.

This paper addresses the problem of finding complete sets of transformations T ex-

tending the set ST to account for the presence of arbitrary equations. We say that a set

T is complete iff for every set E of equations, a complete set of E-unifiers can be enu-

merated using transformations in T . In addition, we would like to find complete sets of

transformations which eliminate as many redundant E-unifiers as possible. This is a very

difficult task, because under a reasonable definition of minimality, minimal complete sets of

E-unifiers may not exist [7]. We present two sets of transformations BT and T and prove

that they are complete for arbitrary sets of equations. The set T is an improvement of BT ,

in that many redundant E-unifiers produced by BT will be weeded out by T . In addition,

we show that a generalization of surreduction (also called narrowing) combined with the

computation of critical pairs is complete.

Although BT only contains two more transformations than ST , and T one more trans-

formation than ST , proving the completeness of BT and T (and also of the generalization

of surreduction) turned out to be quite difficult. We were led to define a new representation

of equational proofs as certain kinds of (sets of) trees. These proof trees are used to prove

the completeness of the set BT in a rather direct fashion that parallels the completeness of

the simple set ST in the case of (standard) unification. In order to prove the completeness

of T , inspired by the concept of unfailing completion [1,2,3], we developed an abstract (and

simpler) notion of the completion of a set of equations that allowed us to use the previous

completeness proof. The completeness of the generalization of surreduction also uses this

abstract completion. We then give a second proof of the completeness of T based on the

completeness of the generalization of surreduction. In a sense made precise when these

results are proved, the first completeness result about T (theorem 6.8) is stronger than the

second completeness result (theorem 8.3).

This paper generalizes the approach initiated in the pioneering work of Kirchner [22,23]

to arbitrary theories. One of the main important technical differences between our work

and Claude Kirchner’s is that we use transformations extending naturally those proposed by

Herbrand [13], whereas Kirchner uses transformations closer to those Martelli and Monta-

nari developed for multiequations [30]. Also, Kirchner’s transformations are only complete

for a subclass of all equational theories, the strict theories. Nevertheless, our work would

not have been possible without Claude Kirchner’s previous contribution. Another concept

that inspired us at a crucial time is the idea of unfailing completion, due to Bachmair,

Dershowitz, Hsiang, and Plaisted [1,2,3]. Without this research, we would not have been

able to show the completeness of our improved set of transformations T .

This paper is an expanded and corrected version of [11], where our results are pre-
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sented in preliminary form. In particular, the set of transformations T ′ used in [11] is

equivalent to T but with some additional restrictions. The proof that T ′ is a complete set

of transformations turned out to have a serious gap that remains to be filled. The difficulty

has to do with the strategy of “eager” variable elimination discussed in section 10.

The plan of this paper is as follows. After presenting a number of preliminary defini-

tions, we proceed to develop in §3 an abstract view of standard unification, due to [30], as

a set ST of transformation rules for non-deterministically transforming a unification prob-

lem into an explicit representation of its solution (if such exists). This set of rules is then

extended in the next section to a basic set of transformations BT which accounts for the

presence of arbitrary equations in a unification problem. In §5 we develop techniques which

allow us to restrict rewriting at or below variable occurrences, and which we then use in §6
to prove the completeness of an improved set of transformations T . In sections §7 and §8,

a weaker version of the completeness proof for this set is established using the notion of a

surreduction (or narrowing) step. The final sections of the paper discuss previous work on

more general forms of E-unification, open problems, and our current research.

2 Preliminaries

In order that this paper be self-contained, this section contains an outline of the major

definitions and results related to E-unification, and is basically consistent with [17] and [9].

We begin with the basic algebraic notions of trees and substitutions.

Definition 2.1 Let N be the set of natural numbers. A ranked alphabet is a set Σ with

an associated function arity : Σ → N assigning a rank or arity n to each symbol f in Σ.

We denote the set of symbols of arity n by Σn. (For example, the set of constants is just

Σ0.)

Definition 2.2 Let N+ denote the set of positive natural numbers. A tree domain D is

a nonempty subset of strings in N∗+ satisfying the conditions:

(i) For all α, β ∈ N∗+, if αβ ∈ D then α ∈ D.

(ii) For all α ∈ N∗+, for every i ∈ N+, if αi ∈ D then, for every j, 1 ≤ j ≤ i, αj ∈ D.

Definition 2.3 Given a ranked alphabet Σ, a Σ-tree (or term) is any function t : D → Σ

where D is a tree domain denoted by Dom(t) and if α ∈ Dom(t) and {i |αi ∈ Dom(t)} =

{1, . . . , n} , then arity(t(α)) = n. We shall denote the symbol t(ε) by Root(t). Given

a tree t and some tree address α ∈ Dom(t), the subtree of t rooted at α is the tree,
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denoted t/α, whose domain is the set {β | αβ ∈ Dom(t)} and such that t/α(β) = t(αβ)

for all β ∈ Dom(t/α). Given two trees t1 and t2 and a tree address α in t1 the result of

replacing t2 at α in t1, denoted by t1[α← t2], is the function whose graph is the set of pairs

{(β, t1(β)) | β ∈ Dom(t1) such that α is not a prefix of β} ∪ {(αβ, t2(β)) | β ∈ Dom(t2)}.

The set of all finite trees is denoted by TΣ. Given a countably infinite set of variables

X = {x0, x1, . . .}, we can form the set of trees TΣ(X) by adjoining the set X to the set

Σ0. Thus, TΣ(X) is the set of all terms formed from the constant and function symbols in

Σ and the variables in X.

The size of a term t is the number of occurrences of function and constant symbols

and variables in the term, i.e., the cardinality of Dom(t). We shall denote the depth of a

term t, i.e., the length of the longest path in t (or, equivalently, the length of the longest

string in Dom(t)), by |t|. For example, |f(a)| = 1 and |c| = 0. The set of variables

occurring in a term t is the set

V ar(t) = {x ∈ X | t(α) = x for some α ∈ Dom(t) }.

Any term t for which V ar(t) = ∅ is called a ground term.

In the rest of this paper, we shall use the letters a, b, c, and d to denote constants;

f , g, and h to denote functions; l, r, s, t, u, v, and w for terms; and α, β, and γ for tree

addresses.

In order that TΣ(X) be non-empty, we assume that Σ0 ∪X 6= ∅. Thus TΣ(X) is the

free Σ-algebra generated by X. This property allows us to define substitutions.

Definition 2.4 A substitution is any function θ : X → TΣ(X) such that θ(x) 6= x

for only finitely many x ∈ X. Since TΣ(X) is freely generated by X, every substitution

θ : X → TΣ(X) has a unique homomorphic extension θ̂ : TΣ(X) → TΣ(X). In the sequel,

we will identify θ and its homomorphic extension θ̂.

Definition 2.5 Given a substitution σ , the support (or domain) of σ is the set of

variables D(σ) = {x | σ(x) 6= x}. A substitution whose support is empty is termed

the identity substitution, and is denoted by Id. The set of variables introduced by σ is

I(σ) =
⋃
x∈D(σ) V ar(σ(x)). Given a substitution σ, if its support is the set {x1, . . . , xn},

and if ti = σ(xi) for 1 ≤ i ≤ n, then σ is also denoted by [t1/x1, . . . , tn/xn]. Given

a term r, we also denote σ(r) as r[t1/x1, . . . , tn/xn]. A substitution ρ is a renaming

substitution away from W if ρ(x) is a variable for every x ∈ D(ρ), I(ρ) ∩W = ∅, and

for every x, y ∈ D(θ), ρ(x) = ρ(y) implies that x = y. If W is unimportant, then ρ is

simply called a renaming . The restriction of a substitution θ to some V , denoted θ|V , is
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the substitution θ′ such that

θ′(x) =

{
θ(x), if x ∈ V ;

x, otherwise.

Definition 2.6 The union of two substitutions σ and θ, denoted by σ ∪ θ, is defined by

σ ∪ θ(x) =


σ(x), if x ∈ D(σ);

θ(x), if x ∈ D(θ);

x, otherwise,

and is only defined if D(σ) ∩D(θ) = ∅. The composition of σ and θ is the substitution

denoted by σ ◦ θ such that for every variable x we have σ ◦ θ(x) = θ̂(σ(x)). Given a set V

of variables, we say that two substitutions σ and θ are equal over V , denoted σ = θ[V ] iff

∀x ∈ V , σ(x) = θ(x). We say that σ is more general than θ over V , denoted by σ ≤ θ[V ],

iff there exists a substitution η such that θ = σ ◦ η[V ]. When V is the set of all variables,

we drop the notation [V ].

A substitution σ is idempotent if σ ◦ σ = σ . A necessary and sufficient condition for

idempotency is given by

Lemma 2.7 A substitution σ is idempotent iff I(σ) ∩D(σ) = ∅.

Idempotent substitutions are easier to manipulate and the assumption of idempotency

often simplifies a proof. That we may often restrict our attention to idempotent substitu-

tions without loss of generality is formally justified by our next result, which shows that

any substitution is equivalent (over an arbitrary superset of its support) up to renaming

with an idempotent substitution.

Lemma 2.8 For any substitution σ and set of variables W such that D(σ) ⊆ W , there

exists an idempotent substitution σ′ such that D(σ) = D(σ′), σ ≤ σ′, and σ′ ≤ σ[W ].

Proof . Let D(σ)∩ I(σ) = {x1, . . . , xn}, let {y1, . . . , yn} be a set of new variables disjoint

from W , D(σ), and I(σ), let ρ1 = [y1/x1, . . . , yn/xn], and let ρ2 = [x1/y1, . . . , xn/yn].

Now let σ′ = σ ◦ ρ1, where clearly σ ≤ σ′ and D(σ) = D(σ′) as required. Since ρ1 ◦
ρ2 = Id[W ∪ I(σ)] , then σ = σ ◦ ρ1 ◦ ρ2 = σ′ ◦ ρ2[W ], and thus σ′ ≤ σ[W ]. Finally,

by our previous lemma, σ′ must be idempotent, since D(σ′) = D(σ) is disjoint from

I(σ′) = (I(σ)− {x1, . . . , xn}) ∪ {y1, . . . , yn}.

Since most uses of substitutions in this paper are modulo renaming, this lemma will

allow us to assume that substitutions are idempotent if necessary. We shall prove specific

results related to the use of idempotent unifiers in later sections.

We now proceed to review the basic notions of relations, orderings, and equational

rewriting.
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Definition 2.9 Let =⇒⊆ A×A be a binary relation on a set A. The converse (or inverse)

of the relation =⇒ is the relation denoted as =⇒−1 or ⇐=, defined such that u ⇐= v iff

v =⇒ u. The symmetric closure of =⇒, denoted by ⇐⇒, is the relation =⇒ ∪ ⇐=.

The transitive closure, reflexive and transitive closure, and the reflexive, symmetric, and

transitive closure of =⇒ are denoted respectively by
+

=⇒,
∗

=⇒, and
∗⇐⇒.

Definition 2.10 A relation � on a set A is Noetherian or well founded iff there are no

infinite sequences 〈a0, . . . , an, an+1, . . .〉 of elements in A such that an � an+1 for all n ≥ 0.1

Definition 2.11 A preorder � on a set A is a binary relation � ⊆ A×A that is reflexive

and transitive. A partial order � on a set A is a preorder that is also antisymmetric. The

converse of a preorder (or partial order) � is denoted as �. A strict ordering (or strict

order) ≺ on a set A is a transitive and irreflexive relation. Given a preorder (or partial

order) � on a set A, the strict ordering ≺ associated with � is defined such that s ≺ t iff

s � t and t 6� s. Conversely, given a strict ordering ≺, the partial ordering � associated

with ≺ is defined such that s � t iff s ≺ t or s = t. The converse of a strict ordering ≺ is

denoted as �. Given a preorder (or partial order) �, we say that � is well founded iff � is

well founded.2

Definition 2.12 Let −→ be a binary relation −→ ⊆ TΣ(X) × TΣ(X) on terms. The

relation −→ is monotonic iff for every two terms s, t and every function symbol f , if s −→ t

then f(. . . , s, . . .) −→ f(. . . , t, . . .). The relation −→ is stable (under substitution) if s −→ t

implies σ(s) −→ σ(t) for every substitution σ.

Definition 2.13 A strict ordering≺ has the subterm property iff s ≺ f(. . . , s, . . .) for every

term f(. . . , s, . . .). A simplification ordering ≺ is a strict ordering that is monotonic and has

the subterm property (since we are considering symbols having a fixed rank, the deletion

property is superfluous, as noted in Dershowitz [6]). A reduction ordering ≺ is a strict

ordering that is monotonic, stable, and such that � is well founded. With a slight abuse

of language, we will also say that the converse � of a strict ordering ≺ is a simplification

ordering (or a reduction ordering). It is shown in Dershowitz [6] that there are simplification

orderings that are total on ground terms.

1 We warn the readers that this is not the usual way of defining a well founded relation in set theory,
as for example in Levy [29]. In set theory, the condition is stated in the form an+1 ≺ an for all
n ≥ 0, where ≺=�−1. It is the dual of the condition we have used, but since ≺=�−1, the two
definitions are equivalent. When using well founded relations in the context of rewriting systems, we
are usually interested in the reduction relation =⇒ and the fact that there are no infinite sequences
〈a0, . . . , an, an+1, . . .〉 such that an =⇒ an+1 for all n ≥ 0. Thus, following other authors, including
Dershowitz, we adopt the dual of the standard set theoretic definition.

2 Again, we caution our readers that in standard set theory it is ≺ that is well founded! However, our
definition is equivalent to the standard set-theoretic definition of a well founded partial ordering.
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Definition 2.14 Let E ⊆ TΣ(X) × TΣ(X) be a binary relation on terms. We define the

relation ←→E over TΣ(X) as the smallest symmetric, stable, and monotonic relation that

contains E. This relation is defined explicitly as follows: Given any two terms t1, t2 ∈
TΣ(X), then t1 ←→E t2 iff there is some variant3 (s, t) of a pair in E ∪ E−1, some tree

address α in t1, and some substitution σ, such that

t1/α = σ(s), and t2 = t1[α← σ(t)].

(In this case, we say that σ is a matching substitution of s onto t1/α.) Note that the pair

(s, t) is used as a two-way rewrite rule (that is, non-oriented). In such a case, we denote

the pair (s, t) as s
.
= t and call it an equation. When t1 ←→E t2 , we say that we have an

equality step. It is well known that the reflexive and transitive closure
∗←→E of ←→E is

the smallest stable congruence on TΣ(X) containing E. When we want to fully specify an

equality step, we use the notation

t1 ←→[α,s
.
=t,σ] t2

(where some of the arguments may be omitted).

Definition 2.15 When a pair (s, t) ∈ E is used as an oriented equation (from left to

right), we call it a rule and denote it as s→ t. The reduction relation −→E is the smallest

stable and monotonic relation that contains E. We can define t1 −→E t2 explicitly as in

definition 2.14, the only difference being that (s, t) is a variant of a pair in E (and not in

E ∪ E−1). When t1 −→E t2, we say that t1 rewrites to t2, or that we have a rewrite step.

When we want to fully specify a rewrite step, we use the notation

t1 −→[α,s→t,σ] t2

(where some of the arguments may be omitted).

When V ar(r) ⊆ V ar(l), then a rule l→ r is called a rewrite rule; a set of such rules

is called a rewrite system.

In what follows, we shall usually for simplicity refer to both equality steps and rewrite

steps by the generic term ‘rewrite step’ and similarly the term ‘rewriting’ will usually be

used generically for the application of either rewrite steps or equality steps. The context

should prevent any conflusion.

3 In what follows we shall assume that before a pair (i.e., an equation) is used it has been renamed
apart from all variables in current use. This is essential to prevent clashes among the variables. Thus
we shall always state that a variant of an equation is being used.
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Definition 2.16 Let −→ ⊆ TΣ(X)× TΣ(X) be a binary relation on TΣ(X). We say that

−→ is Church Rosser iff for all t1, t2 ∈ TΣ(X), if t1
∗←→E t2, then there is some t3 ∈ TΣ(X)

such that t1
∗−→ t3 and t2

∗−→ t3. We say that −→ is confluent iff for all t, t1, t2 ∈ TΣ(X),

if t
∗−→ t1 and t

∗−→ t2, then there is some t3 ∈ TΣ(X) such that t1
∗−→ t3 and t2

∗−→ t3. A

term s is irreducible w.r.t. −→ iff there is no term t such that s −→ t.

It is well known that a relation is confluent iff it is Church Rosser [16]. We say that a

rewrite system R is Noetherian, Church Rosser, or confluent, iff the relation −→R associated

with R given in definition 2.15 has the corresponding property. We say that R is canonical

iff it is Noetherian and confluent.

Finally, before we proceed with the transformation method for the first-order case, we

present the notion of a multiset and of the multiset ordering .

Definition 2.17 Given a set A, a multiset over A is an unordered collection of elements

of A which may have multiple occurrences of identical elements. More formally, a multiset

over A is a function M : A → N (where N is the set of natural numbers) such that an

element a in A has exactly n occurrences in M iff M(a) = n. In particular, a does not

belong to M when M(a) = 0, and we say that a ∈ M iff M(a) > 0. The union of two

multisets M1 and M2, denoted by M1 ∪M2, is defined as the multiset M such that for all

a ∈ A, M(a) = M1(a) +M2(a).

To avoid confusion between multisets and sets, we shall always state carefully when

an object is considered to be a multiset. Note that multiset union is a distinct notion from

the union of sets, since for example, if A is a non-empty multiset, then A ∪A 6= A.

Definition 2.18 Let < be a strict partial order on a set A, let M be some finite multiset

on A, and finally let n, n′1, . . . , n
′
k ∈ A. Define the relation ⇐m on finite multisets as

M ∪ {n′1, . . . , n′k} ⇐m M ∪ {n},

where k ≥ 0 and n′i < n for all i, 1 ≤ i ≤ k. Then the multiset ordering � is simply the

transitive closure
+⇐m . In other words, N ′ � N iff N ′ is produced from N by removing

one or more elements and replacing them with any finite number of elements, each of which

is strictly smaller than at least one element removed.

Lemma 2.19 Let M(A) denote the set of all finite multisets on A, and let < be a strict

partial order on A. Then the multiset ordering � is a strict partial ordering on M(A)

which is total (respectively, well-founded) iff < is total (respectively, well-founded).

In this paper we use only the multiset ordering on multisets of natural numbers.
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3 Unification by Transformations on Systems

We now define unification of terms and present an abstract view of the unification process

as a set of non-deterministic rules for transforming a unification problem into an explicit

representation of its solution, if such exists; in the next section this will be extended to

E-unification. This elegant approach is due to [30], but was implicit in Herbrand’s thesis

[13].4 Our representation for unification problems is the following.

Definition 3.1 A term pair or just a pair is a multiset of two terms, denoted, e.g., by

〈s, t〉 , and a substitution θ is called a standard unifier (or just a unifier) of a pair 〈s, t〉
if θ(s) = θ(t) . A term system (or system) is a multiset of such pairs, and a substitution θ

is a unifier of a system if it unifies each pair. The set of unifiers of a system S is denoted

U(S) , and if S consists of only a single pair 〈s, t〉 , the set of unifiers is denoted by U(s, t) .

Definition 3.2 A substitution σ is a most general unifier , or mgu, of a system S iff

(i) D(σ) ⊆ V ar(S) ;

(ii) σ ∈ U(S) ;

(iii) For every θ ∈ U(S), σ ≤ θ .

It is well known that mgu’s always exist for unifiable systems, and it can be shown

that mgu’s are unique up to composition with a renaming substitution, and so we shall

follow the common practice of glossing over this distinction by referring to the mgu of a

system, denoted by mgu(S).

Definition 3.3 A pair 〈x, t〉 is in solved form in a system S and x in this pair is called

a solved variable if x is a variable which does not occur anywhere else in S; in particular,

x 6∈ V ar(t) . A system is in solved form if all its pairs are in solved form; a variable is

unsolved if it occurs in S but is not solved.

