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HIGHER ORDER UNIFICATION REVISITED:
COMPLETE SETS OF TRANSFORMATIONS

Wayne Snyder1 and Jean H. Gallier2

Abstract: In this paper, we reexamine the problem of general higher-order uni-

fication and develop an approach based on the method of transformations on

systems of terms which has its roots in Herbrand’s thesis, and which was devel-

oped by Martelli and Montanari in the context of first-order unification. This

method provides an abstract and mathematically elegant means of analyzing

the invariant properties of unification in various settings by providing a clean

separation of the logical issues from the specification of procedural information.

Our major contribution is three-fold. First, we have extended the Herbrand-

Martelli-Montanari method of transformations on systems to higher-order uni-

fication and pre-unification; second, we have used this formalism to provide a

more direct proof of the completeness of a method for higher-order unification

than has previously been available; and, finally, we have shown the completeness

of the strategy of eager variable elimination. In addition, this analysis provides

another justification of the design of Huet’s procedure, and shows how its basic

principles work in a more general setting. Finally, it is hoped that this presenta-

tion might form a good introduction to higher-order unification for those readers

unfamiliar with the field.
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1 Introduction

Higher-order unification is a method for unifying terms in the Simple Theory of Types

[6], that is, given two typed lambda-terms e1 and e2, finding a substitution σ for the free

variables of the two terms such that σ(e1) and σ(e2) are equivalent under the conversion

rules of the calculus. This problem is fundamental to automating higher-order reasoning, as

convincingly shown for example in the automated proof of Cantor’s Theorem (that there is

no surjection from a set to its powerset) found by the TPS system [3], where the higher-order

unification procedure finds a term which corresponds to the diagonal set {a ∈ A | a 6∈ f(a)}
used in the standard proof (for details, see [3]). Higher-order unification has formed the

basis for generalizations of the resolution principle to second-order logic [7, 40] and general

ω-order logic [24, 36, 41] (but see also [1]), the generalization of the method of matings

[2] to higher-order [4, 3, 31, 37], higher-order logic programming in the language λProlog

[32, 35], a means for providing flexible implementations of logical inference rules in theorem

provers [12,36], program synthesis, transformation, and development [27, 20, 21, 33, 39],

and also has applications to type inferencing in polymorphic languages [38], computational

linguistics [34], and certain problems in proof theory concerning the lengths of proofs [10].

Higher-order unification was studied by a number of researchers [7, 17, 18, 19, 40, 41] before

Huet [25, 26] made a major contribution in showing that a restricted form of unification,

called preunification, is sufficient for most refutation methods and in defining a method for

solving this restricted problem which is used by most current higher-order systems.

In this paper, we reexamine the problem of general higher-order unification and de-

velop an approach based on the method of transformations on systems of terms which has

its roots in Herbrand’s thesis, and which was developed by Martelli and Montanari [30] in

the context of first-order unification. This method provides an abstract and mathemati-

cally elegant means of analyzing the invariant properties of unification in various settings

by providing a clean separation of the logical issues from the specification of procedural

information. The set of transformations for higher-order unification is developed from an

analysis of the manner in which substitution and β-reduction make two terms identical,

and shows clearly the relationship between first-order unification, higher-order preunifica-

tion, and general higher-order unification. Our major contribution is three-fold. First, we

have extended the Herbrand-Martelli-Montanari method of transformations on systems to

higher-order unification and pre-unification; second, we have used this formalism to provide

a more direct proof of the completeness of a method for higher-order unification than has

previously been available; and, finally, we have shown the completeness of the strategy of

eager variable elimination, which eliminates redundant computations while maintaining the

ability to find complete sets of unifiers. In addition, this analysis provides another justifi-

cation of the design of Huet’s procedure, and shows how its basic principles work in a more
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general setting. Finally, it is hoped that this presentation might form a good introduction

to higher-order unification for those readers unfamiliar with the field. To this end, and in

order to motivate the use of transformations for higher-order unification, in the remainder

of this introduction we provide an overview of our approach.

The method of transformations for solving unification problems is much like the well-

known method used for solving systems of linear equations known as Gaussian elimination.

In Gaussian elimination, the original system of equations is transformed step by step (by

variable elimination) into a solved system, that is, a system whose solution is obvious.

Similarly, a unification problem is a set {〈u1, v1〉, . . . , 〈un, vn〉} of pairs of terms (sometimes

called a disagreement set) to be (jointly) unified. (We consider these pairs to be unoriented .)

The method of transformations consists of applying simple transformations, some akin to

variable elimination, until a “solved” system S′ is obtained whose solution is obvious (in a

sense to be made precise below).

Gaussian elimination and first-order unification are somewhat similar. For example,

the transformations for first-order unification given in Section §3, like Gaussian elimination,

must terminate and hence the existence of solutions is decidable. Also, these transformations

preserve the set of solutions as an invariant, just as in Gaussian elimination the variable

elimination step preserves solutions; and in both the set of solutions is either empty, a

singleton, or infinite. But in the higher-order case the analogy breaks down. For example,

unlike Gaussian elimination, it is undecidable whether a higher-order system has unifiers,

and the transformations do not terminate in general. Also, the transformations used for

higher-order unification do not necessarily preserve the set of solutions. In general, if a

system S′ is derived from a system S, it can only be claimed that the set of unifiers of S′

is a subset of the set of unifiers of S. Thus, we face a completeness problem: we have to

show that every unifier of S will be produced as the obvious solution of some system S′

derivable from S. In fact, it is practically impossible to require that every unifier of S be

produced, and normally we are only interested in whether a complete set of unifiers can be

enumerated using the transformations. Roughly speaking, a complete set of unifiers for S

is a set of unifiers for S from which every unifier for S can be generated.

Thus the interesting issue is in finding natural sets of transformations which present in

an abstract form the fundamental operations of unification, but which are complete in this

sense. In order to introduce the notion of higher-order unification, we shall first demonstrate

the full method in the first-order case, and then sketch what changes need to be made to

deal with higher-order terms. This will hopefully provide the necessary intuition for the

more detailed treatment in the remainder of the paper.

Suppose we wish to find a unifier (if possible) for the two terms f(x, f(h(x, gx), x′))
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and f(x, f(h(fy, z), y′)). Now any substitution which unifies these terms can not affect the

topmost function symbol f , and so it is easy to see that a substitution θ unifies the terms

if and only if it pairwise unifies each of the immediate subterms. For example, θ unifies

the system

{〈f(x, f(h(x, gx), x′)), f(x, f(h(fy, z), y′))〉}

iff it unifies

{〈x, x〉, 〈f(h(x, gx), x′), f(h(fy, z), y′)〉}.

In general, we may define a transformation on systems which we call term decomposition:

{〈f(u1, . . . , un), f(v1, . . . , vn)〉} ∪ S =⇒ {〈u1, v1〉, . . . , 〈un, vn〉} ∪ S,

where S is any system (possibly empty). After two more iterations of this transformation,

we have

{〈x, x〉, 〈x, fy〉, 〈gx, z〉, 〈x′, y′〉}.

Now in this system, it is clear that the pair 〈x, x〉 is in fact already unified, and contributes

no information about possible solutions, since any substitution unifies a pair 〈u, u〉 for some

term u. Thus we may define a transformation which simply removes such trivial pairs:

{〈u, u〉} ∪ S =⇒ S.

In our example, we may derive the new system

{〈x, fy〉, 〈gx, z〉, 〈x′, y′〉}.