Note that a solved form system is always a set of solved pairs. The importance of

solved form systems is shown by

Lemma 3.4 Let S =
{
〈x1, t1〉, . . . , 〈xn, tn〉

}
be a system in solved form, where the

x1, . . . , xn are solved variables. If σ = [t1/x1, . . . , tn/xn] , then σ is an idempotent mgu

of S. Furthermore, for any substitution θ ∈ U(S) , we have θ = σ ◦ θ .

Proof . We simply observe that for any θ, θ(xi) = θ(ti) = θ(σ(xi)) for 1 ≤ i ≤ n , and

4 It is remarkable that in his thesis, Herbrand gave all the steps of a (nondeterministic) unification
algorithm based on transformations on systems of equations. These transformations are given at the
end of the section on property A, page 148 of Herbrand [13].
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θ(x) = θ(σ(x)) otherwise. Clearly σ is an mgu, and since D(σ)∩I(σ) = ∅ by the definition

of solved forms, it is idempotent.

Strictly speaking the substitution σ here is ambiguous in the case that there is at

least one pair in S consisting of two solved variables; but since mgu’s are considered unique

up to renaming, and such pairs can be arbitrarily renamed, we denote this substitution by

σS . As a special case, note that σ∅ = Id .

We may analyse the process of finding mgu’s as follows. If θ(u) = θ(v) , then either

(i) u = v and no unification is necessary; or (ii) u = f(u1, . . . , un) and v = f(v1, . . . , vn)

for some f ∈ Σ , and θ(ui) = θ(vi) for 1 ≤ i ≤ n ; or (iii) u is a variable not in V ar(v)

or vice versa. If u is a variable and u 6∈ V ar(v) , then [v/u] ∈ U(u, v) and [v/u] ≤ θ . By

extending this analysis to account for systems of pairs, we have a set of transformations for

finding mgu’s.

Definition 3.5 (The set of transformation rules ST ) Let S denote any system (possibly

empty), f ∈ Σ , and u and v be two terms. We have the following transformations.

Trivial:

{〈u, u〉} ∪ S =⇒triv S

Term Decomposition: For any f ∈ Σn for some n > 0,

{〈f(u1, . . . , un), f(v1, . . . , vn)〉} ∪ S =⇒dec {〈u1, v1〉, . . . , 〈un, vn〉} ∪ S

Variable Elimination:

{〈x, v〉} ∪ S =⇒vel {〈x, v〉} ∪ σ(S),

where 〈x, v〉 is not a solved pair in S such that x 6∈ V ar(v), and σ = [v/x] .

Recall that systems are multisets, so the unions here are multiset unions; the intent

of the left-hand side of each of these rules is to isolate a single pair to be transformed. The

symbol =⇒ will be used for an arbitrary transformation from the set ST . We shall say

that θ ∈ Unify(S) iff there exists some sequence of transformations

S =⇒ . . . =⇒ S′,

where S′ is in solved form and θ = σS′ . (If no transformation applies, but the system is

not in solved form, the procedure given here fails.)

Clearly, by choosing S = {〈u, v〉} , we can attempt to find a unifier for two terms u,

and v, as the following example shows.5

5 In examples, we shall often drop set brackets around systems, e.g., S = 〈x1, t1〉, . . . , 〈xn, tn〉 .
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Example 3.6

〈f(x, g(a, y)), f(x, g(y, x))〉
=⇒dec 〈x, x〉, 〈g(a, y), g(y, x)〉
=⇒triv 〈g(a, y), g(y, x)〉
=⇒dec 〈a, y〉, 〈y, x〉
=⇒vel 〈a, y〉, 〈a, x〉 .

The sense in which these transformations preserve the logically invariant properties of

a unification problem is shown by

Lemma 3.7 If S =⇒ S′ using any transformation from ST , then U(S) = U(S′) .

Proof . The only difficulty concerns Variable Elimination. Suppose {〈x, v〉} ∪ S =⇒vel

{〈x, v〉} ∪ σ(S) with σ = [v/x] . For any substitution θ , if θ(x) = θ(v) , then θ = σ ◦ θ ,

since σ ◦ θ differs from θ only at x, but θ(x) = θ(v) = σ ◦ θ(x) . Thus,

θ ∈ U({〈x, v〉} ∪ S)

iff θ(x) = θ(v) and θ ∈ U(S)

iff θ(x) = θ(v) and σ ◦ θ ∈ U(S)

iff θ(x) = θ(v) and θ ∈ U(σ(S))

iff θ ∈ U({〈x, v〉} ∪ σ(S)).

The point here is that the most important feature of a unification problem—its set

of solutions—is preserved under these transformations, and hence we are justified in our

method of attempting to transform such problems into a trivial (solved) form in which the

existence of an mgu is evident.

We may now show the soundness and completeness of these transformations following

[30].

Theorem 3.8 (Soundness) If S
∗

=⇒ S′ with S′ in solved form, then σS′ ∈ U(S).

Proof . Using the previous lemma and a trivial induction on the length of transformation

sequences, we see that U(S) = U(S′), and so clearly σS′ ∈ U(S).
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Theorem 3.9 (Completeness) Suppose that θ ∈ U(S) . Then any sequence of transfor-

mations

S = S0 =⇒ S1 =⇒ S2 =⇒ . . .

must eventually terminate in a solved form S′ such that σS′ ≤ θ .

Proof . We first show that every transformation sequence terminates. For any system S,

let us define a complexity measure µ(S) =< n,m > , where n is the number of unsolved

variables in the system, and m is the sum of the sizes of all the terms in the system.

Then the lexicographic ordering on < n,m > is well-founded, and each transformation

produces a new system with a measure strictly smaller under this ordering: Trivial and

Term Decomposition must decrease m and can not increase n, and Variable Elimination

must decrease n.

Therefore the relation =⇒ is well-founded, and every transformation sequence must

end in some system to which no transformation applies. Suppose a given sequence ends in

a system S′. Now θ ∈ U(S) implies by lemma 3.7 that θ ∈ U(S′) , and so S′ can contain

no pairs of the form 〈f(t1, . . . , tn), g(t′1, . . . , t
′
m)〉 or of the form 〈x, t〉 with x ∈ V ar(t) .

But since no transformation applies, all pairs in S′ must be in solved form. Finally, since

θ ∈ U(S′), by lemma 3.4 we must have σS′ ≤ θ .

Putting these two theorems together, we have that the set ST can always find an

mgu for a unifiable system of terms; as remarked in [30], this abstract formulation can be

used to model many different unification algorithms, by simply specifying data structures

and a control strategy.

In fact, we have proved something stronger than necessary in Theorem 3.9: it has

been shown that all transformation sequences terminate and that any sequence of trans-

formations issuing from a unifiable system must eventually result in a solved form. This is

possible because the problem is decidable. Strictly speaking, it would have been sufficient

for completeness to show that if S is unifiable then there exists some sequence of trans-

formations which results in a solved form, since then a complete search strategy, such as

breadth-first search, could find the solved form. This form of completeness, which might

be termed non-deterministic completeness, will be used in finding results on E-unification,

where the general problem is undecidable.

In some contexts it may be useful to deal with idempotent unifiers which are renamed

away from some set of ‘protected’ variables but which are most general over the set of

variables in the original system. The next definition makes this precise. (In the next

section we shall offer a variation of this notion for E-unification.)
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Definition 3.10 Given a system S and a finite set V of ‘protected’ variables, a substitution

σ is a most general unifier of S away from V (abbreviated mgu(S)[V ] ) iff

(i) D(σ) ⊆ V ar(S) and I(σ) ∩ (V ∪D(σ)) = ∅ ;

(ii) σ ∈ U(S) ;

(iii) For every θ ∈ U(S), σ ≤ θ[V ar(S)] .

That such substitutions may always be found for unifiable systems is shown by

Lemma 3.11 If S is a unifiable system and V a protected set of variables, then there

exists a substitution σ which is a mgu(S)[V ].

Proof . Let θ = Unify(S) , as in Definition 3.5, so that θ is an idempotent mgu of S such

that D(θ) ∪ I(θ) ⊆ V ar(S) . If V ∩ I(θ) = ∅ , then σ = θ is a mgu(S)[V ]. Otherwise,

let ρ be a renaming substitution away from V ∪ V ar(S) such that D(ρ) = I(θ) , and let

σ = θ ◦ ρ . Clearly D(σ) = D(θ) ∪ I(θ) ⊆ V ar(S) . Since I(σ) = I(ρ) , by the definition of

ρ , σ is idempotent and also I(σ) ∩ V = ∅ , and hence condition (i) is satisfied. Condition

(ii) is satisfied also, since for any pair 〈u, v〉 in S, we have that θ(u) = θ(v) , and thus

σ(u) = ρ(θ(u)) = ρ(θ(v)) = σ(v) , so that σ ∈ U(S) . To show the last condition, we first

observe that from the definition of a renaming there must exist an inverse ρ−1 such that

ρ ◦ ρ−1 = Id[I(θ)] (since I(θ) = D(ρ) ). Now, for every x ∈ D(σ) , σ(x) = ρ(θ(x)) , and

so ρ−1(σ(x)) = ρ ◦ ρ−1(θ(x)) = θ(x) , with the result that θ = σ ◦ ρ−1[D(σ)] . But since

D(ρ−1) ∩ V ar(S) = ∅ , then also θ = σ ◦ ρ−1[V ar(S)] . Now suppose θ′ ∈ U(S) , so that

θ′ = θ ◦ η for some η . Then θ′ = σ ◦ ρ−1 ◦ η[V ar(S)] and finally σ ≤ θ′[V ar(S)] .

The following corollary will be used in a later result.

Corollary 3.12 If σ is a mgu(S)[V ] for some S and some V , then for every θ′ ∈ U(S)

we have σ ≤ θ′[V ar(S) ∪ V ].

Proof . By examining the details of the previous proof, we see that in fact θ = σ ◦
ρ−1[V ar(S) ∪ V ] , since D(ρ−1) ∩ V = ∅, and so θ′ = σ ◦ ρ−1 ◦ η[V ar(S) ∪ V ] and fi-

nally σ ≤ θ′[V ar(S) ∪ V ] .

4 E-Unification via Transformations

First we define the notion of E-unification and of a complete set of E-unifiers.

Definition 4.1 Let E be a finite set of equations. We say that a substitution θ is a unifier

of a pair 〈s, t〉 modulo E, or an E-unifier of s and t , iff θ(s)
∗←→E θ(t). A substitution θ is
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an E-unifier of a system S if it E-unifies every pair in S, and the set of all such E-unifiers

will be denoted UE(S). If S = {〈s, t〉}, then this will be denoted by UE(s, t).

It is well known that for any S the set UE(S) is only semi-decidable, and that even

if a system is E-unifiable, there is in general no mgu unique up to renaming, but instead a

possibly infinite set (see [7]). We now discuss some notions needed to deal with this more

complex situation.

Definition 4.2 Given a finite set E of equations and any set V of variables, we say that

two substitutions σ and θ are equal modulo E over V , denoted by σ =E θ[V ], iff ∀x ∈ V ,

σ(x)
∗←→E θ(x). We say that σ is more general modulo E than θ over V , denoted by

σ ≤E θ[V ], iff there exists some substitution η such that θ =E σ ◦ η[V ]. When V is the

set of all variables, we drop the notation [V ], and similarly we drop the subscript E when

E = ∅.

An important property of the relation =E which will be needed later is given by

Lemma 4.3 If θ =E σ then for any system S, θ ∈ UE(S) iff σ ∈ UE(S).

Proof . For any pair 〈u, v〉 in S, a simple induction on the structure of u and v suffices to

show that θ(u)
∗←→E θ(v) iff σ(u)

∗←→E σ(v).

From this lemma and the stability of E-congruence we can show

Corollary 4.4 If σ ∈ UE(S) and σ ≤E θ[V ar(S)] then θ ∈ UE(S).

Note that this result is true in particular when E = ∅. Next we generalize the concept

of a mgu(S)[V ] to E-unifiers; this formulation of a generating set for a set of E-unifiers is

due to [34]; we present a modification of the definition from [7] for term systems.6

Definition 4.5 Given a finite set E of equations, a system S, and a finite set V of

‘protected’ variables, a set U of substitutions is a complete set of E-unifiers for S away

from V (which we shall abbreviate by CSUE(S)[V ] ) iff

(i) For all σ ∈ U , D(σ) ⊆ V ar(S) and I(σ) ∩ (V ∪D(σ)) = ∅;
(ii) U ⊆ UE(S);

(iii) For every θ ∈ UE(S), there exists some σ ∈ U such that σ ≤E θ[V ar(S)].

The first condition is called the purity condition, the second the coherence condition, and

the last the completeness condition. If S consists of a single pair 〈u, v〉 then we use the

6 We also generalize slightly the Fages and Huet definition by allowing the protected set of variables
to be arbitrary. The original definition imposed the restriction that V ∩ V ar(S) = ∅ in order that
variable renaming not be necessary. We relax this restriction so that we have a true generalization
of a mgu(S)[V ] to E-unifiers, and allow renaming to be imposed or not, by setting V appropriately.



4 E-Unification via Transformations 15

abbreviation CSUE(u, v)[V ]. When the use of V is not relevant to our discussion we shall

drop the notation [V ].

We now justify the purity condition and show the generality of idempotent E-unifiers.

Lemma 4.6 For any system S, substitution θ , and set of protected variables W , if

θ ∈ UE(S) then there exists some substitution σ such that

(i) D(σ) ⊆ V ar(S) and I(σ) ∩ (W ∪D(σ)) = ∅ ;

(ii) σ ∈ UE(S) ;

(iii) σ ≤ θ[V ar(S)] and θ ≤ σ[V ar(S)].

Proof . If σ = θ|V ar(S) satisfies condition (i), then we have our result trivially. Otherwise,

if I(θ) = {x1, . . . , xn} then let {y1, . . . , yn} be a set of new variables disjoint from the

variables in W , D(θ), I(θ), and V ar(S). Now define the renaming substitutions ρ1 =

[y1/x1, . . . , yn/xn] and ρ2 = [x1/y1, . . . , xn/yn], and then let σ = θ ◦ ρ1|V ar(S). Clearly

σ satisfies (i), and since σ = θ ◦ ρ1[V ar(S)], we have the second part of (iii). Now since

ρ1 ◦ ρ2 = Id[V ar(S) ∪ I(θ)], we must have θ = θ ◦ ρ1 ◦ ρ2[V ar(S)]. But then by the fact

that σ = θ ◦ ρ1[V ar(S)] we have θ = σ ◦ ρ2[V ar(S)], proving the first part of (iii). To

show (ii), observe that for any 〈u, v〉 ∈ S we have θ(u)
∗←→E θ(v), and so by the stability

of E-congruence we have

σ(u) = ρ1(θ(u))
∗←→E ρ1(θ(v)) = σ(v),

which shows that σ ∈ UE(S) .

This proves that for any S and W , the set of all unifiers satisfying condition (i) and

(ii) of Definition 4.5 is a CSU(S)[W ], and so in particular there is no loss of generality in

considering only idempotent E-unifiers in what follows. This will simplify several of the

definitions and proofs.

We now show how to extend the previous set of transformations to perform E-

unification of a system under some arbitrary E, and develop the non-deterministic com-

pleteness of the method using a new formalism for ‘proofs’ that two terms are E-unifiable,

known as equational proof trees. The new set of transformations is fully general in that

it is capable of enumerating a CSUE(S) for any system S and set of equations E, and

we intend this section to provide a paradigm for the abstract study of complete methods

for general E-unification. The set of E-unifiers found by this method is highly redundant,

however, and in the next section, we show how to restrict this method to avoid rewriting

at variable occurrences while still retaining the ability to enumerate a CSUE(S).

We shall follow for the most part the plan of the previous section, in order to highlight

the essential similarities and differences between standard unification and E-unification.
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4.1 Transformations for E-Unification

First we examine the significance of solved form systems in this new context.

Lemma 4.7 If S′ = {〈x1, t1〉, . . . , 〈xn, tn〉} is a system in solved form, then {σS′} is a

CSUE(S′)[V ] for any V such that V ∩ V ar(S′) = ∅.

Proof . The first two conditions in Definition 4.5 are satisfied, since σS′ is an idempotent

mgu of S′, V ∩V ar(S′) = ∅, and I(σS′) ⊆ V ar(S′). Now, if θ ∈ UE(S′), then θ =E σS′ ◦θ,
since θ(xi)

∗←→E θ(ti) = θ(σS′(xi)) for 1 ≤ i ≤ n, and θ(x) = θ(σS′(x)) otherwise. Thus

σS′ ≤E θ and so obviously σS′ ≤E θ[V ar(S′)] .

This allows us to effectively ignore any E-unifiers which use rewrite steps between

pairs in solved systems, if we are just interested in complete sets of unifiers.

We may analyse the process of finding a CSUE(u, v) for two terms u and v as follows.

If θ ∈ UE(u, v) then there must exist some sequence

θ(u) = u0 ←→[α1,l1
.
=r1,ρ1] u1 ←→[α2,l2

.
=r2,ρ2] u2 . . . ←→[αm,lm

.
=rm,ρm] um = θ(v),

with m minimal (so that there are no redundant steps), D(ρi) ⊆ V ar(li, ri) for 1 ≤ i ≤ m.

Since all the equations are variants, then we can assume that D(θ), D(ρ1), . . . , D(ρm) are

pairwise disjoint, and we can form an extended E-unifier θ′ = θ ∪ ρ1 ∪ . . .∪ ρm, so that we

have

θ′(u) = u0 ←→[α1,l1
.
=r1,θ′]

u1 ←→[α2,l2
.
=r2,θ′]

u2 . . . ←→[αm,lm
.
=rm,θ′]

um = θ′(v).

Given any such rewrite sequence and extended E-unifier, we have several cases.

(1) m = 0 and θ′ = θ ∈ U(u, v). Then the analysis for standard unification is sufficient.

(2) m 6= 0 and some rewrite step occurs at the root of some ui. Assume that if one of u,

v is not a variable, it is u, and pick the left-most rewrite step; then

θ′(u)
∗←→E θ

′(li) ←→[ε,li
.
=ri,θ′]

θ′(ri)
∗←→E θ

′(v),

for some i, 1 ≤ i ≤ m, where there is no rewrite at the root between θ′(u) and θ′(li).

(3) m 6= 0 and no rewrite step occurs at the root of any ui.

(a) u = f(u1, . . . , un), v = f(v1, . . . , vn) for some f ∈ Σn with n > 0, and

therefore θ′(ui)
∗←→E θ

′(vi) for 1 ≤ i ≤ n.

(b) Either u or v is a variable; assume u is a variable.

(i) v = f(v1, . . . , vn) for some f ∈ Σn with n > 0, θ′(u) = f(t1, . . . , tn) for

some terms t1, . . . , tn, and thus ti
∗←→E θ

′(vi) for 1 ≤ i ≤ n.
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(ii) v is a variable. Then θ′(u) = f(t1, . . . , tn) and θ′(v) = f(t′1, . . . , t
′
n) for

some terms t1, . . . , tn, t
′
1, . . . , t

′
n, where ti

∗←→E t
′
i for 1 ≤ i ≤ n.

By recursively applying this analysis to the subsequences found in each case, every

rewrite step in the original sequence can be accounted for. We use cases (2) and (3) to define

two new transformation rules to account for the presence of rewrite steps in a unification

problem.

Definition 4.8 (The set of transformation rules BT ) To the transformations ST we add

two more to deal with equations.

Root Rewriting: Let 〈u, v〉 be a pair and if one of u or v is not a variable, assume that it

is u. Then

{〈u, v〉} ∪ S =⇒rrw {〈u, l〉, 〈r, v〉} ∪ S,

where l
.
= r is an alphabetic variant of an equation in E ∪ E−1 such that V ar(l, r) ∩

(V ar(S)∪V ar(u, v)) = ∅, and if neither u nor l is a variable, then Root(u) = Root(l). Root

Rewriting may not be applied hereafter to the pair 〈u, l〉. This transformation represents a

leftmost rewrite step at the root, and avoids rewriting a variable occurrence if possible.7

Root Imitation: If x is a variable and f ∈ Σn with n > 0, then we have

{〈x, v〉} ∪ S =⇒imit {〈x, f(y1, . . . , yn)〉, 〈x, v〉} ∪ S,

where the y1, . . . , yn are new variables and if v is not a variable, then f = Root(v). Also,

we immediately apply Variable Elimination to the new pair 〈x, f(y1, . . . , yn)〉.
As in the transformations in ST , recall that systems are multisets, and the unions

above are multiset unions. Unless specified otherwise the symbol =⇒ will be used in the

rest of this section for an arbitrary transformation from the set BT .

Thus, given a set of equations E and a system S to be E-unified, we say that θ ∈
E−Unify(S) iff there exists a sequence of transformations from the set BT

S =⇒ S1 =⇒ . . . =⇒ S′,

with S′ in solved form and θ = σS′ |V ar(S).

7 Strictly speaking this transformation is something like a paramodulation step at the root, except that
the terms u and l are not unified. The point is that the juxtaposition of an equation between the
terms u and v imitates the way a rewrite step occurs in the proof that two terms E-unify, and is not
just paramodulation, since further rewrites can take place below the root of u and l.
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Example 4.9 Let E = { f(g(z))
.
= z } and S = { 〈h(x), h(g(f(x))) 〉 }. Then we have

the following sequence of transformations:

〈h(x), h(g(f(x)))〉 =⇒dec 〈x, g(f(x))〉
=⇒imit,vel 〈x, g(y1)〉, 〈g(y1), g(f(g(y1)))〉
=⇒dec 〈x, g(y1)〉, 〈y1, f(g(y1))〉
=⇒rrw 〈x, g(y1)〉, 〈y1, z

′〉, 〈f(g(z′)), f(g(y1))〉
=⇒vel 〈x, g(y1)〉, 〈y1, z

′〉, 〈f(g(y1)), f(g(y1))〉
=⇒triv 〈x, g(y1)〉, 〈y1, z

′〉

Therefore, [g(y1)/x] = θ ∈ E−Unify(S) is an E-unifier of h(x) and h(g(f(x))), as

shown by the rewrite sequence

θ(h(x)) = h(g(y1)) ←→[11,z′
.
=f(g(z′)),y1/z′]

h(g(f(g(y1)))) = θ(h(g(f(x)))).

The general idea here is that given some θ ∈ UE(S), we wish to show that it is always

possible to find some σ ∈ UE(S) such that σ ≤E θ[V ar(S)]; in particular, this will be

accomplished if we can find a substitution σ ∈ UE(S) such that θ =E σ ◦ θ[V ar(S)]. The

basic method of the transformations is to find solved pairs 〈x, t〉 such that θ(x)
∗←→E θ(t),

so that, by an argument similar to that used in lemma 3.4, we have θ =E [t/x] ◦ θ. The

sequence of solved pairs found may be thought of as ‘pieces’ of the substitution θ, and

the set of solved pairs collected constitute successive approximations of the substitution θ,

namely, σ1 = [t1/x1], σ2 = [t1/x1] ◦ [t2/x2], . . . . When we have approximated θ sufficiently

to E-unify the system, we may stop. Along the way, we shall also build up the various

matching substitutions as we solve for variables from the variants of equations inserted by

Root Rewriting. This is the reason for restricting the substitution extracted from the final

solved form to just those variables occurring in the original system S.

In this context, Root Imitation represents a ‘minimal approximation’ of a substitution.

This corresponds to case 3.b in our previous analysis of E-unification, where some rewrite

steps occur, but not at the root, and one of the terms is a variable. We assume u is some

variable x, and then either (i) v is a compound term f(v1, . . . , vn), where n 6= 0, or (ii)

v is a variable. In case (i), we know that θ′(u) = f(t1, . . . , tn) for some terms t1, . . . , tn,

and ti
∗←→E θ

′(vi) for 1 ≤ i ≤ n. But we can not yet tell the exact identity of the terms

t1, . . . , tn; we know only that Root(θ(x)) = f . Thus we assume that θ′(x) = f(y1, . . . , yn),

where the new variables y1, . . . , yn are placeholders for the rest of the binding, and will be

found at some later point. Such a binding for x may be called a general binding for x. We



4 E-Unification via Transformations 19

may roughly think of this as extending the substitution θ′ = [f(t1, . . . , tn)/x] ∪ θ′′ into a

substitution

θ̂′ = [f(y1, . . . , yn)/x] ◦ [t1/y1, . . . , tn/yn] ∪ θ′′,

where clearly θ̂′ = θ′[D(θ′)]. By solving the pair 〈x, f(y1, . . . , yn)〉, we have found a piece of

this extended substitution. The bindings for the new variables will be found later and substi-

tuted in using Variable Elimination. In case (ii), where both u and v are variables, we know

that θ′(u) = f(t1, . . . , tn) and θ′(v) = f(t′1, . . . , t
′
n) for some terms t1, . . . , tn, t

′
1, . . . , t

′
n

where ti
∗←→E t

′
i for 1 ≤ i ≤ n. In this case we ‘guess’ a general binding for u, and then

this case is reduced to the previous one. Thus we must guess the root symbol of the binding;

this ‘don’t know’ non-determinism clearly presents implementation problems, but for the

present we are only concerned with demonstrating the completeness of a very general set of

transformations; in §6 we show how this can be avoided.

One interesting special case where Root Imitation is applicable is in E-unifying a pair

of the form 〈x, t〉, where x ∈ V ar(t), i.e., when the occur check fails for x. Although

such a pair cannot have a mgu, it is potentially E-unifiable by rewriting at the root (e.g.,

[a/x] ∈ UE(x, f(x)) for E = {a .
= f(a)} ) or by rewriting below the root, as shown in

Example 4.9 for the pair 〈x, g(f(x))〉. To E-unify a pair 〈x, f(v1, . . . , vn)〉 where the

occur check fails for x and no rewrite occurs at the root, we simulate rewriting below the

root by the use of Root Imitation and Term Decomposition, imitating the root f with a

general binding for x, and decomposing, thus distributing the occur check into at least

one of the pairs 〈y1, v1〉, . . . , 〈yn, vn〉, whereupon we may apply Root Rewriting or Root

Imitation again to that pair. At some point we must find an application of Root Rewriting

if we are to eliminate the occur check. Unfortunately, it is possible to create an infinite

series of pairs isomorphic up to renaming by repeatedly applying Root Imitation and Term

Decomposition:

〈x, f(x)〉 =⇒imit,vel,dec 〈x, f(y1)〉, 〈y1, f(y1)〉
=⇒imit,vel,dec 〈x, f(f(y2))〉, 〈y1, f(y2)〉, 〈y2, f(y2)〉 . . . .

Obviously this problem can not arise unless the occur check fails. In §6 we shall show

that we can eliminate such redundant sequences without affecting the completeness of the

procedure.

4.2 Soundness of the Transformations

The following lemmas will be used to show that our procedure is sound. The first is a

straightforward adaptation of lemma 3.7.
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Lemma 4.10 If S =⇒ S′ using Trivial or Variable Elimination, then UE(S) = UE(S′).

Proof . As with standard unification, the only difficulty is with Variable Elimination. We

must show that UE({〈x, v〉} ∪S) = UE({〈x, v〉} ∪ σ(S)) where σ = [v/x] and x 6∈ V ar(v).

For any substitution θ, if θ(x)
∗←→E θ(v), then θ =E σ ◦ θ, since σ ◦ θ differs from θ only

at x, but θ(x)
∗←→E θ(v) = σ ◦ θ(x). Thus,

θ ∈ UE({〈x, v〉} ∪ S)

iff θ(x)
∗←→E θ(v) and θ ∈ UE(S)

iff θ(x)
∗←→E θ(v) and σ ◦ θ ∈ UE(S); by lemma 4.3

iff θ(x)
∗←→E θ(v) and θ ∈ UE(σ(S))

iff θ ∈ UE({〈x, v〉} ∪ σ(S)).

Lemma 4.11 If S =⇒ S′ using one of Term Decomposition, Root Rewriting, or Root

Imitation, then UE(S′) ⊆ UE(S).

Proof . The basic idea here is that these transformations do not preserve those E-unifiers

which require a rewrite step or an application of root imitation, but do not introduce the

possibility of new E-unifiers. There are three cases.

(i) Term Decomposition: If we have θ(si)
∗←→E θ(ti), for 1 ≤ i ≤ n, then

θ
(
f(s1, . . . , sn)

) ∗←→E θ
(
f(t1, . . . , tn)

)
, so clearly S =⇒dec S′ and θ ∈ UE(S′)

implies that θ ∈ UE(S).

(ii) Root Rewriting : If θ(u)
∗←→E θ(l), θ(r)

∗←→E θ(v) for some variant l
.
= r of an equa-

tion from E ∪ E−1, then

θ(u)
∗←→E θ(l) ←→[ε,l

.
=r,θ] θ(r)

∗←→E θ(v).

Thus S =⇒rrw S′ and θ ∈ UE(S′) implies that θ ∈ UE(S).

(iii) Root Imitation: This rule is in two parts. First we add a pair 〈x, f(y1, . . . , yn)〉 to

the system, and then we apply Variable Elimination. Since we showed the soundness

of Variable Elimination, we simply observe that if S =⇒imit S′ then S ⊆ S′, so

clearly θ ∈ UE(S′) implies that θ ∈ UE(S).

In the case of Root Rewriting, the inclusion is always proper if the equation is not ground,

since E-unifiers of the new system must account for the variables in the equation used in

the rewrite step. The inclusion is also proper with Root Imitation, since new variables are

introduced again.

Using these lemmas, we have the major result of this subsection.
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Theorem 4.12 (Soundness) If S
∗

=⇒ S′ , with S′ in solved form, then σS′ |V ar(S) ∈ UE(S).

Proof . Using the previous two lemmas and a trivial induction on the length of transforma-

tion sequences, we have that σS′ ∈ UE(S). But since the restriction has no effect as regards

the terms in S, we must have also that σS′ |V ar(S) ∈ UE(S).

4.3 Completeness

It is a testament to the power and elegance of the technique of unification by transforming

systems of terms that it can be adapted to E-unification by adding only two additional

transformations, and that this method, as we prove in this section, can non-deterministically

find a CSUE(S) for arbitrary E and S.

In order to prove the completeness of the set BT , we must show that if θ ∈ UE(S) ,

then there exists some sequence of transformations resulting in a solved form S′ such that

σS′ ≤E θ[V ar(S)]. The strategy we adopt is to take a representation for the fact that

θ ∈ UE(S), and let its structure determine the sequence of transformations. In particular, we

shall proceed as follows. First, we observe that for any system S = {〈u1, v1〉, . . . , 〈un, vn〉}
there must exist sequences of rewrite steps θ(u1)

∗←→E θ(v1), . . . , θ(un)
∗←→E θ(vn) proving

that θ ∈ UE(S), and we form an E-unifier θ′ similar to the extension of θ as defined above

in section §4.1. Then we define an extension θ̂′ of θ′ and a system of pairs Bθ′ which

account for all the potential uses of general bindings by Root Imitation used in building up

parts of the substitution θ′. The next step is to show how, for every sequence of rewrite steps

θ(ui)
∗←→E θ(vi) there corresponds an equational proof tree which represents the sequence

of rewrite steps in a more convenient form, and then define a proof system < θ̂′, Bθ′ , P >,

where P is a set of equational proof trees corresponding to all the pairs in S. This proof

system is essentially a ‘preprocessing’ of the original θ, S, and the sequences of rewrite

steps showing that θ ∈ UE(S), in which all the syntactic materials possibly used by the

transformation rules have been collected together in a fashion which makes the completeness

of the set BT more evident. We then define a set of proof transformation rules analogous

to the set of transformations for systems which decompose the set of proof trees to a trivial

form; this sequence of proof transformations corresponds in a natural way to a sequence of

transformations on systems of pairs which, when applied to the original system S, finds a

system S′ in solved form such that σS′ ≤E θ[V ar(S)]. This is the essence of the method

of proving non-deterministic completeness: we show that for any θ ∈ UE(S), with E and

S arbitrary, there always exists some sequence of transformations which finds a E-unifier

more general than θ.

We showed in section §4.1 how for any θ ∈ UE(S), there corresponds a set of rewrite

sequences and an extension θ′ of θ incorporating all the matching substitutions. We
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provide a more rigorous formulation of this as follows. We need one preliminary lemma.

Lemma 4.13 If

u = u0 ←→[α1,l1
.
=r1,ρ1] u1 . . . ←→[αn,ln

.
=rn,ρn] un = v,

for some sequence of equations from E ∪ E−1, then for any σ we have

σ(u0) ←→[α1,l1
.
=r1,ρ1◦σ] σ(u1) . . . ←→[αn,ln

.
=rn,ρn◦σ] σ(un). (∗)

Proof . We proceed by induction on n. If n = 0 then the result holds trivially. Now assume

the hypothesis for all such sequences of length less than n for n > 0. For a sequence of

length n we have

σ(u0) ←→[α1,l1
.
=r1,ρ1◦σ] σ(u1) . . . ←→[αn−1,ln−1

.
=rn−1,ρn−1◦σ] σ(un−1)

and un−1 ←→[αn,ln
.
=rn,ρn] un, that is, un−1/αn = ρn(ln) and un = un−1[αn ← ρn(rn)].

But then, since αn ∈ Dom(un−1) we have σ(un−1)/αn = σ(un−1/αn) = σ(ρn(ln)) and

σ(un) = σ(un−1[αn ← ρn(rn)]) = σ(un−1)[αn ← σ(ρn(rn))],

and so therefore σ(un−1) ←→[αn,ln
.
=rn,ρn◦σ] σ(un), from which (∗) follows.

Lemma 4.14 For any system S = {〈u1, v1〉, . . . , 〈un, vn〉}, if θ ∈ UE(S) then there exists

some idempotent θ′ ∈ UE(S) such that θ′ ≤ θ[V ar(S)] and some set of rewrite sequences

R = {Π1, . . . ,Πn} proving8 that θ′ E-unifies each pair in S, where each such sequence

has the form

θ′(u) = u0 ←→[α1,l1
.
=r1,θ′]

u1 ←→[α2,l2
.
=r2,θ′]

u2 . . . ←→[αm,lm
.
=rm,θ′]

um = θ′(v). (1)

Proof . Let {ρ1, . . . , ρm} be the set of all matching substitutions used in all the n rewrite

sequences in R; as in the beginning of section §4.1 we may create an extension incorporating

all the matching substitutions used in a rewrite sequence, since all occurrences of equations

in all rewrite sequences are assumed to be renamed away from each other and from V ar(S).

Thus, let θ′′ = θ ∪ ρ1 ∪ . . . ∪ ρm, so that we have

θ′′(u) = u0 ←→[α1,l1
.
=r1,θ′′]

u1 ←→[α2,l2
.
=r2,θ′′]

u2 . . . ←→[αm,lm
.
=rm,θ′′]

um = θ′′(v). (2)

8 R is a set of specific sequences of rewrite steps, denoted by Πi; see Definition 5.1.
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Now, because all equations in R are variants, we have θ′′ = θ[V ar(S)]. If θ′′ is not

idempotent then there exists by lemma 2.8 a renaming substitution ρ′ and an idempotent

θ′ = θ′′ ◦ ρ′ such that θ′ ≤ θ′′[W ] where W is the set of all variables in S, in the set of

variants of equations used in R, and in D(θ′). Clearly we have θ′ ≤ θ′′ = θ[V ar(S)], and

finally, by our preceeding lemma, we may apply the substitution ρ′ to the entire sequence

(2) to obtain the sequence (1).

Let us assume in what follows that such a set of rewrite sequences and such a θ′ is

fixed. We now proceed to define the set Bθ′ and the extension θ̂′ which account for the

general bindings used by root imitation.

Definition 4.15 For a given substitution θ′, let us define a general expansion of θ′,

denoted θ̂′, and the corresponding system of general bindings for θ′, denoted Bθ′ , as

follows. For each x ∈ D(θ′), let θ′x = θ′|{x}. For each such θ′x, define inductively the

substitution θ̂′x and the set Bθ′x as follows. If θ′x = [t/x] with |t| = 0, i.e., t is either a

constant or a variable, then let θ̂′x = θ′x and Bθ′x = ∅. Otherwise, if θ′x = [f(t1, . . . , tn)/x],

then for some new variables y1, . . . , yn, let θ′yi = [ti/yi] for 1 ≤ i ≤ n, let

θ̂′x = θ′x ∪ θ̂′y1 ∪ . . . ∪ θ̂′yn ,

and let

Bθ′x = {〈x, f(y1, . . . , yn)〉} ∪Bθ′y1 ∪ . . . ∪Bθ′yn .

Finally, let θ̂′ =
⋃
x∈D(θ′) θ̂

′
x and Bθ′ =

⋃
x∈D(θ′)Bθ′x .

For example, if θ′ = [g(f(a), b)/x, z/y], then

θ̂′ = [g(f(a), b)/x, f(a)/y1, a/y2, b/y3, z/y],

and

Bθ′ = {〈x, g(y1, y3)〉, 〈y1, f(y2)〉}.

The following lemma demonstrates the essential properties of θ̂′ and and Bθ′ needed

in our completeness proof.

Lemma 4.16 For any substitution θ′ ∈ UE(S) for some S, there exists some θ̂′ and Bθ′

such that

(i) θ̂′ and Bθ′ are unique up to the choice of new variables in D(θ̂′)−D(θ′);

(ii) θ′ is idempotent iff θ̂′ is idempotent;

(iii) θ̂′ = θ′[D(θ′) ∪ V ar(S)] , with the result that θ̂′ ∈ UE(S);

(iv) θ̂′ ∈ U(Bθ′).
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Proof . By a simple induction on |t| we can show that θ̂′x exists for any θ′ = [t/x], and so

clearly θ̂′ and Bθ′ exist, and since the only place in the construction for non-uniqueness

is in picking the new variables, the result is always unique up to this choice, showing (i).

By an induction which follows the construction of θ̂′ we can show that I(θ̂′) = I(θ′) and

D(θ̂′) = D(θ′) ∪ Y , where Y is the set of new variables chosen. Now, since Y consists of

new variables, we must have Y ∩ I(θ̂′) = ∅, so that D(θ̂′)∩ I(θ̂′) = ∅ iff D(θ′)∩ I(θ′) = ∅.
But then by lemma 2.7, we have (ii). Again, as a consequence of the set Y being new

variables, (iii) must hold. Finally, note that by our definition, for any single binding t/x in

θ̂′, either |t| = 0 or t is some compound term f(t1, . . . , tn) such that there exists a pair

〈x, f(y1, . . . , yn)〉 in Bθ′ and some bindings t1/y1, . . . , tn/yn in θ̂′. Thus by a simple

induction on the construction of Bθ′ we see that (iv) holds.

The idea here is that we wish to preprocess the substitution θ′ in order to determine

the set of general bindings which might be used in a transformation by Root Imitation.

Thus we determine in advance the set of pairs potentially introduced by Root Imitation

and also the extensions to the substitution which ‘fill in’ these general bindings.

Now we define our formalism for the fact that such a substitution E-unifies a pair of

terms.

Definition 4.17 Let θ′ be some idempotent substitution, and let θ̂′ and Bθ′ be as above.

The set of proof trees associated with θ̂′ is defined inductively as follows. For simplicity we

use ∗ as a syntactic variable for one of the symbols ≈, ∼, or =.

(i) (Axioms) For every term u, the one node tree labeled with u = u is a proof tree

associated with θ̂′. For every two terms u 6= v , at least one of which is a variable and the

other a constant or a variable, such that θ̂′(u) = θ̂′(v), the one node tree labeled with u = v

is a proof tree associated with θ̂′. Thus, axioms are trivial proofs that identical terms are

E-unifiable or that a variable in the domain of the substitution associated with the proof

trivially E-unifies with some term. Note that in the latter case, the axiom will be formed

from two terms x and t, where x 6∈ V ar(t) , and that it is not necessary that θ̂′(x) = t.

(ii) (Term Decomposition) Let u and v be a pair of terms, f ∈ Σn, and u1, . . . , un,

v1, . . . , vn be terms such that

(a) If u is a variable, then θ̂′(u) = f(u1, . . . , un), otherwise u = f(u1, . . . , un), and

(b) If v is a variable, then θ̂′(v) = f(v1, . . . , vn), otherwise v = f(v1, . . . , vn).