These two transformations simplify a system (by reducing the total number of symbols in the

whole system) but do not in any way change the set of solutions; hence the set of solutions

is invariant under the transformations. But it is not yet obvious what the set of solutions

is. The reader may check for example that [fy/x, gfy/z, x′/y′], [fy/x, gfy/z, y′/x′], and

[fha/x, gfha/z, ha/y, a/x′, a/y′] are all unifiers of the system. In each of these however,

the binding made for x has the form ft for some term t, since if a substitution unifies the

pair 〈x, fy〉 then the binding for x must have f as a top symbol. In this case, we may

provide a partial binding for x (since we do not yet know the entire binding, but only the

top symbol) by transforming the previous system into a new one which contains this partial

binding:

{〈x, fx1〉, 〈x, fy〉, 〈gx, z〉, 〈x′, y′〉}.

Now we may eliminate the variable x from the rest of the system by replacing it by fx1,

i.e., by applying the substitution [fx1/x] . After applying decomposition once more, we get

the system

{〈x, fx1〉, 〈x1, y〉, 〈gfx1, z〉, 〈x′, y′〉}.
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In general, we may define an imitation rule for partially solving variables in systems: If x

does not occur in the term f(t1, . . . , tn) then we have:

{〈x, f(t1, . . . , tn)〉} ∪ S =⇒ {〈x, f(y1, . . . , yn)〉, 〈f(y1, . . . , yn), f(t1, . . . , tn)〉} ∪ S′,

where y1, . . . , yn are new variables occurring nowhere else, and S′ is the result of replacing

every occurrence of x in S by the partial binding f(y1, . . . , yn). Note that if x were to

occur in the term f(t1, . . . , tn) then the system would not be unifiable.

The point of the imitation rule is that we find a partial solution for a variable x, and

then solve x partially by substituting the partial solution for the remaining occurrences of

x, thus reduced the problem of finding a binding to solving for the new variables in the

partial binding for x. In general, if we transform a system using the rule

{〈x, t〉} ∪ S =⇒ {〈x, t〉} ∪ S[t/x],

where x is a variable occurring in S but not occurring in t and S[t/x] represents the result of

replacing every occurrence of x in S by t, then, as in Gaussian Elimination, we have solved

the system for the variable x; hence this transformation is called variable elimination. As

in the case of our first two transformations, the set of solutions is invariant under variable

elimination. (Imitation does not preserve solutions, since it potentially introduces new

variables.) In our example, we can eliminate the variable x1 to obtain the system

{〈x, fy〉, 〈x1, y〉, 〈gfy, z〉, 〈x′, y′〉}.

If we say that a pair 〈x, t〉 is in solved form in a system if x does not occur in the rest of

the system and does not occur in t, then clearly the last system is solved in the sense that

all its pairs are in solved form.

The basic idea of the transformation method as represented by these four transforma-

tions is to successively build up bindings for variables and simplify the systems produced

by decomposing and eliminating trivial pairs. The intent is to transform a unification

problem into a solved system, since a solved system {〈x1, t1〉, . . . , 〈xn, tn〉} gives explic-

itly the bindings of a unifying substitution [t1/x1, . . . , tn/xn]. In our example, we have

the unifying substitution [fy/x, y/x1, gfy/z, x
′/y′], which, since we are only interested

in bindings made for the variables in the original system, may be restricted to the form

[fy/x, gfy/z, x′/y′]. (It is interesting to note that we could also have extracted the sub-

stitution [fy/x, gfy/z, y′/x′].) This set of four transformations can be easily shown to be

sound in the sense that if S =⇒ S′ and θ unifies S′, then θ unifies S; thus the method is

correct since any solution found will unify the original system. Showing that the method is

complete is harder, since we must show that for any unifier θ of the original system S, we
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can find a sequence of transformations S
∗

=⇒ S′ resulting in a solved form S′ such that

the substitution σS′ extracted from S′ is more general than θ (over the set of variables in

S). The intuitive reason that we can find mgu’s (and, more generally, we can find complete

sets in the higher-order case) using this method is that imitation and variable elimination

are capable of incrementally building up the bindings in the unifying substitution just as

much as is necessary to unify the original system. The reader may check for example that

each of the substitutions found above for S is more general than any unifier of the original

system, i.e., they are most general unifiers or mgu’s.

There are several important things to note about this method. The first is that it is

a non-deterministic set of abstract operations for unification; we can think of it as a set

of inference rules for unification. This removal of control and data structure specification

allows us to examine the fundamental properties of the problem more clearly. The notion

of completeness is also non-deterministic, since we show only that for an arbitrary unifier

θ there is some sequence of transformations which produces a unifier more general than

θ. In order to design a practical procedure, we would have to specify data structures and

a search strategy to explore the search tree of possible transformation paths. The second

point is that if we need to find all unifiers, then in the case of a pair of two variables we

would need to apply imitation by ‘guessing’ a partial binding for one of the variables or by

guessing an arbitrary variable as a binding. For example, to find the unifier [fz/x, fz/y]

of the system {〈x, y〉} we would have to guess the function symbol f in the imitation pair

〈x, fy1〉 , then imitate for y, and finally guess that y1 is bound to z. This is clearly a problem

for implementation, but it turns out that for unification in theorem proving we need only

find most general solutions, and so in the first-order case we can avoid this guessing by

using variable elimination on such pairs. In fact, if we are interested in stopping as soon as

the possibility of unification is detected, without necessarily transforming the system into a

fully solved form, we may define the notion of a presolved system as one consisting of either

solved pairs, as above, or pairs consisting of two variables, and stop the transformation

process as soon as a presolved form is reached. For example, the system

{〈x, a〉, 〈y, fz〉, 〈x′, y′〉, 〈x′, z′〉, 〈z′, x′′〉}

is presolved. It turns out that it is always possible to unify such systems, by applying

variable elimination to the variable-variable pairs which are not yet solved. This shows

that we need never apply the imitation rule to a variable-variable pair, since such pairs

can always be eliminated using variable elimination; in the higher-order generalization of

this case, this is not true, as we shall see, and the notion of presolved forms is crucial. It

is interesting that in first-order, the presence of variable-variable pairs is the reason that

mgu’s are, strictly speaking, not unique; recall that in our example above, we had two
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choices about the extraction of a binding from the pair 〈x′, y′〉, resulting in the two mgu’s

[fy/x, gfy/z, x′/y′] and [fy/x, gfy/z, y′/x′].

The other interesting point is that in the first-order case we have presented, we can in

fact have a complete set of transformation rules if we exclude the imitation rule, i.e., if we

find bindings by simply eliminating a variable all at once if we find a pair 〈x, t〉 where x

does not occur in t. In our previous example, we could have ‘short-circuited’ the sequence

of transformations by immediately eliminating the variable x to produce a solved form:

{〈f(x, f(h(x, gx), x′)), f(x, f(h(fy, z), y′))〉}
∗

=⇒ {〈x, fy〉, 〈gx, z〉, 〈x′, y′〉}
=⇒ {〈x, fy〉, 〈gfy, z〉, 〈x′, y′〉}.

In Section §3 we shall develop this improved method in detail; the completeness of these

transformations is particularly easy to prove. In the higher-order transformations, we can

not do away with the imitation rule completely, but we can use variable elimination to more

efficiently build up bindings whenever possible without sacrificing completeness.

The method we have just sketched can be generalized to higher-order unification with

relatively few changes. The most important differences have to do with the imitation rule

and the generalization of the notion of a partial binding to higher-order substitutions.