Given any n proof trees T1, . . . , Tn associated with θ̂′, where each Ti is a proof tree whose

root is labeled with ui ∗ vi, the tree T whose root is labeled with u ∼ v and such that

T/i = Ti for 1 ≤ i ≤ n is a proof tree associated with θ̂′. Thus, a proof tree whose root is

labeled with u ∼ v represents the fact that θ̂′(u)
∗←→E θ̂′(v), where no rewrite steps occur
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at the root. Note that if either of the terms u or v is a variable, then we must instantiate

it before decomposing it in the proof tree; if a term is compound it is simply decomposed,

without the substitution being applied.

(iii) (Root Rewriting) Let u and v be a pair of terms and li
.
= ri for 1 ≤ i ≤ m

be variants of equations from E ∪ E−1. Furthermore, let T1, . . . , Tm+1 be proof trees

associated with θ̂′, where T1 is a proof tree whose root is labeled with either u = l1 or

u ∼ l1, and for 2 ≤ i ≤ m, Ti is a proof tree whose root is labeled with either ri−1 = li
or ri−1 ∼ li, and Tm+1 is a proof tree whose root is labeled with either rm = v or rm ∼ v.

Then the tree T whose root is labeled with u ≈ v and such that T/i = Ti for 1 ≤ i ≤ m+ 1

is a proof tree associated with θ̂′. This shows the effect of all the rewrites occurring at the

root in θ̂′(u)
∗←→E θ̂′(v).

In general, we regard the nodes of a proof tree as unordered pairs of terms, in ac-

cordance with the unordered nature of term pairs. A proof tree associated with θ̂′ whose

root is labeled with u ∗ v will be denoted by the pair 〈θ̂′, (u ∗ v)〉, or simply (u ∗ v) if the

substitution is available from context.9 It should be obvious that with any set of proof trees

P we may associate a system of pairs S, namely, the set of pairs of terms occurring in the

roots of the proof trees in the set P ; this is called the root system of P .

Finally, a triple 〈θ̂′, Bθ′ , P 〉 is a proof system for θ and S if θ′ is an idempotent

substitution such that θ′ ≤ θ[V ar(S)], θ̂′ is the general expansion of θ′, Bθ′ is the set of

general bindings for θ′, and finally if P is a set of proof trees associated with θ̂′ with a root

system S. (The point here is that although θ′ must be idempotent, θ need not be.) Note

that as a consequence of these definitions, for each subproof (x ∼ v) occurring somewhere

in a proof in P , there exists some pair 〈x, t〉 in Bθ′ ; this corresponds to the pair possibly

added to the system by some application of Root Imitation to the pair 〈x, v〉.

We shall prove that these proof systems are sound and complete with respect to the

definition of E-unification after presenting an illustration based on a variation of Example

4.9.

Example 4.18 Let E = { f(g(z))
.
= z }. The rewrite sequence which proves that θ =

[g(a)/x] is an E-unifier of S = {〈h(x), h(g(f(x)))〉} is

θ(h(x)) = h(g(a)) ←→[11,z′
.
=f(g(z′)),a/z′] h(g(f(g(a)))) = θ(h(g(f(x)))),

and so we may form the E-unifier θ′ = [g(a)/x, a/z′] and then the general expansion

θ̂′ = [g(a)/x, a/y1, a/z
′] and the set of general bindings Bθ′ = {〈x, g(y1)〉}. The proof

9 Note carefully that u ∗ v is the label of a proof tree node, and (u ∗ v) is a proof tree whose root node
is labeled with u ∗ v.
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system for θ and S is thus 〈θ̂′, Bθ′ , P 〉, where P is the set consisting of the single proof

tree

h(x) ∼ h(g(f(x)))

x ∼ g(f(x))

a ≈ f(x)

a = z′ f(g(z′)) ∼ f(x)

g(z′) ∼ x

z′ = a

The root system of P is {〈h(x), h(g(f(x)))〉}. (Compare with Example 4.9.)

When convenient, we shall represent the (partial) structure of a proof tree with root

node u ∗ v and subtrees P1, . . . , Pn in the prefix form u ∗ v[P1, . . . , Pn], e.g., variously

representing the subtree with root node a ≈ f(x) above in any of the forms(
a ≈ f(x)

)
, a ≈ f(x)

[
a = z′, (f(g(z′)) ∼ f(x))

]
,

or

a ≈ f(x)
[
a = z′, f(g(z′)) ∼ f(x)[g(z′) ∼ x[z′ = a]]

]
.

This linear notation will make it somewhat easier to manipulate proof trees.

Our next two theorems show that our proof representation is sound and complete with

respect to the definition of E-unification.

Theorem 4.19 For some given substitution θ , system S, and set of equations E, if

〈θ̂′, Bθ′ , P 〉 is a proof system for θ and S, then θ ∈ UE(S).

Proof . By the previous definition and lemma 4.16, we have θ̂′ = θ′ ≤ θ[V ar(S)], and so

if we can show that for each proof tree (u ∗ v) in P , we have θ̂′(u)
∗←→E θ̂′(v), then by

Corollary 4.4 we shall have our result. Thus let T = (u∗v) be an arbitrary proof tree in P .

We proceed by induction on the number n of tree nodes in T . If n = 1, then θ̂′(u) = θ̂′(v)

by definition. Now assume that the result holds for all proof trees with less than n nodes,

with n > 1, and suppose T contains n nodes. There are two cases.
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(i) If the root node of T is labeled with u ∼ v, then as above we suppose f is the root

of θ̂′(u) and let u1, . . . , um, v1, . . . , vm be terms such that

(a) If u is a variable, then θ̂′(u) = f(u1, . . . , um), otherwise u = f(u1, . . . , um),

(b) If v is a variable, then θ̂′(v) = f(v1, . . . , vm), otherwise v = f(v1, . . . , vm).

There are thus proof trees

T/1 = (u1 ∗ v1), . . . , T/m = (um ∗ vm)

and by the hypothesis, θ̂′(ui)
∗←→E θ̂′(vi) for 1 ≤ i ≤ m. By changing the rewrite addresses

α1, α2, . . . in the ith such sequence to iα1, iα2, . . ., and concatenating these m new rewrite

sequences, we see that θ̂′(u)
∗←→E θ̂′(v). (Note how the idempotency of θ̂′ is used here.)

(ii) If the root node of T is labeled with u ≈ v then there are proof trees

T/1 = (u ∗ l1), T/2 = (r1 ∗ l2), . . . , T/k + 1 = (rk ∗ v),

where the li
.
= ri are variants of equations from E ∪ E−1, and, by hypothesis,

θ̂′(u)
∗←→E θ̂′(l1), . . . , θ̂′(rk)

∗←→E θ̂′(v),

and so

θ̂′(u)
∗←→E θ̂′(l1) ←→

[ε,l1
.
=r1,θ̂′]

θ̂′(r1)
∗←→E . . . θ̂′(rk)

∗←→E θ̂′(v),

with the result that again θ̂′(u)
∗←→E θ̂′(v).

Theorem 4.20 If θ ∈ UE(S), then there exists a proof system 〈θ̂′, Bθ′ , P 〉 associated

with θ and S.

Proof . As shown in lemma 4.14, if θ ∈ UE(S) then there must exist some particular

sequence of rewrites proving this fact, and an idempotent E-unifier θ′ incorporating all the

matching substitutions used in rewrite steps. Then by lemma 4.16 we know that θ̂′ and

Bθ′ must exist, so if we can show that for any 〈u, v〉 ∈ S there exists an equational proof

tree (u ∗ v) associated with θ̂′, then we can simply collect all these trees together to form

P and we have our result.

Thus we shall show by induction that for any particular sequence

θ̂′(u) = u0 ←→[α1,l1
.
=r1,θ̂′]

u1 ←→[α2,l2
.
=r2,θ̂′]

. . . un−1 ←→[αn,ln
.
=rn,θ̂′]

un = θ̂′(v),

we have a proof tree (u∗v) associated with θ̂′. With any such rewrite sequence, we associate

a complexity measure

µ = {|u0|, |u1|, . . . , |un|},
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that is, a multiset of the depths of the terms u0, . . . , un. Our proof proceeds by induction

on µ, using the standard multiset ordering.

Basis. µ = {k} and either u = v or one of u, v is a variable. Then by Definition 4.17

(u = v) is a proof tree associated with θ̂′. (This constitutes a sufficient basis since it

includes the case k = 0 .)

Induction. Assume there exists a corresponding proof tree for all such rewrite sequences

with complexity strictly less than µ, and consider a sequence with complexity µ, as above.

There are three cases.

(i) µ = {k} where u 6= v and neither of u, v is a variable. Now we must have

Root(u) = Root(v), and since u 6= v, both are compound terms, i.e., k > 0. Thus

θ̂′(u) = u0 = θ̂′(v) and u = f(s1, . . . , sm) and v = f(t1, . . . , tm) for some terms

s1, . . . , sm, t1, . . . , tm. Then θ̂′(si) = u0/i = θ̂′(ti) with |u0/i| < |u0| for 1 ≤ i ≤ m , and

by hypothesis, there are proof trees (s1 ∗ t1), . . . , (sm ∗ tm) associated with θ̂′ , and so by

definition there must exist a proof tree u ∼ v[(s1 ∗ t1), . . . , (sm ∗ tm)] associated with θ̂′.

(This proof tree will naturally contain no rewrite nodes.)

(ii) µ = {k0, k1, . . . , kn} for n > 0 , and there is no rewrite at the root of any ui .

In this case, Root(θ̂′(u)) = Root(θ̂′(v)) , and the subterms are pairwise E-congruent. More

precisely, let f = Root(θ̂′(u)) be of arity m, and s1, . . . , sm, t1, . . . , tm be terms such that

(a) If u is a variable, then θ̂′(u) = f(s1, . . . , sm) , otherwise u = f(s1, . . . , sm) , and

(b) If v is a variable, then θ̂′(v) = f(t1, . . . , tm) , otherwise v = f(t1, . . . , tm) .

Then for each 1 ≤ i ≤ m we have that

θ̂′(si) = u0/i ←→E u1/i ←→E . . . ←→E un/i = θ̂′(ti),

with a complexity strictly less than µ . By the induction hypothesis, there exist proof trees

(s1 ∗ t1), . . . , (sm ∗ tm) associated with θ̂′ , and thus by definition a proof tree

u ∼ v[(s1 ∗ t1), . . . , (sm ∗ tm)]

associated with θ̂′ . (Note that the idempotency of θ̂′ is necessary in case one of u, v is a

variable.)

(iii) µ = {k0, k1, . . . , kn} for n > 0 , and there is a rewrite at the root of some ui .

Then we may represent the sequence as

θ̂′(u)
∗←→E θ̂′(l

′
1) ←→

[ε,l′1
.
=r′1,θ̂

′]
θ̂′(r′1)

∗←→E . . . θ̂′(l′p) ←→[ε,l′p
.
=r′p,θ̂

′]
θ̂′(r′p)

∗←→E θ̂′(v)

for some subset {l′1
.
= r′1, . . . , l

′
p
.
= r′p} of the equations used in the original sequence. But

then the complexity of each of the sequences

θ̂′(u)
∗←→E θ̂′(l

′
1), θ̂′(r′1)

∗←→E θ̂′(l
′
2), . . . , θ̂′(r′p)

∗←→E θ̂′(v)
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is strictly less than µ , and by hypothesis, there are proof trees (u∗ l′1), (r′1 ∗ l′2), . . . , (r′p ∗v)

associated with θ̂′ . Finally, by definition there must exist a proof tree

u ≈ v[(u ∗ l′1), . . . , (r′p ∗ v)]

associated with θ̂′.

One interesting point about this completeness proof is that it gives us a canonical

way of constructing a proof tree for any particular sequence of rewrite steps proving that

two terms are E-unifiable by the substitution θ̂′. This is particularly useful in eliminating

variables by applying substitutions to proof trees.

Lemma 4.21 If x is a variable, t a term, and θ̂′ an idempotent general expansion such

that θ̂′(x) = θ̂′(t), and if u and v are two arbitrary terms, then there exists a proof tree

(u ∗ v) associated with θ̂′ iff there exists a proof tree (u[t/x] ∗ v[t/x]) associated with

θ̂′. Furthermore, if such proof trees exist, there always exist two with the same number of

≈-nodes.

Proof . Since θ̂′(x) = θ̂′(t) we must have θ̂′ = [t/x] ◦ θ̂′, so that by lemma 4.3 we have

θ̂′(u)
∗←→E θ̂′(v) iff [t/x] ◦ θ̂′(u)

∗←→E [t/x] ◦ θ̂′(v) iff θ̂′(u[t/x])
∗←→E θ̂′(v[t/x]), and so, by

our previous two results, there exists a proof tree (u ∗ v) associated with θ̂′ iff there exists

a proof tree (u[t/x] ∗ v[t/x]) associated with θ̂′. Now by structural induction, it is easy to

show that for any particular sequence of m rewrite steps we have

θ̂′(u[t/x]) ←→[α1,l1
.
=r1,ρ1] u1 ←→[α2,l2

.
=r2,ρ2] u2 . . . ←→[αm,lm

.
=rm,ρm] θ̂

′(v[t/x])

if and only if

θ̂′(u) ←→[α1,l1
.
=r1,ρ1] u1 ←→[α2,l2

.
=r2,ρ2] u2 . . . ←→[αm,lm

.
=rm,ρm] θ̂

′(v).

But then by multiset induction on this sequence, following the proof of Theorem 4.20, it is

easy to show that if such terms are E-congruent using this particular sequence, then proof

trees exist for each pair, and that the creation of ≈-nodes corresponds to the structure of

this particular sequence, and hence the number of such nodes is the same in both trees.

We remark that, depending on the set E, there may exist many equivalent sequences

of rewrite steps, so that we can not enforce that the number of ≈-nodes always be the same

for any two trees; we simply prove that there always exist two such similar trees. Also,

note that it would be possible to be more precise about the structural similarity of trees

created canonically from the same rewrite sequence, in the sense that their ≈-nodes occur

in the same tree addresses, but this formality is unnecessary for our purposes, so we omit
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it. Finally, we remark that it would not in general be possible to define a similar lemma for

the case of two terms x and t such that θ̂′(x)
∗←→E θ̂′(t) without extending the substitution

θ̂′ . The reason is that we can not use the same rewrite sequence
∗←→E in both cases,

since there may be more rewrite steps in one than the other, and since the rewrites between

θ̂′(x) and θ̂′(t) may be used many times, by our assumption that all rewrite sequences

contain distinct variants of equations, these would be additional instances of equations, and

the extension θ′ would no longer be sufficient. This problem turns out to have serious

consequences in proving the completeness of the strategy of eager variable elimination (see

Section §10).

Now we show that the transformations on systems BT correspond to a certain set of

transformations on proof systems.

Definition 4.22 Let P ′ be a set of proof trees (possibly empty). We have the following

five proof transformations.

{(u ∗ u)} ∪ P ′ =⇒ P ′ (A)

{u ∼ v[T1, . . . , Tn]} ∪ P ′ =⇒ {T1, . . . , Tn} ∪ P ′, (B)

where u and v are both compound terms.

{(x ∗ t)} ∪ P ′ =⇒ {(x = t)} ∪ P ′[t/x], (C)

where there are no ≈-nodes in the tree (x ∗ t) (i.e., no rewrite steps), x occurs in some tree

in P ′ and where P ′[t/x] denotes the result of replacing each proof tree (u ∗ v) in P by a

proof tree (u[t/x] ∗ v[t/x]) (the existence of such a proof tree was shown in the previous

lemma).

{u ≈ v[T1, . . . , Tn]} ∪ P ′ =⇒ {T1, . . . , Tn} ∪ P ′ (D)

{(x ∼ v)} ∪ P ′ =⇒ {(x = t), (x ∼ v)} ∪ P ′, (E)

where 〈x, t〉 ∈ Bθ′ and where transformation (C) is immediately applied to the axiom

(x = t).

These proof transformations are extended from trees to systems, so that we say

〈θ̂′, Bθ′ , P 〉 =⇒ 〈θ̂′, Bθ′ , P ′〉 iff P =⇒ P ′.

It should be obvious that we have taken pains to define these proof transformations

by analogy with our transformations on term systems. In particular, for some proof trees
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P and P ′ with root systems S and S′ respectively, if P =⇒ P ′ using proof transformations

(A), (B), (C), or (E), then there is a corresponding transformation on the root system

S =⇒ S′ using Trivial , Term Decomposition, Variable Elimination, or Root Imitation

respectively. Similarly, if P =⇒(D) P
′, then we have a sequence S

∗
=⇒rrw S

′, with one

transformation step for each rewrite step left to right in the proof tree transformed in P .

Now we may prove the correctness of these proof transformations, after which we shall

give an example of their use.

Lemma 4.23 If 〈θ̂′, Bθ′ , P 〉 is a proof system and P =⇒ P ′ using one of the transfor-

mations (A)–(E), then 〈θ̂′, Bθ′ , P ′〉 is a proof system.

Proof . Clearly, the only point at issue is whether the new set P ′ is a set of proof trees

associated with θ̂′. In case (A), P ′ differs from P only in having one less proof tree, so

clearly if P is a set of proof trees associated with θ̂′, so is P ′. In the case of transformations

(B) and (D), since proof trees were defined inductively, for any proof tree T associated with

θ̂′, where T is not an axiom, the subtrees T/1, . . . , T/n for some n must still be proof

trees associated with θ̂′, and thus the result of either of these transformations must still

be a set of proof trees associated with θ̂′. If P =⇒(C) P
′, then since no rewrites occur

in (x ∗ t), we must have θ̂′(x) = θ̂′(t), and so (x = t) is a proof tree associated with θ̂′,

and by lemma 4.21, there exists a proof tree (u[t/x] ∗ v[t/x]) associated with θ̂′. Finally,

if P =⇒(E) P
′, then we have simply converted a pair 〈x, t〉 from Bθ′ into a proof tree

(x = t), and since, by lemma 4.16, θ̂′(x) = θ̂′(t), this is an axiom tree associated with θ̂′.

But then {(x = t)} ∪ P is a set of proof trees associated with θ̂′, and we have already

shown that the subsequent application of (C) is correct.

Example 4.24 The transformations on the single proof tree in the proof system from

Example 4.18 corresponding to the transformations in Example 4.9 are as follows.
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h(x) ∼ h(g(f(x)))

x ∼ g(f(x))

a ≈ f(x)

a = z′ f(g(z′)) ∼ f(x)

g(z′) ∼ x

z′ = a

⇓(B)

x ∼ g(f(x))

a ≈ f(x)

a = z′ f(g(z′)) ∼ f(x)

g(z′) ∼ x

z′ = a

⇓(E)

x = g(y1) g(y1) ∼ g(f(g(y1)))

y1 ≈ f(g(y1))

y1 = z′ f(g(z′)) ∼ f(g(y1))

g(z′) ∼ g(y1)

z′ = y1
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⇓(B)

x = g(y1) y1 ≈ f(g(y1))

y1 = z′ f(g(z′)) ∼ f(g(y1))

g(z′) ∼ g(y1)

z′ = y1

⇓(D)

x = g(y1) y1 = z′ f(g(z′)) ∼ f(g(y1))

g(z′) ∼ g(y1)

z′ = y1

⇓(C)

x = g(y1) y1 = z′ f(g(y1)) = f(g(y1))

⇓(A)

x = g(y1) y1 = z′

Note that this corresponds to the solved form system S′ = {〈x, g(y1)〉, 〈y1, z
′〉} found

in Example 4.9, and that for θ = [g(a)/x] as in Example 4.18 we have σS′ ≤ θ[V ar(S)].

Our next result formalizes this by showing that the proof transformations always result in

trivial proofs corresponding to solved form systems.

Lemma 4.25 Let 〈θ̂′, Bθ′ , P 〉 be a proof system. Then any sequence of proof transfor-

mations

P = P0 =⇒ P1 =⇒ . . .
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must terminate in a system P ′ = {(x1 = t1), . . . , (xn = tn)} associated with θ̂′ where no

transformation applies, and the root system of P ′ is a system in solved form.