Consider the system S = {〈F (f(a)), f(F (a))〉}, where F is a variable of functional type

(say int→ int). It is easily seen that θ = [λx.f(x)/F ] is a unifier for S, since

θ(F (f(a))) = (λx.f(x)) f(a) −→β f(f(a))←−β f((λx.f(x))a) = θ(f(F (a))),

where −→β denotes β-reduction. (This is not the only solution, for example the reader

may check that any substitution in the form [λx. fk(x)/F ] for k ≥ 0 is also a unifier.) This

time, it is a little more tricky to build up θ using partial bindings. In the first-order case, we

generate bindings of the form [f(y1, . . . , yn)/x], where y1, . . . , yn are first-order variables.

The generalization (roughly) is to consider partial bindings of the form

[λx1 . . . xk. a
(
Y1(x1, . . . , xk), . . . , Yn(x1, . . . , xk)

)
/F ],

where Y1, . . . , Yn are some higher-order variables of appropriate types and a is an atom (i.e.,

a constant, a free variable, or a bound variable xi for 1 ≤ i ≤ k). The idea is that we have

to generalize the partial binding f(y1, . . . , yn) to higher-order, and so the top function

symbol a may be a variable, and the variables y1, . . . , yn and the term itself may be of

functional type; furthermore, each yi must be generalized to a term Yi(x1, . . . , xn) since

the subterms of the binding may be some function of the bound variables x1, . . . , xn. A
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further level of complexity is introduced by the constraints imposed by the type structure.

The notion of higher-order partial bindings will be carefully defined in Section §4.

The imitation rule must accommodate this more complex form of partial binding. In

the first order case, we applied imitation to a pair 〈x, f(t1, . . . , tk)〉 using a partial binding

f(y1, . . . , yn) ; in the higher-order case we must be able to apply imitation to pairs such

as 〈F (f(a)), f(F (a))〉 to partially solve for F . A partial binding for F which imitates the

symbol f in this case would have the form λx. f(Y (x)), so that we would transform the

system {〈F (f(a)), f(F (a))〉} into

{〈F, λx. f(Y (x))〉, 〈f(Y (f(a))), f(f(Y (a)))〉}

using the imitation rule; note that we have performed β-reduction after applying the sub-

stitution [λx. f(Y (x))/F ]. After decomposition we have

{〈F, λx. f(Y (x))〉, 〈Y (f(a)), f(Y (a))〉}.

Unfortunately, the imitation rule alone is not sufficient for building up bindings in higher-

order unification. This is easy to see in considering the subproblem of finding a partial

binding for Y , which is exactly the problem we faced with F ; simply continuing to imitate

will produce an infinite sequence of transformations. The problem arises because higher-

order terms may have variables as their top-most symbol and so we must allow bindings such

as λx.x to be found by our transformations. If we abbreviate a lambda binder λx1 . . . xk

into the form λxk, the new rule for finding partial bindings has (roughly) the form:

{〈λxk.F (u1, . . . , un), λxk.a(v1, . . . , vm)〉} ∪ S =⇒
{〈F, t〉} ∪ σ({〈λxk.F (u1, . . . , un), λxk.a(v1, . . . , vm)〉} ∪ S),

where a is a function symbol, constant, or variable (either free or bound), and where t is

either an imitation binding, i.e., t = λyn. a(Y1(yn), . . . , Ym(yn)), or a projection binding,

i.e., t = λyn. yi(Y1(yn), . . . , Yq(yn)) for some i, 1 ≤ i ≤ n, and σ = [t/F ] (after applying σ,

we also reduce the resulting terms to their normal form using β-conversion). For example,

we can transform the system {〈F (f(a)), f(F (a))〉} by adding a projection binding to get

{〈F, λx.x〉, 〈F (f(a)), f(F (a))〉}

and then applying the substitution [λx.x/F ] and β-reducing to get

{〈F, λx.x〉, 〈f(a), f(a)〉}.
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After removing the trivial pair, gives us the solved system {〈F, λx.x〉}. The reader may

check that a similar projection for the variable Y in our example above results in the solved

system {〈F, λx. f(x)〉, 〈Y, λx.x〉}.
Besides the more complicated form of the rule which finds partial bindings, there are

several other things which make the higher-order case more complex than the first-order

method outlined above. For example, unification is defined modulo the conversion rules of

the lambda calculus, so that we shall have to carefully justify our method from an analysis of

the means by which substitution and subsequent β-reduction makes terms equal. Another

complication is that higher-order unification is undecidable in general and most general

unifiers do not necessarily exist. The latter problem is solved by defining the notion of

a complete set of unifiers (which may be infinite!) and the former simply prevents our

transformation process from terminating in general. The notion of completeness therefore

must be defined in terms of complete sets of unifiers; in fact, the completeness proof is not

much harder than in first-order.

A final important difference from the first-order case has to do with the higher-order

equivalent of a variable-variable pair of terms, namely, a pair of terms with variables at

their heads, e.g. 〈λx. F (a, x), λx.G(x, a)〉. (These are called flexible-flexible pairs.) Un-

fortunately, it is not possible to avoid the arbitrary ‘guessing’ of bindings discussed above

and preserve completeness, and so the search tree for unifiers may be infinitely branching.

This posed an insurmountable problem for implementation until Huet showed that in the

context of a refutation method, it is usually only necessary to determine the possibility

of unification, and since such flexible-flexible pairs are always unifiable, we can stop after

finding a presolved form. This restricted form of unification is termed preunification.

After reviewing a number of basic definitions and results in the next section, we then

present the transformation method in detail for the first-order case, showing how decompo-

sition, variable elimination, and the removal of trivial pairs gives us a method for finding

most general unifiers. In Section §4 we extend this to the higher-order case, first presenting

the fundamental concepts of higher-order unification, then giving the set of transformations

for higher-order unification, and next proving the soundness and completeness of the set.

Finally, we show how Huet’s method for pre-unification from [26] can be described as a

special case of this set.

2 Preliminaries

In order that this paper be self-contained, we present here a number of basic definitions and

results related to the typed lambda calculus, including a detailed treatment of the notion

of a substitution. Our notation and approach is basically consistent with [5], [13], [23], and
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[26].

Definition 2.1 Given a set T0 of base types (e.g., such as int , bool , etc.) we define the

set of types T inductively as the smallest set containing T0 and such that if α, β ∈ T , then

(α→ β) ∈ T .

The type (α→ β) is that of a function from objects of type α to objects of type β.

We assume that the type constructor → associates to the right, and we shall often write

type expressions such as (α1 → (α2 → . . . (αn → β) . . .)) in the form α1, . . . , αn → β, with

β an arbitrary type.

Definition 2.2 Let us assume given a set Σ of symbols, which we call function constants,

each symbol f having a unique type τ(f) from T . For each type α ∈ T , we assume given

a countably infinite set of variables of that type, denoted Vα , and let V =
⋃
τ∈T Vτ .

Furthermore, let the set of atoms A be defined as V ∪ Σ. The set L of lambda-terms is

inductively defined as the smallest set containing A and closed under the rules of function

application and lambda-abstraction, namely,

(i) If e1 ∈ L has type α→ β , and e2 ∈ L has type α , then (e1e2) is a member of L
of type β .

(ii) If e ∈ L has type β and x ∈ Vα then (λx. e) is a member of L of type α→ β .

We shall denote the type of a term e by τ(e) .

By convention, application associates to the left, so that a term (. . . ((e1e2)e3) . . . en)

may be represented as (e1e2 . . . en) . In general we represent a sequence of lambda abstrac-

tions λx1. (λx2. (. . . (λxn. e) . . .)) in the form λx1 . . . xn. e , where e is either an application

or an atom. We shall often drop superfluous parentheses when there is no loss of clarity,

and will use square brackets if necessary; also we follow the convention that the dot includes

as much right context as possible in the scope of its binder, so that, e.g., a term λx. stu is

to be interpreted as (λx. ((st)u)).