Proof . First we show that every sequence of proof transformations must terminate. Let us

define a measure of complexity for a set P of proof trees as µ(P ) = 〈n,m〉, where n is the

number of variables in D(θ̂′) which are not solved in the root system of P , and m is the

number of nodes in all the proof trees in P . Then the lexicographic ordering on 〈n,m〉 is

well-founded, and each proof transformation produces a new proof system whose measure

is strictly smaller under this ordering: (A), (B), and (D) must decrease m and can not

increase n; and (C) and (E) must decrease n.

Therefore the relation =⇒ on proof systems is well-founded, and there must exist

some sequence P
∗

=⇒ P ′ where no transformation applies to P ′. But then P ′ must

consist solely of axioms of the form (xi = ti) with xi not identical with ti, since otherwise

either (A), (B), (D), or (E) would apply, no xi occurs in a ti, since the two are unifiable,

and furthermore each variable xi may not occur elsewhere in the proof system, or else (C)

would apply. Clearly the root system {〈x1, t1〉, . . . , 〈xn, tn〉} is a system in solved form.

By a simple induction on the length of the proof transformation sequence, and using

lemma 4.23 in the induction step, we see that P ′ is a proof system associated with θ̂′.

Now we are ready to state the major result of this section. The completeness of our

method is shown in the following theorem.

Theorem 4.26 (Completeness) For every θ ∈ UE(S), there exists a sequence of transfor-

mations S
∗

=⇒ S′ such that S′ is in solved form, and σS′ ≤ θ[V ar(S)].

Proof . Suppose θ ∈ UE(S). Then by Theorem 4.20 there must exist an equational proof

system 〈θ̂′, Bθ′ , P 〉, where by lemmas 4.14 and 4.16, we have θ̂′ = θ′ ≤ θ[V ar(S)]. By

lemma 4.25 we see that there must exist some sequence of proof transformations P
∗

=⇒ P ′

with P ′ = {(x1 = t1), . . . , (xk = tk)} a set of proof trees associated with θ̂′ to which

no transformation applies, and whose root system S′ is a system in solved form. By a

simple induction on the length of the proof transformation sequence, we may show that

there is a corresponding sequence of transformations on the root system S
∗

=⇒ S′ with

S′ = {〈x1, t1〉, . . . , 〈xk, tk〉} in solved form, and since P ′ is a set of proof trees associated

with θ̂′, we have θ̂′ ∈ U(S′), so that by lemma 3.4 we see that σS′ ≤ θ̂′, with the result

that σS′ ≤ θ̂′ = θ′ ≤ θ[V ar(S)].

By the soundness of the transformations, clearly any such σS′ ∈ UE(S). Note that

this theorem implies that σS′ ≤E θ[V ar(S)], but is in fact a stronger result. The reason

that we find more general substitutions under ≤ and not just ≤E is that we only perform

a generalization step at the last stage, when we take the mgu of a solved form.



5 Ground Church-Rosser Systems 35

Finally, we may characterize the set of substitutions non-deterministically found by

the set of transformations BT as follows.

Theorem 4.27 For any system S and any set of equations E, the set

{σS′ |V ar(S) | S
∗

=⇒ S′, and S′ is in solved form}

is a CSUE(S). By application of the appropriate renaming substitution away from V , this

set is a CSUE(S)[V ] for any V .

Proof . We must simply verify the conditions in Definition 4.5. Coherence was shown in

Theorem 4.12 and our previous result demonstrated completeness. By restricting the idem-

potent substitution σS′ to V ar(S) we satisfy purity for V empty. If V is not empty, we may

suitably rename the variables introduced by each of the substitutions σS′ away from V , as

shown in lemma 3.11.

Using these results, it would be possible to implement a general procedure for E-

unification in arbitrary theories by using a complete search strategy over all possible trans-

formation sequences. In [11], a pseudo-code procedure based on Robinson’s original al-

gorithm for standard unification [36] is given for a different set of transformations for E-

unification, using depth-first iterative deepening to simulate breadth-first search without

excessive storage overhead. However, basing such a method on the set BT would be very

inefficient, due to the possibility of rewriting variables in Root Rewriting. This creates

many extraneous rewrite sequences, since any rule can unify with a variable. In addition,

we must guess general bindings in the two variable case in Root Imitation to uncover po-

tential rewrites below such pairs, and, finally, we admit the potential for infinite recursion

in the same rule, as remarked in section §4.1. In the following sections we present a new

set of transformations which rectify this problem, and a proof of its completeness.

5 Ground Church-Rosser Systems

In this section, we shall develop techniques that will allow us to overcome the problem of

possible nonterminating sequences of applications of Root Imitation. The key point is that

if the equations in E were orientable and formed a canonical system R, then we could work

with normalized substitutions, that is, substitutions such that θ(x) is irreducible for every

x ∈ D(θ). If R is canonical, for every pair 〈x, v〉 where x is a variable, there is a proof of the

form θ(v)
∗−→R w

∗←−R θ(x) for some irreducible w, and if θ is normalized, then the proof

is in fact of the form θ(v)
∗−→R θ(x), where every rule ρ(l) → ρ(r) used in this sequence

applies at some nonvariable address β in v. Hence, for any rule in this sequence applied at
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a topmost level, θ(v/β) and ρ(l) must be E-congruent. This is the motivation for a new

rule, called Lazy Paramodulation, to replace Root Rewriting and Root Imitation:

{〈u, v〉} ∪ S =⇒ {〈u/β, l〉, 〈u[β ← r], v〉} ∪ S,

where β is a nonvariable occurrence in u. A formal definition of this transformation will be

given in section 6, and the set of transformations T obtained by adding this new rule to

ST will be given in definition 6.1.

However, not every set of equations is equivalent to a canonical system of rewrite

rules, and even if it is orientable with respect to some reduction ordering (thus forming a

noetherian set of rules), it may not be confluent. Three crucial observations allow us to

overcome these difficulties:

(1) There is no loss of generality in considering only ground substitutions;

(2) There are simplification orderings � that are total on ground terms;

(3) Ground confluence (or equivalently, being ground Church-Rosser) is all that is needed.

These ingredients make possible the existence of unfailing completion procedures

(Bachmair, Dershowitz, Hsiang, and Plaisted [1,2,3]). The main trick is that one can use

orientable ground instances of equations, that is, ground equations of the form ρ(l)
.
= ρ(r)

with ρ(l) � ρ(r), where l
.
= r is a variant of an equation in E ∪ E−1. Even if l

.
= r is

not orientable, ρ(l)
.
= ρ(r) always is if � is total on ground terms. The last ingredient

is that given a set E of equations and a reduction ordering � total on ground terms, we

can show that E can be extended to a set Eω equivalent to E such that the set R(Eω) of

orientable instances of Eω is ground Church-Rosser. Furthermore, Eω is obtained from E

by computing critical pairs (in a hereditary fashion), treating the equations in E as two-way

rules.10

Our “plan of attack” for the completeness proof of the new set of transformations T
(given in definition 6.1) is the following.

(1) Show the existence of the ground Church-Rosser completion Eω of E (theorem 5.7).

(2) Assuming that E is ground Church-Rosser, show that the T -transformations are com-

plete by examining closely the completeness proof in the basic case discussed in the

previous section.

10 Although a consequence of the existence of fair unfailing completion procedures proved by Bach-
mair, Dershowitz, Hsiang, and Plaisted [1,2,3], this result can be proved more directly and with less
machinery.
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(3) For an arbitrary E, show that the T -transformations are complete using theorem 5.7

and a lemma which shows that the computation of critical pairs can be simulated by

Lazy Paramodulation.

In (2), we shall also show that given any E-unifier θ, there is another normalized

E-unifier σ such that σ =E θ.

It is actually more general (and more flexible) but no more complicated to deal with

pairs (E,R) where E is a set of equations and R a set of rewrite rules contained in some

given reduction ordering �. The set E represents the nonorientable part (w.r.t. �) of the

system. Thus, as in Bachmair, Dershowitz, Hsiang, and Plaisted [1,2,3], we present our

results for such systems. First, we generalize the notion of equational proof. Given a set

E of equations and a rewrite system R, we define the notion of proof and rewrite proof for

the pair (E,R).

Definition 5.1 Let E be a set of equations and R a rewrite system. For any two terms

u, v, a proof step from u to v is a tuple 〈u, α, l, r, σ, v〉, where α is a tree address in u, σ is

a substitution, and either

u ←→[α,l
.
=r,σ] v

where l
.
= r is a variant of an equation in E ∪ E−1, or

u −→[α,l→r,σ] v

where l→ r is a variant of a rewrite rule in R, or

v −→[α,l→r,σ] u

where l→ r is a variant of a rewrite rule in R.

A proof step may be (partially) described as either an equality step u ←→E v, or a

rewrite step u −→R v or u ←−R v. A proof that u
∗←→E∪R v is a sequence

〈〈u0, α1, l1, r1, σ1, u1〉, 〈u1, α2, l2, r2, σ2, u2〉, . . . , 〈un−1, αn, ln, rn, σn, un〉〉

obtained by concatenating proof steps, with u = u0 and v = un. It is obvious that proofs

can be concatenated. A proof consisting only of rewrite steps involving rules in R used

from left to right is denoted as u0 −→R u1 . . . un−1 −→R un or u0
∗−→R un. A proof

consisting only of rewrite steps involving rules in R used from right to left is denoted as

u0 ←−R u1 . . . un−1 ←−R un or u0
∗←−R un. A proof of the form u

∗−→R w
∗←−R v is

called a rewrite proof . A proof of the form u ←−R w −→R v is called a peak . Clearly, a

proof is a rewrite proof iff it is a proof without peaks.

We also need the concepts of orientable instance, ground Church-Rosser, and critical

pair.
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Definition 5.2 Let E be a set of equations and � a reduction ordering. Given a variant

l
.
= r of an equation in E ∪ E−1, an equation σ(l)

.
= σ(r) is an orientable instance (w.r.t.

�) of l
.
= r iff σ(l) � σ(r) for some substitution σ.11 Given a reduction ordering �, the

set of all orientable instances of equations in E ∪ E−1 is denoted by R(E). Note that if

u −→R(E) v, then u −→[α,σ(l)
.
=σ(r)] v for some variant of an equation l

.
= r in E ∪ E−1

such that σ(l) � σ(r), and since � is a reduction ordering, u � v.

Definition 5.3 Let E be a set of equations, R a rewrite system, and � a reduction order-

ing. The pair (E,R) is ground Church-Rosser relative to � iff (a) R ⊆ � and (b) for any two

ground terms u, v, if u
∗←→E∪R v, then there is a rewrite proof u

∗−→R(E)∪R w
∗←−R(E)∪R v

for some w. A reduction ordering � is total on E-equivalent ground terms iff for any two

distinct ground terms u, v, if u
∗←→E v, then either u � v or v � u. A reduction ordering

� that is total on E-equivalent ground terms is called a ground reduction ordering for E.

It is important to note that for every set R of rewrite rules which is noetherian with

respect to a given reduction ordering �, if R is Church-Rosser, then it is ground Church-

Rosser relative to �, but in general the converse is not true. For example, consider the set

of rewrite rules

R = { fx→ gx

fx→ hx

fa→ a

ga→ a

ha→ a },

where Σ = {f, g, h, a}. It is easy to show that R is noetherian with respect to the recursive

path ordering generated by the precedence f � g � h � a, and, since every ground term

reduces to a, it is ground Church-Rosser relative to �. But R is not Church-Rosser, since

hy ←−R fy −→R gy, and hy and gy are irreducible. In general, being Church-Rosser is a

stronger condition than being ground Church-Rosser.

Using lemma 4.13, it is easy to show that for any two ground terms u, v, if u
∗←→E∪R v,

then there is also a proof Π with sequence of terms 〈u0, . . . , un〉 where all the ui are ground.

If � is a ground reduction ordering for E, then each equality step ui−1 ←→E ui in the

proof Π must be either of the form ui−1 −→R(E) ui or ui−1 ←−R(E) ui.

11 The interested reader might convince himself that because � is stable and has the subterm property,
for any two terms u and v, u � v implies that V ar(v) ⊆ V ar(u). This fact is sometimes glossed over.
In the present case thus V ar(σ(r)) ⊆ V ar(σ(l)).
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Definition 5.4 Let E be a set of equations, R a rewrite system, and � a reduction

ordering containing R. Let l1 → r1 and l2 → r2 be variants of rules in E ∪ E−1 ∪ R with

no variables in common (viewing an equation l
.
= r ∈ E ∪E−1 as the rule l→ r). Suppose

that for some address β in l1, l1/β is not a variable and l1/β and l2 are unifiable, and

let σ be the mgu of l1/β and l2. If σ(r1) 6� σ(l1) and σ(r2) 6� σ(l2), the superposition of

l1 → r1 on l2 → r2 at β determines a critical pair 〈g, d〉 of (E,R), with g = σ(r1) and

d = σ(l1[β ← r2]). The term σ(l1) is called the overlapped term, and β the critical pair

position.

The importance of critical pairs lies in the fact that they can be used to eliminate

peaks in proofs.

Lemma 5.5 (Critical pair lemma, Knuth and Bendix, [25], Huet [16]) Let E be a set

of equations, R a rewrite system, and � a reduction ordering containing R. For ev-

ery peak s ←−R(E)∪R u −→R(E)∪R t, either there exists some term v such that

s
∗−→R(E)∪R v

∗←−R(E)∪R t, or there exists a critical pair 〈g, d〉 of E ∪ R, an address α

in u (s.t. u/α is not a variable) and a substitution η such that, s = u[α ← η(g)] and

t = u[α← η(d)].

We shall now prove that given a pair (E,R) and a reduction ordering �� containing

R that is a ground reduction ordering for E ∪R, there is a pair (Eω, Rω) containing (E,R)

that is equivalent to (E,R) and is ground Church-Rosser relative to ��. The pair (Eω, Rω)

can be viewed as an abstract completion of (E,R) (not produced by any specific algorithm).

The existence of (Eω, Rω) follows from the existence of fair unfailing completion procedures

proved by Bachmair, Dershowitz, Hsiang, and Plaisted [1,2,3]. However, this proof requires

more machinery than we need for our purposes. We give a more direct and simpler proof

(inspired by their proof) that isolates clearly the role played by critical pairs. (In this

proof, one will not be distracted by features of completion procedures that have to do with

efficiency, like simplification of equations or rules by other rules.) The following definition

is needed.

Definition 5.6 Let E be a set of equations, R a rewrite system, and � a reduction

ordering containing R. Let CR(E,R) denote the set of all critical pairs of (E,R) (w.r.t.

�). The sets En and Rn are defined inductively as follows: E0 = E, R0 = R, and for every

n ≥ 0,

Rn+1 = Rn ∪ {g → d | 〈g, d〉 ∈ CR(En, Rn) and g � d}
∪ {d→ g | 〈g, d〉 ∈ CR(En, Rn) and d � g},

and

En+1 = En ∪ {g .
= d | 〈g, d〉 ∈ CR(En, Rn), g 6� d and d 6� g}.
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We also let

Eω =
⋃
n≥0

En and Rω =
⋃
n≥0

Rn.

Thus, Rω consists of orientable critical pairs obtained from (E,R) (hereditarily), and Eω

consists of nonorientable critical pairs obtained from (E,R) (hereditarily). As the next

theorem shows, (Eω, Rω) is a kind of abstract completion of (E,R).

Theorem 5.7 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R that can be extended to a ground reduction ordering �� for E ∪ R. Then,

(Eω, Rω) is equivalent to (E,R) and is ground Church-Rosser relative to ��.

Proof . That (Eω, Rω) is equivalent to (E,R) follows easily from the fact that (Eω, Rω)

contains (E,R) and that critical pairs in CR(En, Rn) are provably equal from (En, Rn).

We need to prove that for any two ground terms u, v, if u
∗←→Eω∪Rω v, then there is a

rewrite proof u
∗−→R(Eω)∪Rω w

∗←−R(Eω)∪Rω v for some w. Let

Π = 〈〈u0, α1, l1, r1, σ1, u1〉, 〈u1, α2, l2, r2, σ2, u2〉, . . . , 〈un−1, αn, ln, rn, σn, un〉〉

be a proof that u
∗←→Eω∪Rω v (where n is minimal), with u = u0, v = un, and where

u and v are ground. Because �� is a ground reduction ordering for E ∪ R, as observed

earlier, we can always assume that the terms ui are all ground, and we have in fact a proof

u
∗←→R(Eω)∪Rω v. We show that for every proof Π of the form u

∗←→R(Eω)∪Rω v, there is a

rewrite proof u
∗−→R(Eω)∪Rω w

∗←−R(Eω)∪Rω v, by induction on the multiset {u0, . . . , un},
using the multiset ordering ��m. For the base case, if the rewrite sequence is either trivial

(i.e. u = v, corresponding to the multiset {u}) or consists of a single step (corresponding

to the multiset {u, v}), then clearly the proof has no peaks and so is a rewrite proof. For

the induction step, suppose Π is a proof with corresponding multiset {u0, . . . , un} with

n ≥ 2. If Π has no peaks, then it is a rewrite proof and we are done. Otherwise, let

ui−1 ←−R(Eω)∪Rω ui −→R(Eω)∪Rω ui+1 be a peak in Π. Note that ui �� ui−1 and

ui �� ui+1 since R(Eω) is the set of orientable instances w.r.t. �� of Eω∪(Eω)−1, and since

Rω is contained in � by its definition. By the critical pair lemma 5.5, either there is some

term v such that ui−1
∗−→R(Eω)∪Rω v

∗←−R(Eω)∪Rω ui+1, or ui−1 ←→[η(g)
.
=η(d)] ui+1,

where η(g)
.
= η(d) is a ground instance of a critical pair 〈g, d〉 of Eω ∪ Rω. In the first

case, we can replace the peak by a rewrite proof relative to �� and we obtain a proof Π′

with associated sequence 〈u0, . . . , ui−1, v1, . . . , vk, ui+1, . . . , un〉 such that ui �� vj for all j,

1 ≤ j ≤ k. Hence

{u0, . . . , un} ��m {u0, . . . , ui−1, v1, . . . , vk, ui+1, . . . , un},

and we conclude by applying the induction hypothesis. In the second case, observe that

Eω ∪ Rω is closed under the formation of critical pairs, and so, g
.
= d ∈ Eω ∪ Rω. Thus,
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η(g)
.
= η(d) is orientable either because g

.
= d ∈ Rω, or because g

.
= d ∈ Eω and

�� is a ground reduction ordering relative to E ∪ R. Hence, the peak can be replaced

by a proof step ui−1 ←→R(Eω)∪Rω ui+1, obtaining a proof Π′ with associated sequence

〈u0, . . . , ui−1, ui+1, . . . , un〉. Since

{u0, . . . , un} ��m {u0, . . . , ui−1, ui+1, . . . , un},

we conclude by applying the induction hypothesis. This concludes the proof.

Note that since a proof is finite, for any proof u
∗←→Eω∪Rω v, there is a rewrite

proof u
∗−→R(Ek)∪Rk w

∗←−R(Ek)∪Rk v for some natural number k. Thus, only finitely

many critical pairs need to be computed. In some sense, the number of critical pairs to be

computed shows how “nonground Church-Rosser” (E,R) is. Also, a sufficient condition for

theorem 5.7 to apply is that the reduction ordering � containing R be also a total reduction

ordering on ground terms. In particular, the theorem applies when R = ∅, in which case

only a total simplification ordering on ground terms is needed. As mentioned earlier, such

orderings always exist. On the other hand, given a set R of rewrite rules, there may not be

any simplification ordering containing R that is also total on ground terms. Such behavior

is illustrated by the set R = {f(a)→ f(b), g(b)→ g(a)}.

The fact that a system (E,R) is ground Church-Rosser has the important consequence

that R(E) ∪ R is canonical on ground terms. This is shown as follows. First, note that

R(E) ∪R is Noetherian on ground terms, since R is contained in the reduction ordering �
by hypothesis and R(E) is also contained in � since it is the set of orientable instances of

E relative to � (which is total on ground terms). To show confluence, note that for any

ground terms u, v1, v2, if

v1
∗←−R(E)∪R u

∗−→R(E)∪R v2,

then v1
∗←→R(E)∪R v2, and since (E,R) is ground Church-Rosser, there is a rewrite proof

v1
∗−→R(E)∪R w

∗←−R(E)∪R v2

for some w. Hence, every ground term u can be reduced to a unique irreducible term u↓
(w.r.t. R(E) ∪R), its normal form.

Definition 5.8 Given a rewrite system R, we say that a substitution σ is reduced w.r.t.

R iff every term of the form σ(x) is irreducible w.r.t. R, where x ∈ D(σ).

It is very useful to observe that if a procedure P for finding sets of E-unifiers satisfies

the property stated in the next definition, then in order to show that this procedure yields

complete sets, there is no loss of generality in showing completeness with respect to ground

E-unifiers whose domains contain V ar(S) (that is, in clause (iii) of definition 4.5, θ(x) is a

ground term for every x ∈ D(θ), and V ar(S) ⊆ D(θ)).
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Definition 5.9 We call an E-unification procedure P pure if for every ranked alphabet

Σ, every finite set E of equations over TΣ(X) and every term system S over TΣ(X), if

U = P (E,S) is the set of E-unifiers for S given by procedure P , then for every σ ∈ U , for

every x ∈ D(σ), every constant or function symbol occurring in σ(x) occurs either in some

equation in E or some pair in S.

In other words, P (E,S) does not contain constant or function symbols that do not

already occur in the input (E,S). (For example, it is easy to prove that all the sets of

transformations presented in this paper are pure.) To prove our previous claim, we proceed

as follows. We add countably infinitely many new (distinct) constants cx to Σ, each constant

cx being associated with the variable x. The resulting alphabet is denoted by ΣSK . If θ is

not ground, we create the Skolemized version of θ, that is, the substitution θ̂ obtained by

replacing the variables in the terms θ(x) by new (distinct) constants.12

Lemma 5.10 Given a pure E-unification procedure P , assume that for every ranked

alphabet Σ, every finite set E of equations over TΣ(X) and every S over TΣ(X), the set

U = P (E,S) of E-unifiers of S given by P satisfies conditions (i) and (ii) of definition 4.5,

and for every E-unifier θ of S such that V ar(S) ⊆ D(θ) and θ(x) ∈ TΣ for every x ∈ D(θ),

there is some σ ∈ U such that σ ≤E θ[V ar(S)] (c.f. condition (iii) of definition 4.5). Then

every set U = P (E,S) is a complete set of E-unifiers for S.

Proof . Let θ be any E-unifier of S over TΣ(X). If D(θ) does not contain V ar(S), extend

θ such that θ(y) = cy for every y ∈ V ar(S)−D(θ), and let θ̂ be the Skolemized version of

this extension of θ. We are now considering the extended alphabet ΣSK . It is immediately

verified that θ̂ is also an E-unifier of S such that V ar(S) ⊆ D(θ̂) and θ̂(x) ∈ TΣSK
for

all x ∈ D(θ̂). Then, there is some σ ∈ U such that σ ≤E θ̂[V ar(S)], which means that

there is some substitution η (over TΣSK
(X)) such that σ ◦ η =E θ̂[V ar(S)]. Note that

by the purity of P , since E and S do not contain Skolem constants, σ does not contain

Skolem constants. Let η′ be obtained from η by changing each Skolem constant back to

the corresponding variable. Since σ does not contain Skolem constants, it is immediately

verified that σ ◦η′ =E θ. Thus, the set U is a complete set of E-unifiers for S over TΣ(X).

The following result is also useful.

Lemma 5.11 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R, and assume that (E,R) is ground Church-Rosser relative to �. If θ is a ground

12 More precisely, θ̂ is obtained from θ by replacing every variable y in each term θ(x) by the corre-
sponding Skolem constant cy , for each x ∈ D(θ).
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(E,R)-unifier of u and v and V ar(u, v) ⊆ D(θ), then there is a ground substitution σ that

is reduced w.r.t. R(E) ∪ R such that σ =E∪R θ, σ is an (E,R)-unifier of u and v, and

V ar(u, v) ⊆ D(σ).

Proof . Since (E,R) is ground Church-Rosser relative to �, R(E)∪R is canonical on ground

terms. Thus, if θ(u)
∗←→E∪R θ(v), since θ is ground and V ar(u, v) ⊆ D(θ), then there is a

rewrite proof

θ(u)
∗−→R(E)∪R u′

∗−→R(E)∪R w
∗←−R(E)∪R v′

∗←−R(E)∪R θ(v)

where w is ground and in normal form (w.r.t. R(E) ∪ R), and where the reductions

θ(u)
∗−→R(E)∪R u′ and v′

∗←−R(E)∪R θ(v) reduce each θ(x) (x ∈ D(θ)) to its normal form

θ(x)↓ (w.r.t. R(E) ∪R). Thus, defining the reduced substitution σ such that σ(x) = θ(x)↓
for each x ∈ D(θ), we have u′ = σ(u), v′ = σ(v), σ is a ground (E,R)-unifier of u and v,

and σ =E∪R θ.

For our next result, we need the following definition.

Definition 5.12 Given a rewrite system R, a rewrite step u −→[β,l
.
=r,ρ] v is innermost

(w.r.t. R) iff every proper subterm of u/β = ρ(l) is irreducible w.r.t. R.

The next lemma shows that in ground Church-Rosser systems, normal forms can

always be reached via certain canonical innermost rewrite sequences. The proof is not

trivial because V ar(r)− V ar(l) may be nonempty for an equation l
.
= r ∈ E ∪ E−1.

Lemma 5.13 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R, and assume that (E,R) is ground Church-Rosser relative to �. Every ground

term u reduces to its normal form u↓ (w.r.t. R(E)∪R) in a sequence of innermost reductions

u
∗−→R(E)∪R u↓, such that for every rule ρ(l) → ρ(r) used in the sequence, ρ is reduced

(w.r.t. R(E) ∪R).

Proof . Since (E,R) is ground Church-Rosser relative to �, R(E)∪R is canonical on ground

terms. We proceed by induction on the well founded ordering �. If u is in normal form,

we are done. Otherwise, there is a sequence of reduction steps u
∗−→R(E)∪R u↓, and and

because u is ground, we can assume that every rule ρ(l) → ρ(r) used in such a proof is

ground. Note that ρ(l) � ρ(r) whenever either l → r ∈ R or ρ(l) → ρ(r) ∈ R(E), and

V ar(l) ∪ V ar(r) = D(ρ) since ρ(l) and ρ(r) are ground.13 If u is not in normal form, there

must be some innermost step

u −→[β,l
.
=r,ρ] u[β ← ρ(r)].

13 Certainly, ρ(l) and ρ(r) ground implies that V ar(l) ∪ V ar(r) ⊆ D(ρ), but the fact that ρ may be
defined outside of V ar(l) ∪ V ar(r) is not used anywhere, so we might as well assume that V ar(l) ∪
V ar(r) = D(ρ).
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For every x ∈ V ar(l), ρ(x) must be in normal form (w.r.t. R(E) ∪ R), since otherwise

some proper subterm of ρ(l) = u/β would be reducible, contradicting the fact that we

have an innermost step. For each x ∈ (V ar(r) − V ar(l)), let ρ(x)↓ be the normal form

of ρ(x) (w.r.t. R(E) ∪ R), and let ρ′ be the reduced substitution such that ρ′(x) = ρ(x)↓
for each x ∈ (V ar(r) − V ar(l)), and ρ′(x) = ρ(x) for each x ∈ V ar(l). The definition

of ρ′ implies that ρ′(l) = ρ(l) and ρ(x) � ρ′(x) for every x ∈ D(ρ). Thus, ρ(l) � ρ(r)

implies that ρ′(l) � ρ′(r). Since R(E) ∪ R is canonical on ground terms, ρ′(l) = ρ(l), and

u = u[β ← ρ(l)], using the rule ρ′(l)→ ρ′(r), we have a proof

u = u[β ← ρ′(l)] −→R(E)∪R u[β ← ρ′(r)]
∗−→R(E)∪R u↓

where the first reduction step is innermost and ρ′ is reduced (w.r.t. R(E) ∪ R). Letting

u′ = u[β ← ρ′(r)], we have u � u′ since ρ′(l) � ρ′(r). We conclude by applying the

induction hypothesis to u′.

We are now ready to apply the results of this section to prove the completeness of an

improved set of transformations.

6 Completeness of an Improved Set of Transformations

Let E be a set of equations, R a rewrite system, and � a reduction ordering containing R.

Definition 6.1 (The set of transformation rules T ) The set T consists of the transfor-

mations Trivial, Term Decomposition, and Variable Elimination from the set ST plus one

more transformation defined as follows:

Lazy Paramodulation: Given a multiset of pairs {〈u, v〉} ∪ S, then

{〈u, v〉} ∪ S =⇒ {〈u/β, l〉, 〈u[β ← r], v〉} ∪ S,

where β is a nonvariable occurrence in u (i.e., u/β is not a variable) and l
.
= r is a variant

(whose variables do not occur in {〈u, v〉} ∪ S) of some equation in E ∪ E−1 ∪ R ∪ R−1.

Furthermore, if l is not a variable, then Root(u/β) = Root(l) and Term Decomposition

is immediately applied to 〈u/β, l〉 (this corresponds to a leftmost rewrite at address β).14

Thus, if l is not a variable, letting l = f(l1, . . . , lk) and u/β = f(t1, . . . , tk), Lazy Paramod-

ulation can be specialized to:

{〈u, v〉} ∪ S =⇒ {〈t1, l1〉, . . . , 〈tk, lk〉, 〈u[β ← r], v〉} ∪ S.

14 As with Root Rewriting, note that this is not simply a paramodulation step, nor simply a paramod-
ulation step where the unification of u/β and l is delayed; it allows further rewrite steps to occur
below (but not at) the roots of u/β and l, hence the name Lazy Paramodulation.
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Recall that a pair 〈u, v〉 is in fact a multiset, and so Lazy Paramodulation also applies from

v to u, as in

{〈u, v〉} ∪ S =⇒ {〈v/β, l〉, 〈u, v[β ← r]〉} ∪ S,

where β is a nonvariable occurrence in v. As in our previous set of transformations, we note

that systems are multisets and the unions in this rule are multiset unions.

In order to distinguish between the set BT and the set T , the former will be called BT -

transformations and the latter T -transformations. The soundness of the T -transformations

is given by

Theorem 6.2 (Soundness of T ) If S
∗

=⇒ S′ , using transformations from the set T , with

S′ in solved form, then σS′ |V ar(S) ∈ UE(S).

Proof . The only difference from theorem 4.12 is that we must prove the soundness of Lazy

Paramodulation, i.e., that if S =⇒ S′ using this transformation, then UE(S′) ⊆ UE(S).

But clearly if θ(u/β)
∗←→E θ(l) and θ(u[β ← r])

∗←→E θ(v) then we have

θ(u) = θ(u[β ← u/β])
∗←→E θ(u[β ← l]) −→[β,l

.
=r,θ] θ(u[β ← r])

∗←→E θ(v),

from which the result follows.

The completeness of the set of T -transformations is shown in two steps. First, we

assume that (E,R) is ground Church-Rosser and we show that the T -transformations are

complete, even when Lazy Paramodulation is restricted so that it applies only when either

β = ε (i.e. at the root) or when one of u, v is a variable (but not both). Then, we use theorem

5.7 and a lemma that shows that the computation of critical pairs can be simulated by Lazy

Paramodulation unrestricted.

The quickest way to prove the completeness of the set T in the case where (E,R)

is ground Church-Rosser w.r.t. � is to adapt the definition of proof trees. Another proof

consists in showing that applications of Root Imitation can be bounded and simulated by

Lazy Paramodulation, but this proof is more cumbersome. Suppose that θ is an (E,R)-

unifier of a system S. First, observe that any procedure using the transformations in T
satisfies the purity condition of definition 5.9, and by lemma 5.11 and lemma 5.10, we can

assume that θ is reduced w.r.t. R(E) ∪ R, ground, and that V ar(S) ⊆ D(θ). Since (E,R)

is ground Church-Rosser relative to �, there is a rewrite proof

θ(u)
∗−→R(E)∪R w

∗←−R(E)∪R θ(v)

for every pair 〈u, v〉 ∈ S, where w is irreducible (w.r.t. R(E) ∪ R). By lemma 5.13 (and

because θ is reduced), we can assume that for every rule ρ(l)→ ρ(r) used in each of these
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rewrite proofs, ρ is reduced (w.r.t. R(E) ∪ R). Now, since θ and all the matching sub-

stitutions ρ are ground, and by our assumption that all equations used are variants, it is

immediate that we can form a ground substitution extending θ incorporating all the match-

ing substitutions. For simplicity of notation we shall also call this extension θ. Observe that

the extended substitution θ is still reduced. The crucial observation is the following. If v

is a variable, say y, because θ is reduced we must have w = θ(y) and θ(u)
∗−→R(E)∪R θ(y).

If u is also a variable, say x, we must have θ(x) = w = θ(y). Thus, when 〈u, v〉 is a pair

of variables, Variable Elimination always applies. Also, in the case of a pair 〈u, y〉 ∈ S

where u is a compound term, y is a variable, and there is a sequence of rewrite steps

θ(u)
∗−→R(E)∪R θ(y) but no step takes place at the root, some rewrite step must take place

at some address β in u such that u/β is not a variable. More specifically, let {β1, . . . , βm} be

the set of independent addresses (of nonvariable occurrences) in v at which topmost rewrite

steps take place in θ(u)
∗−→R(E)∪R θ(y). Then, for each i, 1 ≤ i ≤ m, there is a finite set

{li1
.
= ri1, . . . , l

i
ni

.
= rini

} of variants of equations in E ∪ E−1 ∪R such that

θ(u/βi)
∗−→R(E)∪R θ(li1)

∗−→R(E)∪R θ(ri1)
∗−→R(E)∪R . . . θ(lini

)
∗−→R(E)∪R θ(rini

),

and we also have

θ(u[β1 ← r1
n1
, . . . , βm ← rmnm

])
∗−→R(E)∪R θ(y).

This suggests modifying the definition of proof trees to allow rewrite rule insertion not just at

address ε, but more generally at topmost addresses where rewrites take place. Furthermore,

this generalization is only necessary in the case of pairs 〈u, v〉 where v (or u, but not both)

is a variable. Now, decomposition only applies to pairs 〈u, v〉 where both u and v are

compound terms whose root symbol is identical. For a pair 〈u, v〉 where v (or u, but not

both) is a variable, we have either an axiom, or rewrite rule insertion. The new definition

is as follows.

Definition 6.3 Let θ be some (idempotent) substitution. The set of proof trees associated

with θ is defined inductively as follows. For simplicity we use ∗ as a syntactic variable for

one of the symbols ≈, ∼, or =.

(i) (Axioms) For every term u, the one node tree labeled with u = u is a proof tree

associated with θ. For every two terms u 6= v , at least one of which is a variable, such that

θ(u) = θ(v), the one node tree labeled with u = v is a proof tree associated with θ.

(ii) (Term Decomposition) Let u and v be a pair of compound terms of the form

f(u1, . . . , un) and f(v1, . . . , vn). Given any n proof trees T1, . . . , Tn associated with θ,

where each Ti is a proof tree whose root is labeled with ui ∗ vi, the tree T whose root is

labeled with u ∼ v and such that T/i = Ti for 1 ≤ i ≤ n is a proof tree associated with

θ.
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(iii) (Rewrite Rule Insertion) Let u and v be a pair of terms. If both u, v are compound

terms, let li
.
= ri for 1 ≤ i ≤ m be variants of equations from E ∪E−1 ∪R. Furthermore,

let T1, . . . , Tm+1 be proof trees associated with θ, where T1 is a proof tree whose root is

labeled with either u = l1 or u ∼ l1, and for 2 ≤ i ≤ m, Ti is a proof tree whose root is

labeled with either ri−1 = li or ri−1 ∼ li, and Tm+1 is a proof tree whose root is labeled

with either rm = v or rm ∼ v. Then the tree T whose root is labeled with u ≈ v and such

that T/i = Ti for 1 ≤ i ≤ m+ 1 is a proof tree associated with θ.

If one of u, v (but not both) is a variable, say v = y, let {β1, . . . , βm} be a set of

independent addresses (of nonvariable occurrences) in v, and for each i, 1 ≤ i ≤ m, let

{li1
.
= ri1, . . . , l

i
ni

.
= rini

} be a set of variants of equations in E ∪ E−1 ∪ R. For each i,

1 ≤ i ≤ m, let T i1, . . . , T
i
ni

be proof trees associated with θ, where T i1 is a proof tree whose

root is labeled with either u/βi = li1 or u/βi ∼ li1, T ij (2 ≤ j ≤ ni) is a proof tree whose root

is labeled with either rij−1 = lij or rij−1 ∼ lij , and Tm+1 a proof tree whose root is labeled

with either u[β1 ← r1
n1
, . . . , βm ← rmnm

] = y or u[β1 ← r1
n1
, . . . , βm ← rmnm

] ≈ y. Then, the

tree T whose root is labeled with u ≈ y and having n1 + . . .+nm+ 1 sons defined such that

T/j = T 1
j , for 1 ≤ j ≤ n1, T/(n1 + . . . + nk−1 + j) = T kj , for 2 ≤ k ≤ m, 1 ≤ j ≤ nk, and

T/(n1 + . . .+ nm + 1) = Tm+1, is a proof tree associated with θ. We also assume that all

edges from u ≈ y to the root nodes of the trees T i1, . . . , T
i
ni

are labeled with the address βi.

When β1 = . . . = βm = ε, this label is omitted.

A proof system is now defined as a pair 〈θ, P 〉 where θ is a substitution and P is a

set of proof trees associated with θ. It is now easy to adapt the proofs of theorem 4.19

and theorem 4.20 to the new definition of proof trees, in the case where (E,R) is ground

Church-Rosser.

Theorem 6.4 For some given substitution θ , system S, and pair (E,R), if 〈θ, P 〉 is a

proof system for θ and S, then θ is an (E,R)-unifier of S.

Note that the result actually holds for any substitution, not necessarily ground or

idempotent, and does not require (E,R) to be ground Church-Rosser. On the other hand,

the fact that (E,R) is ground Church-Rosser is crucial to the completeness of proof trees.

Theorem 6.5 If (E,R) is ground Church-Rosser and θ is a ground reduced (E,R)-unifier

of S such that V ar(S) ⊆ D(θ), then there exists a proof system 〈θ, P 〉 associated with θ

and S.

Proof . It is similar to that of theorem 4.20 and proceeds by multiset induction. The

only changes occur in the case of a pair 〈u, v〉 where u or v is a variable. Instead of

decomposition, we either have an axiom or rewrite rule insertion as discussed earlier. The

details are straightforward.
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We are now in the position to prove the completeness of the set T when (E,R) is

ground Church-Rosser.

Lemma 6.6 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R, and assume that (E,R) is ground Church-Rosser relative to �. Given any

system S if θ is an (E,R)-unifier of S, then there is a sequence of T -transformations

S
∗

=⇒ Ŝ (using variants of equations in E ∪E−1 ∪R) yielding a solved system Ŝ such that

if σ
Ŝ

is the substitution associated with Ŝ, then σ
Ŝ
≤E∪R θ[V ar(S)]. Furthermore, Lazy

Paramodulation can be restricted so that it is applied only when either β = ε or one of u, v

is a variable (but not both).