Definition 2.3 In a term λx1 . . . xn. e where e is either an application or an atom, we

call e the matrix of the term, the object λx1 . . . xn is the binder of the term, and the

occurrences of the variables are called binding occurrences of these variables. We define the

size of a term u, denoted |u|, as the number of atomic subterms of u. A variable x occurs

bound in a term e if e contains some subterm of the form λx. e′ , in which case the term e′

is called the scope of this binding occurrence of x. A variable x occurs free in e if it is a

subterm of e but does not occur in the scope of a binding occurrence of x. The set of free

variables of a term e is denoted by FV (e).
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Definition 2.4 The order of a term or a variable is just the order of its type, where the

order of a type ϕ is defined as

Ord(ϕ) =

{
1, if ϕ ∈ T0 ;

max(Ord(α) + 1, Ord(β)), if ϕ = α→ β .

A language of order n is one which allows contants of order at most n + 1 and free and

bound variables of order at most n.

This formalizes the usual convention that a first-order term denotes an individual, a

term of second order denotes a function on individuals, etc.

Convention: In what follows we denote types by α, β, γ, and ϕ; constants of primitive

type by b and c; constants of functional type by f , g, and h; variables of arbitrary type by

x, y, and z, and arbitrary atoms by a. We shall often represent free variables of functional

type by the letters F , G, H, and Y . Lambda terms will be denoted by e, r, s, t, u, v, and

w. We shall, in the interest of clarity, omit type information whenever possible, since it is

inferrable from context in the cases we consider.

The ‘computation rules’ of the lambda calculus are as follows.

Definition 2.5 Let u[t/x] denote the result of replacing each free occurrence of x in u by

t, and BV (t) be the set of bound variables in t. We have three rules of lambda conversion.

(i) (α-conversion) If y 6∈ FV (t) ∪BV (t), then

(λx. t) �α (λy. (t[y/x])).

(ii) (β-conversion)

((λx. s) t) �β s[t/x].

(iii) (η-conversion)1 If x 6∈ FV (t), then

(λx. (t x)) �η t.

The term on the left side of each of these rules is called a redex . A term t which contains no

β-redices is called a β-normal form, and η-normal forms and βη-normal forms are defined

similarly. If we denote by e[s] a lambda term with some distinguished occurrence of a

subterm s, then let e[t] denote the result of replacing this single subterm by the term t,

where τ(s) = τ(t). We define the relation −→α as

e[s] −→α e[t] iff s �α t,

1 This rule is a special case of the the axiom of extensionality, viz., ∀f, g(∀x(f(x) = g(x)) =⇒ f = g),
which asserts that two functions are equal if they behave the same on all arguments, regardless of
their syntactic representation.



2 Preliminaries 11

and similarly for −→β and −→η . We define −→βη as −→β ∪ −→η . We also define

the symmetric closure ←→ , the transitive closure
+−→ , and the symmetric, reflexive, and

transitive closure
∗←→ of each of these relations in the obvious fashion. The relations

∗←→β ,
∗←→η , and

∗←→βη are called β-, η-, and βη-equivalence respectively.

It is easy to show that the type of a lambda term is preserved under these rules of

lambda conversion.

Definition 2.6 We say that s is substitutible for x in t if, for every subformula λy. t′ of

t, if y ∈ FV (s) then x 6∈ FV (t′).

The motivation for this notion is that no free variable capture will take place if s is

substituted for x in t′. (The problem with this free variable capture is that it violates the

fundamental meaning of scope and the binding of variables; in [5], for the untyped calculus

it is shown that if this is allowed, the calculus becomes inconsistent in the sense that any

two terms are equivalent.) In the β-conversion rule, in the pathological case that s is not

substitutible for x in t, i.e., x occurs in t in the scope of some binding occurrence of a variable

which is free in s, then there is always a sequence (λx. t) s
+−→α (λx. t′) s −→β t′[s/x], where

s is substitutible for x in t′. Thus, for simplicity and without loss of generality we adopt

the following assumption.

Convention: We assume in the following that in the set of terms being discussed, the

set of all free variables is distinct from the set of all bound variables. (This allows us to

be ‘naive’ in our use of β-conversion and substitution; for another approach, see [23].) In

fact, in the rest of this paper, all comparisons of lambda terms are modulo α-conversion,

which will allow us to represent lambda binders using ‘generic’ variables x1, . . . , xk unless

confusion would result. By abuse of notation, using this naive approach and following our

representation of a sequence of lambda abstractions as a term λx1 . . . xk. u, we shall consider

the conversion of redices involving such terms as a single reduction step instead of k steps,

e.g.,

(λx1 . . . xk. u) v1 . . . vk −→β u[v1/x1, . . . , vk/xk]

instead of (λx1 . . . xk. u) v1 . . . vk
k−→β u[v1/x1, . . . , vk/xk].

Definition 2.7 The calculus which admits only the β-rule as a computation rule we call

the typed β-calculus and the calculus which also admits the η-rule is called the typed βη-

calculus.

In this paper, we wish to give an abstract method for higher-order unification which

presents the fundamental logical issues as clearly as possible, and for this purpose we feel it

is sufficient to develop the notion of unification of terms in the typed βη-calculus. This is
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a natural assumption in practice, and all higher-order theorem proving systems known to

the authors use this weak form of extensionality. The reader interested in the details of the

non-extensional case may consult [26].

Two of the major results concerning this calculus are the following.

Theorem 2.8 (Strong Normalization) Every sequence of βη-reductions is finite.

Theorem 2.9 (Church-Rosser Theorem) If s
∗←→βη t for two lambda terms s and t, then

there must exist some term u such that s
∗−→βη u

∗←−βη t .

(Proofs of these may be found in [23].) Each of these theorems remains true when

restricted to just η-conversion or just β-conversion. One of the important consequences of

these two results is that for each term t there exists a unique (up to α-conversion) term t′

such that t
∗−→βη t

′ with t′ in βη-normal form, and similarly for the restriction to just β- or

just η-reduction. Another consequence is that the β-, η-, or βη-equivalence of two arbitrary

terms may be decided by checking if the corresponding normal forms of the two terms are

equal. For example, if we denote the unique β-normal form of a term t by t↓, then s
∗←→β t

iff s↓= t↓.

Convention: We shall in general assume that terms under discussion are in β-normal form

unless otherwise stated. In particular, each term in β-normal form may be represented in

the form λx1 . . . xn(a e1 . . . em) , where the head a is an atom, i.e., a is either a function

constant, bound variable, or some variable free in this term, and the terms e1, . . . , em

are in the same form. By analogy with first-order notation, such a term will be denoted

λx1 . . . xn. a(e1, . . . , em) . As an abbreviation, we represent lambda terms using something

like a ‘vector’ notation for lists, so that λx1 . . . xn. e will be represented by λxn. e . Fur-

thermore, this principle will be extended to lists of terms, so that λxn. f(e1, . . . , em) will

be represented as λxn. f(em) , and we shall even sometimes represent a term such as

λxk. a(y1(xk), . . . , yn(xk))

in the form λxk. a(yn(xk)).