Proof . The proof is similar to the proof of theorem 4.26. The only significant difference

is that we need to use theorem 6.5 instead of theorem 4.20. In the present situation,

the proof transformation (E) is never used, and clearly lemma 4.23 and lemma 4.25 still

hold. The only thing to verify to make sure that theorem 4.26 goes through is to check

that for every sequence of proof tree transformations, there is a corresponding sequence of

transformations on root systems. The only new case is that of a proof tree (u ≈ y) where

u ≈ y has n1 + . . . + nm + 1 sons corresponding to rewrite rule insertions at independent

addresses {β1, . . . , βm}. For each i, 1 ≤ i ≤ m, we have a set {li1
.
= ri1, . . . , l

i
ni

.
= rini

} of

variants of equations in E ∪ E−1 ∪R. We need to show that

〈u, y〉 +
=⇒ 〈u/β1, l

1
1〉, 〈r1

1, l
1
2〉, . . . , 〈r1

n1−1, l
1
n1
〉,

. . .

〈u/βm, lm1 〉, 〈rm1 , lm2 〉, . . . , 〈rmnm−1, l
m
nm
〉,

〈u[β1 ← r1
n1
, . . . , βm ← rmnm

], y〉.

This is easily shown by repeated use of Lazy Paramodulation, first at address β1, then β2,

. . ., and finally at βm. This sequence starts as follows:

〈u, y〉 =⇒ 〈u/β1, l
1
1〉, 〈u[β1 ← r1

1], y〉
=⇒ 〈u/β1, l

1
1〉, 〈r1

1, l
1
2〉, 〈u[β1 ← r1

2], y〉
∗

=⇒ . . .

=⇒ 〈u/β1, l
1
1〉, 〈r1

1, l
1
2〉, . . . , 〈r1

n1−1, l
1
n1
〉, 〈u[β1 ← r1

n1
], y〉

.

The details are straightforward and left to the reader.

In order to prove the completeness of the T -transformations in the general case, the

following lemma showing that the computation of critical pairs can be simulated by Lazy

Paramodulation is needed.
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Lemma 6.7 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R. For every finite system S, every sequence of T -transformations S
∗

=⇒ Ŝ using

equations in Eω ∪ (Eω)−1 ∪ Rω can be converted to a sequence S
∗

=⇒ Ŝ′ using equations

only in E∪E−1∪R∪R−1, such that Ŝ and Ŝ′ are in solved form and σ
Ŝ
|V ar(S) = σ

Ŝ′
|V ar(S).

Proof . The lemma is established by proving by induction on k that every sequence of

T -transformations S
∗

=⇒ Ŝ using equations in Ek ∪ (Ek)−1 ∪ Rk can be converted to a

sequence of T -transformations S
∗

=⇒ Ŝ′ using equations only in E ∪ E−1 ∪ R ∪ R−1, such

that Ŝ and Ŝ′ are in solved form and σ
Ŝ
|V ar(S) = σ

Ŝ′
|V ar(S). The base case is trivial. For

the induction step, let σ(r1)
.
= σ(l1[β ← r2]) be an equation obtained by forming a critical

pair from l1 → r1 and l2 → r2 at β in l1, with mgu σ of l1/β and l2. It is sufficient to show

that whenever such a critical pair is used in one step of Lazy Paramodulation, say

〈u, v〉 =⇒ 〈u/α, σ(r1)〉, 〈u[α← σ(l1[β ← r2])], v〉 (1)

or

〈u, v〉 =⇒ 〈u/α, σ(l1[β ← r2])〉, 〈u[α← σ(r1)], v〉, (2)

where α is some nonvariable occurrence in u, then there is another sequence of transforma-

tions using only the equations l1
.
= r1 and l2

.
= r2. Such a sequence for (1) is as follows:

〈u, v〉 =⇒ 〈u/α, r1〉, 〈u[α← l1], v〉,

using the equation r1
.
= l1 at α in u. Note that equation l1

.
= r1 is used backwards. Next,

〈u/α, r1〉, 〈u[α← l1], v〉 =⇒ 〈u/α, r1〉, 〈l1/β, l2〉, 〈u[α← l1[β ← r2]], v〉,

using the equation l2
.
= r2 at αβ in u[α← l1] and the fact that

u[α← l1]/αβ = l1/β

and

u[α← l1][αβ ← r2] = u[α← l1[β ← r2]];

Finally, use any sequence of transformations from the set ST that computes the mgu σ of

l1/β and l2 with associated solved system S1:

〈u/α, r1〉, 〈l1/β, l2〉, 〈u[α← l1[β ← r2]], v〉 ∗
=⇒ S1 ∪ 〈u/α, σ(r1)〉, 〈u[α← σ(l1[β ← r2])], v〉.

In these last steps, we used the fact that D(σ) is disjoint from the set of variables V ar(u)∪
V ar(v). A sequence for (2) is as follows:

〈u, v〉 =⇒ 〈u/α, l1〉, 〈u[α← r1], v〉,



50 COMPLETE SETS OF TRANSFORMATIONS FOR GENERAL E-UNIFICATION

using equation l1
.
= r1 at α in u;

〈u/α, l1〉, 〈u[α← r1], v〉 =⇒ 〈u/α, l1[β ← r2]〉, 〈l1/β, l2〉, 〈u[α← r1], v〉,

using equation l2
.
= r2 at β in l1. Finally, use any sequence of transformations from the set

ST that computes the mgu σ of l1/β and l2 with associated solved system S1:

〈u/α, l1[β ← r2]〉, 〈l1/β, l2〉, 〈u[α← r1], v〉 ∗
=⇒ S1 ∪ 〈u/α, σ(l1[β ← r2])〉, 〈u[α← σ(r1)], v〉.

(we also used the fact that D(σ) is disjoint from V ar(u) ∪ V ar(v).)

Finally, we can prove the completeness of the T -transformations in the general case.

Theorem 6.8 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R total on ground terms. Given any finite system S, if θ is an (E,R)-unifier of

S, then there is a sequence of T -transformations S
∗

=⇒ Ŝ (using variants of equations in

E∪E−1∪R∪R−1) yielding a solved system Ŝ such that if σ
Ŝ

is the substitution associated

with Ŝ, then σ
Ŝ
≤E∪R θ[V ar(S)].

Proof . By theorem 5.7, Eω∪Rω is equivalent to (E,R) and is ground Church-Rosser relative

to �. By lemma 6.6, there is a sequence of T -transformations S
∗

=⇒ Ŝ using variants of

equations in Eω∪(Eω)−1∪Rω yielding a solved system Ŝ such that if σ
Ŝ

is the substitution

associated with Ŝ, then σ
Ŝ
≤E∪R θ[V ar(S)]. Finally, we use lemma 6.7 to eliminate uses

of critical pairs, obtaining a sequence where all equations are in E ∪ E−1 ∪R ∪R−1.

Note that when (E,R) is ground Church-Rosser, equations in E are used as two-way

rules in Lazy Paramodulation, but rules in R can be used oriented. This means that in a

step

〈u, v〉 =⇒ 〈u/β, l〉, 〈u[β ← r], v〉,

where β is a nonvariable occurrence in u, then l
.
= r ∈ E ∪ E−1 if l

.
= r is not in R, but

r → l is not tried if l→ r is in R, and similarly for a step

〈u, v〉 =⇒ 〈u, v[β ← r]〉, 〈l, v/β〉,

where β is a nonvariable occurrence in v. Furthermore, Lazy Paramodulation can be re-

stricted so that it applies only when either β = ε or one of u, v is a variable (but not both).

This is in contrast to the general case where even rules in R may have to be used as two-

way rules due to the computation of critical pairs. Also, Lazy Paramodulation may have

to be applied with β 6= ε even when both u and v are not variables. This case only seems

necessary to compute critical pairs. So far, we have failed to produce an example where

Lazy Paramodulation needs to be applied in its full generality (that is, when neither u nor

v is a variable and β 6= ε). We conjecture that T is still complete if Lazy Paramodulation

is restricted so that it applies only when either β = ε or one of u, v is a variable (but not

both). The following example might help the reader’s intuition.
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Example 6.9 Let E = {f(g(x))
.
= x [1], g(h(y))

.
= g(k(y)) [2], g(k(f(z)))

.
= z [3]},

and consider finding E-unifiers for the pair 〈h(u), u〉. Equations [1] and [2] overlap at 1

in f(g(x)), and we get the critical pair h(v)
.
= f(g(k(v))) [4]. We have the sequence of

transformations (using equation [4]):

〈h(u), u〉 =⇒para 〈h(u), h(v)〉, 〈f(g(k(v))), u〉 using [4]

=⇒para 〈h(u), h(v)〉, 〈g(k(v)), g(k(f(z)))〉, 〈f(z), u〉 using [3]
∗

=⇒dec〈u, v〉, 〈v, f(z)〉, 〈f(z), u〉
=⇒vel 〈u, v〉, 〈u, f(z)〉. applied to v

=⇒vel 〈f(z), v〉, 〈u, f(z)〉. applied to u

Thus, [f(z)/u, f(z)/v] is an E-unifier of 〈h(u), u〉, and [f(z)/u] belongs to a complete set of

E-unifiers for 〈h(u), u〉. Interestingly, [f(z)/u] can also be found using the original equations

[1], [2], [3].

〈h(u), u〉 =⇒para 〈h(u), x〉, 〈f(g(x)), u〉 using [1]

=⇒para 〈h(u), x〉, 〈g(x), g(k(f(z)))〉, 〈f(z), u〉 using [3]

=⇒vel 〈h(u), x〉, 〈g(h(u)), g(k(f(z)))〉, 〈f(z), u〉 applied to x

=⇒para 〈h(u), x〉, 〈g(h(u)), g(h(y))〉, 〈g(k(y)), g(k(f(z)))〉, 〈f(z), u〉using [2]
∗

=⇒dec〈h(u), x〉, 〈u, y〉, 〈y, f(z)〉, 〈f(z), u〉
=⇒vel 〈h(u), x〉, 〈u, y〉, 〈f(z), u〉 applied to y

=⇒vel 〈h(f(z)), x〉, 〈f(z), y〉, 〈f(z), u〉. applied to u

Thus, [f(z)/u, h(f(z))/x, f(z)/y] is an E-unifier of 〈h(u), u〉.

Lemma 6.6 also provides a rigorous proof of the correctness of the transformations of

Martelli, Moiso, and Rossi [31] in the case where E = ∅ and R is canonical. In fact, we

have shown the more general case where R is ground Church-Rosser w.r.t. �.

7 Surreduction

In this section, an alternate proof of the completeness of the T -transformations is established

by showing that the rewrite steps occurring in a rewrite proof of σ(u)
∗←→E σ(v) can be

simulated by certain generalizations of rewrite steps called surreduction steps (or narrowing

steps). It should be noted that this completeness result is weaker than the completeness

results given by lemma 6.6 and theorem 6.8. This point will be clarified in the next section.
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Definition 7.1 Let E be a set of equations (or a rewrite system) and let W be a set of

protected variables. Given any two terms u, v, we say that there is a surreduction step (or

narrowing step) from u to v away from W iff there is some address β in u where u/β is not

a variable, a variant l
.
= r of an equation in E ∪ E−1 (or E if E is a rewrite system) such

that u/β and l are unifiable and the variables in V ar(l, r) are new and occur only in l and r

(so that V ar(l, r) ∩ (V ar(u) ∪W ) = ∅ ) and if σ = mgu(u/β, l)[W ], then v = σ(u[β ← r]).

A surreduction step is denoted as

u �→
[β,l

.
=r,σ,W ]

v.

(some arguments may be omitted). The substitution σ is called the surreducing substitution.

A surreduction sequence (or narrowing sequence) is defined in the obvious way. Thus, a

surreduction step

u �→
[β,l

.
=r,σ]

v

corresponds to the rewrite step

σ(u) −→[β,l
.
=r,σ] v.

The crucial lemma in proving the completeness result of this section is a version

of the “lifting lemma” that establishes the precise relationship between a rewrite step

θ(u) −→[ρ(l)
.
=ρ(r)] v and the corresponding surreduction step u �→

[l
.
=r]

v′, a result of

Hullot [18] shown in detail in Kirchner and Kirchner [24] in the case of canonical systems

of rewrite rules. Since we are not necessarily dealing with rewrite rules (V ar(r) is not nec-

essarily a subset of V ar(l) for an equation l
.
= r), we give a detailed proof of our extension

of this result.

Lemma 7.2 Let E be a set of equations, R a rewrite system, � a reduction ordering

containing R, u a term, W a set of ‘protected variables’ containing V ar(u), θ a ground

substitution reduced w.r.t. R(E) ∪ R such that D(θ) ⊆ W , and ρ(l)→ ρ(r) a ground rule

such that either l → r is a variant of a rule in R or a variant of an equation in E such

that ρ(l)→ ρ(r) ∈ R(E), D(ρ) = V ar(l, r) and by the variant assumption, the variables in

V ar(l, r) are new and occur only in this rule. For any ground term v, if

θ(u) −→[β,l
.
=r,ρ] v,

for some address β ∈ θ(u), then there are two substitutions θ′ and σ, a new set of protected

variables W ′, and a term v′ such that:

(1) u/β is not a variable and σ is the mgu of u/β and l away from W ∪ V ar(l, r)

(2) v′ = σ(u)[β ← σ(r)] and σ(u) −→[β,l
.
=r,σ] v′
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(3) θ = σ ◦ θ′[W ] and θ′|W∪I(σ) is reduced w.r.t. R(E) ∪R

(4) v = θ′(v′) and

(5) V ar(v′) ⊆W ′ and D(θ′) ⊆W ′.
This may be illustrated as follows:

θ(u) −→[β,l
.
=r,ρ] v = θ′(v′)

θ

x xθ′
u �→[β,l

.
=r,σ,W ] v′

Proof . Obviously, θ(u)/β = ρ(l). Since θ is reduced w.r.t. R(E)∪R, β must be the address

of a nonvariable symbol in u, and θ(u)/β = θ(u/β). Let t = u/β. Since D(θ)∩D(ρ) = ∅, we

can form the union ϕ = θ ∪ ρ of the substitutions θ and ρ, and we have ϕ(t) = ϕ(l), i.e., ϕ

is a unifier of t and l. By lemma 3.11 we have an mgu σ of t and l away from W ∪V ar(l, r),
proving (1). Also, by corollary 3.12 there is some substitution η such that ϕ = θ ∪ ρ =

σ◦η[W ∪V ar(l)], where w.l.g., since σ is idempotent, we can assume that D(η)∩D(σ) = ∅.
Also note that since V ar(l) and V ar(u) are disjoint, then D(σ) = V ar(t) ∪ V ar(l). Let

v′ = σ(u)[β ← σ(r)]. Observe that the variables in v′ are contained in the union of the

three disjoint sets W , I(σ), and (V ar(r)−V ar(l)). This last set is nonempty when V ar(r)

is not a subset of V ar(l), which is possible when ρ(l)
.
= ρ(r) is an orientable instance. We

define W ′ = W ∪ I(σ)∪ (V ar(r)−V ar(l)) (proving the first part of (5)), and we define the

substitution θ′ as follows:

θ′(y) =

{
η(y), if y ∈W ∪ I(σ);

ρ(y), if y ∈ (V ar(r)− V ar(l)).

Clearly, the first part of (5) holds. Since v′ = σ(u)[β ← σ(r)] and σ(u)/β = σ(t) = σ(l)

(because σ is a unifier of t and l), we have

σ(u) −→[β,l
.
=r,σ] v′

and (2) holds. Since

θ(u) −→[β,l
.
=r,ρ] v,

we have v = θ(u)[β ← ρ(r)]. We now show that v = θ′(v′). Since v′ = σ(u)[β ← σ(r)], we

have θ′(v′) = θ′(σ(u))[β ← θ′(σ(r))]. Hence, we need to show that

θ′(σ(u))[β ← θ′(σ(r))] = θ(u)[β ← ρ(r)].

Since θ ∪ ρ = σ ◦ η[W ∪ V ar(l)] and θ′ = η[W ∪ I(σ)], then by the definition of θ′ and the

variant assumption we have θ = σ ◦ θ′[W ] and θ′(σ(u)) = θ(u). This also shows the first
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part of (3). Since θ ∪ ρ = σ ◦ η[W ∪ V ar(l)] and θ′ = η[W ∪ I(σ)], if y ∈ V ar(l) ∩ V ar(r),
then θ′(σ(y)) = ρ(y). If y ∈ V ar(r) − V ar(l), since θ′(y) = ρ(y) and σ(y) = y (because

D(σ) = V ar(l) ∪ V ar(t)), we also have θ′(σ(y)) = ρ(y). Hence, θ′(σ(r)) = ρ(r), and we

have shown that v = θ′(v′). Thus, (4) holds. It remains to show the second part of (3), that

θ′|W∪I(σ) is reduced w.r.t. R(E)∪R. Recall that θ′ = η[W ∪I(σ)]. Thus, we show that η is

reduced w.r.t. R(E)∪R on W ∪I(σ). For any y ∈ D(η)∩(W ∪I(σ)), there are two cases. If

y ∈W , then, since D(θ′)∩D(σ) = ∅, σ(y) = y, and since θ∪ ρ = σ ◦ η[W ∪V ar(l)], η(y) =

η(σ(y)) = θ(y). Since θ(y) is reduced w.r.t. R(E) ∪R, so is η(y). Now by the definition of

σ and by the variant assumption, we have I(σ) = V ar(σ(t)) and V ar(σ(t))∩ V ar(t) = ∅.
Also, since θ ∪ ρ = σ ◦ η[W ∪ V ar(l)], then for every variable z in V ar(t), θ(z) = η(σ(z)).

Hence, for every y ∈ I(σ), η(y) = θ(z)/α for some z ∈ V ar(t), where α is the address of y

in σ(z). Since θ(z) is reduced w.r.t. R(E) ∪R, so is its subterm η(y). Thus (3) holds, and

the proof is complete.

We now have the following result showing the crucial role played by surreductions.

Lemma 7.3 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R, and assume that (E,R) is ground Church-Rosser relative to �. Let the

symbol eq be a new binary function symbol not in Σ. Given any two terms u, v, if a ground

substitution θ reduced w.r.t. R(E)∪R and such that V ar(u, v) ⊆ D(θ) is an (E,R)-unifier

of u and v, then for any set of protected variables W containing D(θ), there is a surreduction

sequence

eq(u, v) �→
[l1
.
=r1,σ1]

eq(u1, v1) . . . �→
[ln
.
=rn,σn]

eq(un, vn)

(where each li
.
= ri is a variant of an equation in E ∪E−1 ∪R) and some mgu µ of un and

vn such that

σ1 ◦ . . . ◦ σn ◦ µ ≤ θ[W ].

Furthermore, the substitution σ1 ◦ . . . ◦ σn ◦ µ|V ar(u,v) is an (E,R)-unifier of u and v.

Proof . Since (E,R) is ground Church-Rosser relative to �, there is a rewrite proof

θ(u)
∗−→R(E)∪R N

∗←−R(E)∪R θ(v),

where N is irreducible (w.r.t. R(E) ∪R). Hence, there is a rewrite proof

θ(eq(u, v))
∗−→R(E)∪R eq(N,N),

where eq(N,N) is irreducible. We proceed by induction on the well-founded ordering �. If

θ(eq(u, v)) is irreducible, obviously eq(θ(u), θ(v)) = eq(N,N), and θ is a unifier of u and
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v. The lemma is satisfied by choosing µ as a mgu(u, v)[W ]. Otherwise, there is a rewrite

proof

θ(eq(u, v)) −→[β,l
.
=r,ρ] w

∗−→R(E)∪R eq(N,N),

where ρ(l) → ρ(r) ∈ R(E) or l → r ∈ R, and ρ(l) � ρ(r). If ρ|V ar(r)−V ar(l) is not

reduced, since R(E) ∪ R is canonical on ground terms, we can reduce each ρ(x) where

x ∈ V ar(r) − V ar(l) to its normal form ρ(x)↓ (w.r.t. R(E) ∪ R), obtaining a reduced

substitution ρ1. But then, using the rule ρ1(l) → ρ1(r) which also satisfies ρ1(l) � ρ1(r),

since ρ|V ar(l) = ρ1|V ar(l) and ρ(y) � ρ1(y) for each y ∈ V ar(r)− V ar(l), we have a rewrite

proof

θ(eq(u, v)) −→[β,l
.
=r,ρ1] w1

∗−→R(E)∪R eq(N,N).