Definition 2.10 A term whose head is a function constant or a bound variable is called

a rigid term; if the head is a free variable it will be called a flexible term. (For example,

the term λx. F (λy. y(x, a), c) is flexible, but both of its immediate subterms are rigid. )

As remarked above, we consider in this paper only the problem of unifying terms in the

βη-calculus, and since our analysis proceeds by examining the manner in which substitution

and subsequent β-reduction makes two terms identical, we need not explicitly consider the

role of η-reduction. The formal justification for this is given by the following result.
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Lemma 2.11 For any two terms s and t, we have s
∗−→βη t iff there exists a term u such

that s
∗−→β u

∗−→η t.

(For a proof see [5].) As a consequence, we can decide βη-equivalence by reducing

terms to their β-normal forms, and then testing for η-equivalence, that is, s
∗←→βη t iff

s↓ ∗←→η t↓. This allows us to ‘factor out’ η-conversion, by considering only η-equivalence

classes of terms. We shall use the following means of representing such classes by canonical

representatives (due to [26]).

Definition 2.12 Let e = λx1 . . . xn. a(e1, . . . , em) be a term in β-normal form of type

α1, . . . , αn, αn+1, . . . , αn+k → β, with β ∈ T0. The η-expanded form of e, denoted by η[e],

is produced by adding k new variables of the appropriate types to the binder and the matrix

of the term, and (recursively) applying the same expansion to the subterms, to obtain

λx1 . . . xnxn+1 . . . xn+k. a(η[e1], . . . , η[em], η[xn+1], . . . , η[xn+k]),

where τ(xn+i) = αn+i for 1 ≤ i ≤ k.

This is effectively the normal form of a term under the converse of the η-reduction

rule (so that η[e]
∗−→η e ) and is only defined on a term already in β-normal form. It is easy

to show that in an η-expanded form, every atom appears applied to as many arguments

as allowed by its type, and that the matrices of all subterms are of base types. This form

is more useful than the η-normal form because it makes the type of the term and all its

subterms more explicit, and is therefore a convenient syntactic convention for representing

the congruence class of all terms equal modulo the η−rule. It is easy to show, by structural

induction on terms, that these expanded forms always exist and are unique (up to α-

conversion), so that for any two terms s and t in β-normal form, we have s
∗←→η t iff

η[s] = η[t] (see [26], lemma 4.3). Thus, we have a Church-Rosser theorem in the following

form.

Theorem 2.13 For every two terms s and t, we have s
∗←→βη t iff η[s↓] = η[t↓].

Definition 2.14 Let Lexp be defined as the set of all η-expanded forms, i.e., Lexp =

{η[e↓] | e ∈ L}. Define the set Lη as the smallest subset of L containing Lexp and closed

under application and lambda abstraction, i.e., (e1e2) and λx. e1 are in Lη whenever

e1 ∈ Lη and e2 ∈ Lη.

The essential features of Lexp and Lη which will allow us to restrict our attention to

η-expanded forms are proved in the next lemma, which is from [26].
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Lemma 2.15 For every variable x and every pair of terms e and e′ of the appropriate

types:

(1) e, e′ ∈ Lexp implies that (λx. e) ∈ Lexp and (ee′)↓∈ Lexp;
(2) e ∈ Lη implies that e↓∈ Lexp;
(3) e, e′ ∈ Lη implies that (λx. e) ∈ Lη and (ee′) ∈ Lη;

(4) e ∈ Lη and e
∗−→β e

′ implies that e′ ∈ Lη;

(5) e, e′ ∈ Lη implies that e′[e/x] ∈ Lη.

These closure conditions for Lη (not all of which are satisfied by the set of η-normal

forms) formally justify our leaving the η-rule implicit in the following sections by developing

our method for higher-order unification in the language Lη and considering explicitly only

β-conversion as a computation rule.2 The reader interested in a more detailed treatment of

these matters, including proofs of the previous results, is referred to [26] for details.

We now formalize the general notion of substitution of lambda terms for free variables

in the βη-calculus, after which we show how this may be specialized to substitutions over

Lexp.

Definition 2.16 A substitution is any (total) function σ : V → L such that σ(x) 6= x

for only finitely many x ∈ V and for every x ∈ V we have τ(σ(x)) = τ(x). Given a

substitution σ , the support (or domain) of σ is the set of variables D(σ) = {x | σ(x) 6= x}.
A substitution whose support is empty is termed the identity substitution, and is denoted

by Id . The set of variables introduced by σ is I(σ) =
⋃
x∈D(σ) FV (σ(x)).

A subtle point of this definition is that substitutions are total functions which are non-

trivial over only a finite number of variables; over the rest of V they simply map variables to

themselves. Given a substitution σ, if its support is the set {x1, . . . , xn} , and if ti = σ(xi)

for 1 ≤ i ≤ n , then σ is also denoted by listing its bindings explicitly: [t1/x1, . . . , tn/xn] .

Given a term u, we may also denote σ(u) as u[t1/x1, . . . , tn/xn] .

Definition 2.17 A substitution ρ is a renaming substitution away from W if ρ(x) is a

variable (modulo η-conversion) for every x ∈ D(ρ) , I(ρ) ∩W = ∅, and for every x and

y in D(ρ), ρ(x)
∗←→η ρ(y) implies that x = y. If W is unimportant, then ρ is simply

called a renaming . The restriction of a substitution σ to some W ′, denoted σ|W ′ , is the

substitution σ′ such that

σ′(x) =

{
σ(x), if x ∈W ′ ;
x, otherwise.

2 In fact, we shall depart from our convention in the interests of simplicity only when representing
terms which are (up to η-conversion) variables, e.g., λxy. F (x, y). In some contexts, such as solved
form systems, we wish to emphasize their character as variables, and will represent them as such,
e.g., just F . In these cases, we shall be careful to say that ‘F is (up to η-conversion) a variable,’ etc.
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Since L is freely generated, every substitution σ : V → L has a unique extension

σ̂ : L → L defined recursively as follows.

Definition 2.18 Let σ−x denote the substitution σ|D(σ)−{x} . For any substitution σ,

σ̂(x) = σ(x) for x ∈ V ;

σ̂(a) = a for a ∈ Σ;

σ̂(λx. e) = λx. σ̂−x(e);

σ̂( (e1 e2) ) = ( σ̂(e1) σ̂(e2) ).

Thus a substitution has an effect only on the free variables of a term. In the sequel,

we shall identify σ and its extension σ̂ . Note that by our assumption that the sets of

bound variables and free variables in any context are disjoint, no variable capture will ever

take place by application of a substitution. It is easy to show that the type of a term is

unchanged by application of an arbitrary substitution.

Remark: It is important to note that by σ(e) we denote the result of applying the substi-

tution σ to e without β-reducing the result; we shall denote by σ(e)↓ the result of applying

the substitution and then reducing the result to β-normal form. This rather non-standard

separation we impose between substitution and the subsequent β-reduction is useful because

we wish to examine closely the exact effect of substitution and β-reduction on lambda terms

in a later section.

Definition 2.19 The union of two substitutions σ and θ, denoted by σ ∪ θ , is defined

by

σ ∪ θ(x) =


σ(x), if x ∈ D(σ) ;

θ(x), if x ∈ D(θ) ;

x, otherwise,

and is only defined if D(σ) ∩D(θ) = ∅ . The composition of σ and θ is the substitution

denoted by σ ◦ θ such that for every variable x we have σ ◦ θ(x) = θ̂(σ(x)). Note carefully

that we denote composition from left to right .

Definition 2.20 Given a set W of variables, we say that two substitutions σ and θ are

equal over W , denoted σ = θ[W ] , iff ∀x ∈ W , σ(x) = θ(x). Two substitutions σ and

θ are β-equal over W , denoted σ =β θ[W ] iff ∀x ∈ W , σ(x)
∗←→β θ(x), or, equivalently,

σ(x)↓= θ(x)↓. The relations =η and =βη are defined in the same way but using
∗←→η

and
∗←→βη . We say that σ is more general than θ over W , denoted by σ ≤ θ[W ], iff

there exists a substitution η such that θ = σ ◦ η[W ], and we have σ ≤β θ[W ] iff there
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exists some η′ such that θ =β σ ◦ η′[W ], and ≤η and ≤βη are defined analogously. When

W is the set of all variables, we drop the notation [W ] . If neither σ ≤βη θ nor θ ≤βη σ
then σ and θ are said to be independent .

The comparison of substitutions modulo β-, η-, and βη-conversion is formally justified

by the following lemma, which is easily proved by structural induction on terms:

Lemma 2.21 If σ and θ are arbitrary substitutions such that either σ =β θ, σ =η

θ, or σ =βη θ, then for any term u we have either σ(u)
∗←→β θ(u), σ(u)

∗←→η θ(u), or

σ(u)
∗←→βη θ(u), respectively.

We now show that we can develop the notion of substitution wholly within the context

of the language Lη developed above without loss of generality.

Definition 2.22 A substitution θ is said to be normalized if θ(x) ∈ Lexp for every

variable x ∈ D(θ).

We can assume without loss of generality that no normalized substitution has a binding

of the form η[x]/x for some variable x. A normalized renaming substitution has the form

[η[y1]/x1, . . . , η[yn]/xn]; the effect of applying such a substitution and then β-reducing is

to rename the variables x1, . . . , xn to y1, . . . , yn. The justification for using normalized

substitutions is given by the following corollary of Lemma 2.15.

Corollary 2.23 If θ is a normalized substitution and e ∈ Lexp, then θ(e) ∈ Lη and

θ(e)↓∈ Lexp.

It is easy to show that if σ and θ are normalized, then σ =βη θ iff σ = θ and if θ′

is the result of normalizing θ, then θ′ =βη θ.

Convention: In general, substitutions are assumed to be normalized in the rest of this

paper, allowing us to factor out η-equivalence in comparing substitutions, so that we may,

e.g., use ≤β instead of ≤βη. In fact, the composition of two normalized substitutions could

be considered to be a normalized substitution as well, so that σ ≤β θ iff σ ≤ θ, but this

need not be assumed in what follows. For example, the composition [λx.G(a)/F ]◦[λy. y/G]

is defined as [λx. ((λy. y)a)/F, λy. y/G], not as [λx. a/F, λy. y/G]. We shall continue to use

=β and ≤β to compare normalized substitutions, although strictly speaking the subscript

could be omitted if no composition is involved.

Definition 2.24 A substitution σ is idempotent if σ ◦ σ =βη σ .

A sufficient condition for idempotency is given by3

3 In the first-order case, this condition is necessary as well, but in our more general situation we have
counter-examples such as σ = [λx. F (a)/F ].
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Lemma 2.25 A substitution σ is idempotent whenever I(σ) ∩D(σ) = ∅.

That in most contexts we may restrict our attention to idempotent substitutions with-

out loss of generality is demonstrated by our next result, which shows that any substitution

is equivalent (over an arbitrarily chosen set of variables) up to renaming to an idempotent

substitution. (For a proof see [43].)

Lemma 2.26 For any substitution σ and set of variables W containing D(σ), there exists

an idempotent substitution σ′ such that D(σ) = D(σ′), σ ≤βη σ′, and σ′ ≤βη σ[W ].

In general the assumption of idempotency simplifies matters. We shall provide specific

motivations for the use of idempotent unifiers in the appropriate sections.

The net effect of these definitions, conventions, and results is that we can develop our

method for unification of terms in the βη-calculus wholly within Lη, leaving η-equivalence

implicit in the form of the terms under consideration.

Before we proceed with the transformation method for the first-order case, we present

the notion of a multiset .

Definition 2.27 Given a set A, a multiset over A is an unordered collection of elements

of A which may have multiple occurrences of identical elements. More formally, a multiset

over A is a function M : A → N (where N is the set of natural numbers) such that an

element a in A has exactly n occurrences in M iff M(a) = n. In particular, a does not

belong to M when M(a) = 0, and we say that a ∈ M iff M(a) > 0. The union of two

multisets M1 and M2, denoted by M1 ∪M2, is defined as the multiset M such that for all

a ∈ A, M(a) = M1(a) +M2(a).

To avoid confusion between multisets and sets, we shall always state carefully when

an object is considered to be a multiset. Note that multiset union is a distinct notion from

the union of sets, since for example, if A is a non-empty multiset, then A ∪A 6= A.

3 Unification by Transformations on Systems

We now define unification of first-order terms and present an abstract view of the unification

process as a set of non-deterministic rules for transforming a unification problem into an

explicit representation of its solution, if such exists; in the next section this will be extended

to the higher-order case. This elegant approach is due to [30], but was implicit in Herbrand’s

thesis [22].4 Note that all terms in this section are purely first-order, so that there are no

4 It is remarkable that in his thesis, Herbrand gave all the steps of a (nondeterministic) unification
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lambda-abstractions, no variables at the head of terms, and for any term t, FV (t) represents

the set of all variables in t. Every first-order term is trivially in Lexp.
Our representation for unification problems is the following.

Definition 3.1 A term pair or just a pair is a multiset of two terms, denoted, e.g., by

〈s, t〉 , and a substitution θ is called a standard unifier (or just a unifier) of a pair 〈s, t〉
if θ(s) = θ(t) . A term system (or system) is a multiset of such pairs, and a substitution θ

is a unifier of a system if it unifies each pair. The set of unifiers of a system S is denoted

U(S) , and if S consists of only a single pair 〈s, t〉 , the set of unifiers is denoted by U(s, t) .

Definition 3.2 A substitution σ is a most general unifier , or mgu, of a system S iff

(i) D(σ) ⊆ FV (S) ;

(ii) σ ∈ U(S) ;

(iii) For every θ ∈ U(S), σ ≤ θ .

It is well known that mgu’s always exist for unifiable systems, and it can be shown

that mgu’s are unique up to composition with a renaming substitution, and so we shall

follow the common practice of glossing over this distinction by referring to the mgu of a

system, denoted by mgu(S).

Definition 3.3 A pair 〈x, t〉 is in solved form in a system S and x in this pair is called

a solved variable if x is a variable which does not occur anywhere else in S; in particular,

x 6∈ FV (t) . A system is in solved form if all its pairs are in solved form; a variable is

unsolved if it occurs in S but is not solved.

Note that a solved form system is always a set of solved pairs. The importance of

solved form systems is shown by

Lemma 3.4 Let S =
{
〈x1, t1〉, . . . , 〈xn, tn〉

}
be a system in solved form. If σ =

[t1/x1, . . . , tn/xn] , then σ is an idempotent mgu of S. Furthermore, for any substitu-

tion θ ∈ U(S) , we have θ = σ ◦ θ .

Proof . We simply observe that for any such θ, θ(xi) = θ(ti) = θ(σ(xi)) for 1 ≤ i ≤ n ,

and θ(x) = θ(σ(x)) otherwise. Clearly σ is an mgu, and since D(σ) ∩ I(σ) = ∅ by the

definition of solved forms, it is idempotent.

Strictly speaking the substitution σ here is ambiguous in the case that there is at

least one pair in S consisting of two solved variables; but since mgu’s are considered unique

algorithm based on transformations on systems of equations. These transformations are given at the
end of the section on property A, page 148 of Herbrand [22].
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up to renaming, and such pairs can be arbitrarily renamed, we denote this substitution by

σS . As a special case, note that σ∅ = Id .