Then, by lemma 7.2, we have a surreduction step away from W

eq(u, v) �→
[β,l

.
=r,σ1,W ]

w′1,

substitutions σ1 and θ1, and W ′ = W ∪ I(σ) ∪ (V ar(r) − V ar(l)) such that θ1(w′1) = w1,

θ = σ1 ◦ θ1[W ], D(θ1), V ar(w′1) ⊆ W ′, and the substitution θ1|W∪I(σ) is reduced w.r.t.

R(E)∪R. Since θ1|V ar(r)−V ar(l) = ρ1|V ar(r)−V ar(l) and ρ1 is reduced (w.r.t. R(E)∪R), θ1

is reduced w.r.t. R(E)∪R. But w′1 is of the form eq(u1, v1) and w1 = θ1(eq(u1, v1)). Also,

since ρ1(l) � ρ1(r) and

θ(eq(u, v)) −→[β,l
.
=r,ρ1] θ1(eq(u1, v1)),

we have θ(eq(u, v)) � θ1(eq(u1, v1)). Since w1
∗−→R(E)∪R eq(N,N), we have

θ1(eq(u1, v1))
∗−→R(E)∪R eq(N,N).

Hence, the induction hypothesis applies using the new set of protected vars W ′ = W ∪
I(σ) ∪ (V ar(r)− V ar(l)), and there is some surreduction sequence

eq(u1, v1) �→
[l2
.
=r2,σ2]

eq(u2, v2) . . . �→
[ln
.
=rn,σn]

eq(un, vn)

and some mgu µ of un and vn such that

σ2 ◦ . . . ◦ σn ◦ µ ≤ θ1[W ′].

Since θ = σ1 ◦ θ1[W ], we have

σ1 ◦ . . . ◦ σn ◦ µ ≤ θ[W ].

The proof that σ1 ◦ . . . ◦ σn ◦ µ|V ar(u,v) is an (E,R)-unifier of u and v is routine and left to

the reader.

The previous lemma implies the following important theorem.
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Theorem 7.4 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R total on ground terms. Given any two terms u, v, if θ is an (E,R)-unifier of u

and v, then for any set W containing V ar(u, v) and D(θ) there is a surreduction sequence

eq(u, v) �→
[l1
.
=r1,σ1]

eq(u1, v1) . . . �→
[ln
.
=rn,σn]

eq(un, vn)

(where each li
.
= ri is a variant of an equation in Eω ∪ (Eω)−1 ∪ Rω) and a mgu µ of un

and vn such that

σ1 ◦ . . . ◦ σn ◦ µ ≤E∪R θ[W ].

Furthermore, σ1 ◦ . . . ◦ σn ◦ µ|V ar(u,v) is an (E,R)-unifier of u and v.

Proof . First, recall that by lemma 5.10 it can be assumed that θ is ground and that

V ar(u, v) ⊆ D(θ) without any loss of generality. Next, we use theorem 5.7 which shows

that Eω ∪Rω is equivalent to (E,R) and is ground Church-Rosser relative to �. Then, by

lemma 5.11, we know that there is a ground substitution θ′′ reduced w.r.t. R(Eω)∪Rω and

such that θ′′ =E∪R θ
′[V ar(u, v)]. Finally, we apply Lemma 7.3 to θ′′ and R(Eω) ∪Rω.

It is remarkable that theorem 7.4 shows the completeness of surreduction together

with the computation of critical pairs. Note that rules in Rω can be applied oriented,

whereas equations in Eω have to be used as two-way rules. This adds considerably to the

nondeterminism of the method, and shows why oriented rules are preferred. We now show

how a weaker version of the completeness of our T -transformations can be obtained from

theorem 7.4.

8 Completeness of the Improved Transformations Revisited

First, we show that the T -transformations can simulate surreduction in the case of a pair

(E,R) that is ground Church-Rosser (w.r.t. �).

Lemma 8.1 Let E be a set of equations, R a rewrite system, and � a reduction or-

dering containing R. Assume that (E,R) is ground Church-Rosser (w.r.t. �). For every

surreduction sequence

eq(u, v) �→
[l1
.
=r1,σ1]

eq(u1, v1) . . . �→
[ln
.
=rn,σn]

eq(un, vn)

where each li
.
= ri is a variant of an equation in E ∪ E−1 ∪ R and µ is the mgu of un and

vn, there is a sequence of T -transformations 〈u, v〉 ∗
=⇒ S yielding a solved system S such

that

σS = σ1 ◦ . . . ◦ σn ◦ µ[V ar(u, v)].
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Proof . The lemma is proved by induction on the length of surreduction sequences. If

n = 0, then u and v are unifiable by µ, and by the completeness of the transformations

for standard unification (without Lazy Paramodulation), the result holds. Otherwise, since

eq(u, v) �→[σ1] eq(u1, v1), either

u �→
[β,l

.
=r,σ1]

u1

for some address β in u and v1 = σ1(v), or u1 = σ1(u) and

v �→
[β,l

.
=r,σ1]

v1

for some address β in v. We consider the first case, the other being similar. By the induction

hypothesis, 〈u1, v1〉
∗

=⇒ S′ by a sequence of T -transformations, where S′ is a solved system

such that

σS′ = σ2 ◦ . . . ◦ σn ◦ µ[V ar(u, v)].

However, since eq(u, v) �→
[β,l

.
=r,σ1]

eq(u1, v1), we have

〈u, v〉 =⇒ 〈u/β, l〉, 〈u[β ← r], v〉

by Lazy Paramodulation, and

〈u/β, l〉, 〈u[β ← r], v〉 ∗
=⇒ S1 ∪ 〈σ1(u[β ← r]), σ1(v)〉 = S1 ∪ 〈u1, v1〉,

by performing the sequence of transformations from the set ST that computes the mgu σ1

of u/β and l and the corresponding solved system S1. Thus,

〈u, v〉 ∗
=⇒ S1 ∪ 〈u1, v1〉.

Since by the induction hypothesis

〈u1, v1〉
∗

=⇒ S′,

it is easy to see (by induction on the length of the sequence) that

S1 ∪ 〈u1, v1〉
∗

=⇒ σS′(S1) ∪ S′,

and so

〈u, v〉 ∗
=⇒ σS′(S1) ∪ S′,

and letting S = σS′(S1) ∪ S′, S is in solved form. Since S1 is the system in solved form

associated with σ1, and since the substitutions σi and µ have pairwise disjoint domains, we

have

σS = σ1 ◦ . . . ◦ σn ◦ µ[V ar(u, v)].

We can now give another proof of the completeness of the set of transformations T
when (E,R) is ground Church-Rosser.
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Lemma 8.2 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R. The set of transformations T is complete for all ground Church-Rosser pairs

(E,R).

Proof . We need to prove that given any two terms u, v, if θ is an (E,R)-unifier of u and

v, then there is a sequence of T -transformations 〈u, v〉 ∗
=⇒ S (using variants of equations

in E ∪ E−1 ∪ R) yielding a solved system S such that if σS is the substitution associated

with S, then σS ≤E∪R θ[V ar(u, v)]. Without loss of generality, by lemma 5.10, it can be

assumed that θ is ground and that V ar(u, v) ⊆ D(θ). By lemma 5.11, there is a ground

substitution θ′ reduced w.r.t. R(E) ∪ R and such that θ′ =E∪R θ[V ar(u, v)]. By lemma

7.3, there is a surreduction sequence

eq(u, v) �→
[l1
.
=r1,σ1]

eq(u1, v1) . . . �→
[ln
.
=rn,σn]

eq(un, vn)

where each li
.
= ri is a variant of an equation in E ∪E−1 ∪R, un and vn are unifiable, and

if µ is the mgu of un and vn, then

σ1 ◦ . . . ◦ σn ◦ µ ≤ θ′[V ar(u, v)].

By lemma 8.1, there is a sequence of T -transformations 〈u, v〉 ∗
=⇒ S yielding a solved system

S such that

σS = σ1 ◦ . . . ◦ σn ◦ µ[V ar(u, v)].

Thus,

σS = σ1 ◦ . . . ◦ σn ◦ µ ≤ θ′ =E∪R θ[V ar(u, v)],

and so σS ≤E∪R θ[V ar(u, v)].

It is worth noting that lemma 8.2 is weaker than lemma 6.6 in the following sense.

Lemma 6.6 shows the completeness of the transformations T even when Lazy Paramodula-

tion is restricted to apply either at the top (β = ε) or when one of u, v is a variable (but not

both). However, this is not the case for lemma 8.2. The simulation of surreduction steps

requires Lazy Paramodulation unrestricted. This is not very surprising. In the proof of

lemma 6.6, transformations are applied in a top-down and lazy fashion. By lazy, we mean

that unification steps can be delayed. On the other hand, it is not clear that completeness

is guaranteed if such a top-down strategy is applied in a sequence of surreduction steps.

However, using lemma 5.13, it can be shown that surreduction steps can always be applied

bottom-up, that is, using innermost steps, and it is easy to see that lemma 8.2 still holds

under this strategy. This corresponds to a bottom-up strategy for applying the transforma-

tions, and the proof of lemma 6.6 does not yield the completeness of this strategy. Thus, it
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appears that lemma 6.6 and lemma 8.2 correspond to different strategies for applying the

transformations, and that they are complementary.

In a recent paper, Nutt, Réty, and Smolka [32] investigate complete sets of transfor-

mations for basic narrowing applied to ground confluent systems. It would be interesting

to explore the relationship between our set of transformations T and the transformations

presented in [32].

Finally, we give an alternate proof of the completeness of the T -transformations in

the general case. The above comments also apply to this theorem and to theorem 6.8.

Theorem 8.3 Let E be a set of equations, R a rewrite system, and � a reduction ordering

containing R total on ground terms. The set T is a complete set of transformations.

Proof . Without loss of generality, we can assume that θ is ground and that V ar(u, v) ⊆
D(θ). By theorem 5.7, Eω∪Rω is equivalent to (E,R) and is ground Church-Rosser relative

to �. Then, by lemma 8.2, there is a sequence of T -transformations 〈u, v〉 ∗
=⇒ S using

equations in Eω ∪ (Eω)−1 ∪Rω yielding a solved system S such that σS ≤E∪R θ[V ar(u, v)],

where σS is the substitution associated with S. We conclude by applying lemma 6.7.

9 Previous Work

Since the work of Plotkin [34], most of the energy of researchers in this field has been

directed either toward (i) isolating and investigating the E-unification problem in specific

theories such as commutativity, associativity, etc., and various combinations of such specific

axioms, and (ii) investigating the E-unification problem in the presence of canonical rewrite

systems. There has been some work as well on various extensions to the latter.

The first area of research will not concern us here, since we are interested only in

more general forms of E-unification. The second area represents the most general form of

E-unification which has been thoroughly investigated to date (but see also [14]).

Narrowing was first presented in [39] and [28], but the E-unification algorithm based

on this technique first appeared in [8] and was refined by [18]. (A good presentation of

the important results concerning the algorithm can be found in [24].) Since then the basic

method has been developed by various researchers [22, 20, 19, 32,35]. Narrowing and its

refinements represent a very clean and elegant solution to an important subclass of E-

unification problems, and we do not claim to have improved upon these results. Instead

we view our research as an attempt to place these results in a more general context, by

showing in a very abstract way how the same proof techniques used in narrowing may be

applied to our more general problem. We should in particular note that Martelli, Moiso,
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and Rossi have presented an E-unification procedure using a set of transformations much

the same as our set T , but they attempted to prove completeness only in the context of

canonical systems.

The work of Kirchner [22] attempts to extend the basic paradigm of E-unification in

canonical theories by adapting the approach of Martelli and Montanari [30] to standard

unification which uses the operations of merging and decomposition over multiequations

to find mgu’s in ordered form; by respecting the ordering of variable dependencies among

the various terms, one may avoid explicit application of substitutions, and so Variable

Elimination is not used. Kirchner expands this basic method by defining conditions under

which decomposition may be done in the presence of equations, and by defining a new

operation on multiequations, called mutation, which is dependent upon the theory under

consideration. He extends the procedure for canonical theories by showing that if a theory

permits the use of variable dependency orderings to avoid explicit substitution (such a theory

is termed strict), and if a mutation operation can be deduced, then his procedure returns

a complete set of E-unifiers. He then gives a general strategy for deriving the mutation

operation via a critical pair computation, and hence a way of automating the creation of

specialized E-unification procedures. As an example this strategy is applied to the class of

syntactic theories, which basically allow complete sets of E-unifiers to be found by allowing

at most one rewrite at the root between any two terms. Our approach to E-unification

owes much to Kirchner’s initial inspiration to adapt the method of transformations to E-

unification, but our motivations are very different. We have used only the abstract notion

of transformations on term systems, and not the technique of multiequations. Our research

concerns not the derivation of specific procedures, but the abstract analysis of the general

case. It is not surprizing, then, that we can subsume the methods of Kirchner in an abstract

way. We could optimize our procedure for syntactic theories, for example, by simply allowing

at most one root rewrite between any two terms. As in the case of narrowing, however, our

general procedure is not likely to be as suitable for specific theories as specially designed

procedures, although in an absolute sense it subsumes them.

Another form of more general E-unification has been investigated by Holldobler [14].

This is the problem of E-unification in the presence of a confluent set of rewrite rules.

Holldobler’s approach for showing the completeness of the transformations is to use the

refutational completeness of SLD-resolution, an interesting idea. Given a confluent set R of

rewrite rules, one views R as a set HR of clauses of the form eq(l, r)← for every l→ r ∈ R,

and adds to HR the set HE of equality axioms (for the set of function symbols in R) written

as clauses. For example, there is a clause

eq(f(x1, . . . , xn), f(y1, . . . , yn))← eq(x1, y1), . . . , eq(xn, yn)

for every function symbol f of rank n occurring in R (a congruence axiom). The pair 〈u, v〉
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to be R-unified is converted to the goal clause ← eq(u, v). It is easy to show that θ is an

R-unifier of 〈u, v〉 iff there is some SLD-refutation for the logic program {← eq(u, v)} ∪
HR ∪HE returning a substitution answer σ such that σ ≤ θ. Then, Holldobler shows how

his transformations can simulate such SLD-refutations. However, it appears that in his

completeness proof, the fact that a subgoal of the form ← eq(f(x′1, . . . , x
′
n), f(y′1, . . . , y

′
n))

could have been generated and that this subgoal will unify with the head of the equality

axiom eq(f(x1, . . . , xn), f(y1, . . . , yn))← eq(x1, y1), . . . , eq(xn, yn) yielding the new subgoal

← eq(x′1, y
′
1), . . . , eq(x′n, y

′
n) seems to have been overlooked. This is a problem because a

literal of the form eq(x1, y1) will unify with the head of a congruence axiom, or with any

rewrite rule from R (clauses eq(l, r) ← where l → r ∈ R). Thus, the proof does not

prevent rewriting steps from being performed at or below variable positions. This is the

same problem that we face with the system BT , and solve in the later sections of our paper.

Actually, we believe that using confluence alone is too weak, and that ground confluence

with respect to some reduction ordering � is needed if the transformations are to be applied

oriented, as they are in Holldobler’s paper.

In general, our approach to E-unification, although heavily indebted to many re-

searchers in this field, is fundamentally different. Whereas the previous work in this field

has concentrated on elucidating the structure of specific E-unification problems or in grad-

ually expanding the class of theories for which complete E-unification procedures exist, our

research has concentrated on finding a very general method for which a rigorous complete-

ness proof was available, and then attempting to find techniques to prove the completeness

of restricted versions of this method.

10 Eager Variable Elimination

We discuss in this section the primary open problem to be solved in our research on general

E-unification. Notice that in our general discussion of E-unification in section 4, we prove

the completeness of the method via a strategy which applies transformation (C) only to

trivial proofs (x = t) in which no rewrite steps occur. If the proof (x ∗ t) contains rewrite

steps, we use transformation (D) or (E). This corresponds in the transformations on systems

to non-deterministically allowing a pair 〈x, t〉 where x 6∈ V ar(t) to be transformed by either

Variable Elimination, Root Rewriting, or Root Imitation in the set BT or, alternately, by

either Variable Elimination or Lazy Paramodulation in the set T . The strategy of Eager

Variable Elimination is to always apply Variable Elimination to a pair (if possible) instead

of Root Rewriting or Root Imitation (or Lazy Paramodulation in the case of T ). In other

words, we never look for rewrites below the root of a pair 〈x, t〉 if x 6∈ V ar(t) , and can

immediately eliminate x via Variable Elimination. The question of whether such a set of
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transformations is complete is still open.

In fact, our original formulation of E-unification via transformations used this strategy,

but a difficulty arose in finding a measure on which to base our completeness proof. The

problem is that—no matter what formalism is used for E-unification proofs—performing

Variable Elimination on a pair which needs rewrite steps between θ(x) and θ(t) will have

to incorporate these steps into the proof wherever x is replaced by t. The effect is that the

same equation may end up being duplicated many times. Then, if variables are renamed

in duplicated equations to avoid clashes, potentially not only the number of rewrite steps

in the new system is increased, but also the number of unsolved variables; but if duplicate

equations are not renamed, it must be ensured that no variable clashes will ever occur in

any later sequence of transformations.

Actually, the notion of an equational proof tree was developed to clarify these issues,

but we were not able to prove the correctness or termination of this new set of proof

transformations, and so were led to the approach presented above in Chapter 5 to find

useful restrictions on our transformations.

The literature has mostly overlooked this problem, and, as it is deceptively simple at

first glance, it is generally assumed to be true. Martelli et al. [31] claim the completeness

of such a strategy in the context of canonical rewrite systems. However, because their

proof lacks many details, including a measure for a rigorous induction, we are unable to

check the validity of their argument about Variable Elimination. Holldobler [14] claims the

completeness of a set of transformations equivalent to our system BT with Eager Variable

Elimination. As remarked above, his proof contains a gap, and no rigorous analysis of

Variable Elimination is presented. Using the techniques developed in section 5, we believe

that Holldobler’s completeness proof can be partially patched, but we do not believe that

the transformations are complete if Eager Variable Elimination is performed. We should

remark that Kirchner has avoided this whole problem by examining only those theories in

which Variable Elimination can be avoided by the use of variable dependency orderings.

Remark. (Added July 1988) At the Unification Workshop in Val D’Ajol, June 1988, Jieh

Hsiang and Jean Pierre Jouannaud claimed to have found a proof of the completeness of

eager variable elimination. They suggested that it is possible to give a bound on the number

of new variables created in any sequence of transformations to account for new variants of

equations. At the time of submission of this paper, we had not yet seen the details of this

proof.
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11 Conclusion

Although research in E-unification has grown tremendously in the past 15 years, for some

reason the problem of general E-unification in arbitrary theories has been neglected. This

is unfortunate, since progress in any area of science is often frustrated when fundamental

issues of the basic paradigm are not well understood. In this paper we attempted to pro-

vide a rigorous paradigm for the study of complete procedures for general E-unification by

adopting the method of transformations on systems of terms and showing how a basic set

BT of very general transformations for E-unification corresponds to certain transformations

on equational proof trees. In this context, the completeness of our method is easily shown,

and highlights a number of features, such as the problem with Eager Variable Elimination

discussed above, which are not obvious in completeness proofs using other techniques. In

order to make this method efficient enough to be implemented, we then showed how re-

strictions may be placed on this basic set to obtain a set T , thereby increasing its efficiency

while retaining completeness for arbitrary equational theories. The method of proof here

was adapted from unfailing completion, and showed that we need not ever rewrite at vari-

able occurrences, which not only eliminates the guessing of functional reflexivity axioms

and the potential for infinite recursion on Root Imitation, but also prunes out a large num-

ber of useless rewrite sequences. In addition, we showed how other more general forms of

E-unification, such as narrowing, can be simulated by our method, by demonstrating that

the set of T -transformations is complete for a set R of ground Church-Rosser rewrite rules,

and also that the strategy of surreduction plus the simulation of critical pair computation

is complete.

In conclusion, it is our hope that this research, in addition to providing a theoretical

foundation both for the study of complete methods of E-unification in the general case

(or in various classes of theories), and for the study of equality in logic programming, will

provide a unifying connection between the diverse approaches to E-unification currently

being developed and the larger concerns of the proof theory of first order logic.
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