We may analyse the process of finding mgu’s as follows. If θ(u) = θ(v) , then either

(i) u = v and no unification is necessary; or (ii) u = f(u1, . . . , un) and v = f(v1, . . . , vn)

for some f ∈ Σ , and θ(ui) = θ(vi) for 1 ≤ i ≤ n ; or (iii) u is a variable not in FV (v)

or vice versa. If u is a variable not in FV (v), then [v/u] ∈ U(u, v) and [v/u] ≤ θ . By

extending this analysis to account for systems of pairs, we have a set of transformations for

finding mgu’s.

Definition 3.5 (The set of transformation rules ST ) Let S denote any system (possibly

empty), f ∈ Σ , and u and v be two terms. We have the following transformations.

{〈u, u〉} ∪ S =⇒ S (1)

{〈f(u1, . . . , un), f(v1, . . . , vn)〉} ∪ S =⇒ {〈u1, v1〉, . . . , 〈un, vn〉} ∪ S (2)

{〈x, v〉} ∪ S =⇒ {〈x, v〉} ∪ σ(S), (3)

where 〈x, v〉 is not a solved pair in S such that x 6∈ FV (v), and σ = [v/x] .

Recall that systems are multisets, so the unions here are multiset unions; the intent

of the left-hand side of each of these rules is to isolate a single pair to be transformed.

Transformation (2) is called term decomposition and (3) is called variable elimination. We

shall say that θ ∈ Unify(S) iff there exists some sequence of transformations

S =⇒ . . . =⇒ S′,

where S′ is in solved form and θ = σS′ . (If no transformation applies, but the system is

not in solved form, the procedure given here fails.)

Clearly, by choosing S = {〈u, v〉} , we can attempt to find a unifier for two terms u,

and v, as the following example shows.5

Example 3.6

〈f(x, g(a, y)), f(x, g(y, x))〉
=⇒2 〈x, x〉, 〈g(a, y), g(y, x)〉
=⇒1 〈g(a, y), g(y, x)〉
=⇒2 〈a, y〉, 〈y, x〉
=⇒3 〈a, y〉, 〈a, x〉 .

5 In examples, we shall often drop set brackets around systems, e.g., S = 〈x1, t1〉, . . . , 〈xn, tn〉 .
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The sense in which these transformations preserve the logically invariant properties of

a unification problem is shown by

Lemma 3.7 If S =⇒ S′ using any transformation from ST , then U(S) = U(S′) .

Proof . The only difficulty is in transformation (3). Suppose {〈x, v〉} ∪ S =⇒3 {〈x, v〉} ∪
σ(S) with σ = [v/x] . For any substitution θ, if θ(x) = θ(v) , then θ = σ ◦ θ , since σ ◦ θ
differs from θ only at x, but θ(x) = θ(v) = σ ◦ θ(x) . Thus,

θ ∈ U({〈x, v〉} ∪ S)

iff θ(x) = θ(v) and θ ∈ U(S)

iff θ(x) = θ(v) and σ ◦ θ ∈ U(S)

iff θ(x) = θ(v) and θ ∈ U(σ(S))

iff θ ∈ U({〈x, v〉} ∪ σ(S)).

The point here is that the most important feature of a unification problem—its set

of solutions—is preserved under these transformations, and hence we are justified in our

method of attempting to transform such problems into a trivial (solved) form in which the

existence of an mgu is evident.

We may now show the soundness and completeness of these transformations following

[30].

Theorem 3.8 (Soundness) If S
∗

=⇒ S′ with S′ in solved form, then σS′ ∈ U(S).

Proof . Using the previous lemma and a trivial induction on the length of transformation

sequences, we see that U(S) = U(S′), and so clearly σS′ ∈ U(S).

Theorem 3.9 (Completeness) Every sequence of transformations

S = S0 =⇒ S1 =⇒ S2 =⇒ . . . S′

must eventually terminate. Furthermore, S is unifiable iff every irreducible system S′

derivable from S is in solved form, and for every θ ∈ U(S) , σS′ ≤ θ .

Proof . We first show that every transformation sequence terminates. For any system S,

let us define a complexity measure µ(S) =< m,n > , where m is the number of unsolved

variables in the system, and n is the sum of the sizes of all the terms in the system. Then

the lexicographic ordering on < m,n > is well-founded, and each transformation produces
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a new system with a measure strictly smaller under this ordering: (1) and (2) must decrease

n and can not increase m, and (3) must decrease m.

Therefore the relation =⇒ is well-founded, and every transformation sequence must

end in some system to which no transformation applies. Suppose a given sequence ends in a

system S′. Now by Lemma 3.7, θ ∈ U(S) iff θ ∈ U(S′) . Thus, S is unifiable iff S′ contains

no pairs of the form 〈f(t1, . . . , tn), g(t′1, . . . , t
′
m)〉 or of the form 〈x, t〉 with x ∈ FV (t) .

But since no transformation applies, all pairs in S′ must be in solved form. Finally, since

θ ∈ U(S′), by Lemma 3.4 we must have σS′ ≤ θ .

Putting these two theorems together, we have that the set ST can always find an

mgu for a unifiable system of terms; as remarked in [30], this abstract formulation can be

used to model many different unification algorithms, by simply specifying data structures

and a control strategy.

In fact, we have proved something stronger than necessary in Theorem 3.9: it has

been shown that all transformation sequences terminate and that any sequence of trans-

formations issuing from a unifiable system must eventually result in a solved form. This is

possible because the problem is decidable. Strictly speaking, it would have been sufficient

for completeness to show that if S is unifiable then there exists some sequence of trans-

formations which results in a solved form, since then a complete search strategy, such as

breadth-first search, could find the solved form. This form of completeness, which might

be termed non-deterministic completeness, will be used in finding results on higher-order

unification, where the general problem is undecidable.

In some contexts it may be useful to deal with idempotent unifiers which are renamed

away from some set of ‘protected’ variables but which are most general over the set of

variables in the original system. The next definition makes this precise. (In the next

section we shall offer a variation of this notion for higher-order unification.)

Definition 3.10 Given a system S and a finite set W of ‘protected’ variables, a substitu-

tion σ is a most general unifier of S away from W (abbreviated mgu(S)[W ] ) iff

(i) D(σ) ⊆ FV (S) and I(σ) ∩ (W ∪D(σ)) = ∅ ;

(ii) σ ∈ U(S) ;

(iii) For every θ ∈ U(S), σ ≤ θ[FV (S)] .

That such substitutions may always be found for unifiable systems is shown by the following

lemma, whose proof may be found in [43].

Lemma 3.11 If S is a unifiable system and W a protected set of variables, then there

exists a substitution σ which is a mgu(S)[W ].
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4 Higher Order Unification via Transformations

In this section we extend the methods of the previous section to a more general context.

Higher-order unification is more complex than first-order unification due to the presence

of variables of functional type, the notion of scope and bound variables, and the fact that

unification is defined in terms of βη-equivalence. This additional syntactic complexity has

several serious consequences. First of all, the unification of terms of second-order and

higher is undecidable in general [16]. Next, most general unifiers do not exist any more,

and a more complex notion, that of a complete set of unifiers, is necessary. Finally, due

to the complexity of the subproblem of unifying two flexible terms, the search space for a

complete unification procedure may be infinitely branching, which forbids any reasonable

implementation. Our analysis of the problem proceeds by examining the exact fashion

in which substitution and β-reduction makes two terms identical from the top-down (i.e.,

from the head to the innermost subterms). We develop from this a set of non-deterministic

transformations extending those of the previous section, and prove their non-deterministic

completeness in an analogous fashion. In the next section, this is restricted to the problem

of preunification.

Definition 4.1 The notion of pairs and systems of terms carries over from the first-order

case. A substitution θ is a unifier of two lambda terms e1 and e2 iff θ(e1)
∗←→βη θ(e2).6 A

substitution is a unifier of a system S if it unifies each pair in S. The set of all unifiers of

S is denoted U(S) and if S consists of a single pair 〈s, t〉 then it is denoted U(s, t).

This definition is more general than we shall need, in fact, since we shall develop our

approach in Lη in order to factor out η-conversion, as was formally justified in Section §2.

Thus for two terms s, t ∈ Lη , we say that a normalized substitution θ is in U(s, t) iff

θ(s)
∗←→β θ(t), or, alternately, if θ(s)↓= θ(t)↓ .

A pair of terms is solved in a system S if it is in the form 〈η[x], t〉, for some variable

x which occurs only once in S; a system is solved if each of its pairs is solved. Our

only departure from the use of η-expanded form is that we shall represent pairs of the

form 〈η[x], t〉 as 〈x, t〉 in order to emphasize their correspondence to bindings t/x in

substitutions, as in the first-order case of the previous section.

Example 4.2 If u = f(a, g(λx.G(λy. x(b)))) and v = F (λx. x(z)), then

θ = [λx2. f(a, g(x2))/F, λx3. x3(z2)/G, b/z] is in U(u, v) , since θ(u)↓= θ(v)↓ :

θ(u) = f(a, g(λx. [(λx3. x3(z2))(λy. x(b))]))

6 This is in the context of the βη-calculus; in the β-calculus the condition would be θ(e1)
∗←→β θ(e2).
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−→β f(a, g(λx. [(λy. x(b))z2]))

−→β f(a, g(λx. x(b)))

←−β (λx2. f(a, g(x2)))(λx. x(b)) = θ(v).

The basic decidability results concerning higher-order unification are as follows.

Definition 4.3 For a given set of function constants Σ, the unification problem for the

language L generated by Σ is to decide, for any arbitrary terms e, e′ ∈ L, whether the

set U(e, e′) is non-empty. The nth-order unification problem is to decide the unification

problem for an arbitrary language of order n.

For example, in Section §3 we showed that the first-order unification problem is de-

cidable. Unfortunately, this does not hold for higher-orders.

Theorem 4.4 The second-order unification problem is undecidable.

This result was shown by Goldfarb [16] using a reduction from Hilbert’s Tenth Prob-

lem; previously, Huet [28] showed the undecidability of the third-order unification problem,

using a reduction from the Post Correspondence Problem. These results show that there

are second-order (and therefore arbitrarily higher-order) languages where unification is un-

decidable; but in fact there exist particular languages of arbitrarily high-order which have

a decidable unification problem. Interestingly, Goldfarb’s proof requires that the language

to which the reduction is made contain at least one 2-place function constant. It has been

shown in [11] that the unification problem for second-order monadic languages (i.e., no

function constant has more than one argument place) is decidable, which has applications

in certain decision problems concerning the lengths of proofs. A different approach to de-

cidability is taken in [46], where decidable cases of the unification problem are found by

showing that the search tree for some problems, although infinite, is regular, and that the

set of unifiers can be represented by a regular expression. More generally, it has been

shown by Statman [44] that the set of all decidable unification problems is polynomial-time

decidable.

Besides the undecidability of higher-order unification, another problem is that mgu’s

may no longer exist, a result first shown by [17]. For example, the two terms F (a) and a

have the unifiers [λx. a/F ] and [λx. x/F ], but there is no unifier more general than both

of these. This leads us to extend the notion of a mgu(S)[W ] to the higher-order case by

considering complete sets of unifiers. Our definition is a generalization of the one found in

[26] to term systems.7

7 We also generalize slightly the Huet definition by allowing the protected set of variables to be arbitrary.



24 Higher-Order Unification Revisited

Definition 4.5 Given a system S and a finite set W of ‘protected’ variables, a set U of

normalized substitutions is a complete set of unifiers for S away from W (which we shall

abbreviate by CSU(S)[W ] ) iff

(i) For all σ ∈ U , D(σ) ⊆ FV (S) and I(σ) ∩ (W ∪D(σ)) = ∅ ;

(ii) U ⊆ U(S) ;

(iii) For every normalized θ ∈ U(S), there exists some σ ∈ U such that σ ≤β
θ[FV (S)] .

The first condition is called the purity condition, the second the coherence condition, and

the last the completeness condition. If S consists of a single pair 〈u, v〉 then we use the

abbreviation CSU(u, v)[W ] . When W is not significant, we drop the notation [W ].

That there is no loss of generality in considering only normalized substitutions may

be seen by the fact that any substitution is βη-equal to a normalized substitution. By

providing a version of Lemma 3.11 for this new context, we see that condition (i) is without

loss of generality as well.

Lemma 4.6 For any system S, substitution θ, and set of protected variables W , if θ ∈
U(S) then there exists some normalized substitution σ such that

(i) D(σ) ⊆ FV (S) and I(σ) ∩ (W ∪D(σ)) = ∅ ;

(ii) σ ∈ U(S) ;

(iii) σ ≤βη θ[FV (S)] and θ ≤βη σ[FV (S)].

Proof . If σ = θ|FV (S) satisfies condition (i), then we have our result trivially. Otherwise,

if I(θ) = {x1, . . . , xn} then let {y1, . . . , yn} be a set of new variables disjoint from the

variables in W , I(θ), and FV (S) such that τ(xi) = τ(yi) for 1 ≤ i ≤ n. Now define the

renaming substitutions ρ1 = [η[y1]/x1, . . . , η[yn]/xn] and ρ2 = [η[x1]/y1, . . . , η[xn]/yn],

let σ′ = θ◦ρ1|FV (S), and then let σ be the normalized version of σ′. Clearly σ satisfies (i),

and since σ =βη θ ◦ ρ1[FV (S)] we have the second part of (iii). Now, because ρ1 ◦ ρ2 =βη

Id[FV (S)∪ I(θ)], we must have θ =βη θ ◦ ρ1 ◦ ρ2[FV (S)∪ I(θ)]. But then by the fact that

σ =βη θ ◦ ρ1[FV (S)] we have θ =βη σ ◦ ρ2[FV (S)], and so σ ≤βη θ[FV (S)], proving the

first part of (iii). To show (ii), observe that for any 〈u, v〉 ∈ S we have θ(u)↓= θ(v)↓, and

for any term t, we have σ′(t)
∗←→βη σ(t) , and so

σ(u)
∗←→βη σ

′(u) = ρ1(θ(u))
∗−→βη ρ1(θ(u)↓) = ρ1(θ(v)↓) ∗←−βη ρ1(θ(v)) = σ′(v)

∗←→βη σ(v),

The original definition imposed the restriction that W ∩FV (S) = ∅ in order that variable renaming
not be necessary. We relax this restriction so that we have a true generalization of a mgu(S)[W ] to
higher-order unifiers, and allow renaming to be imposed or not, by setting W appropriately. Note
that our definition is based on our use of Lη ; in the version for the βη-calculus, condition (iii) would
use ≤βη , and substitutions would not have to be normalized. The original Huet definition of a

complete set may also be found in [9] in the context of E-unification.
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which shows that σ ∈ U(S) .

This shows us that for any S and W , the set of all normalized unifiers satisfying

condition (i) and (ii) of Definition 4.5 is a CSU(S)[W ], and so in particular there is no loss of

generality in considering only normalized, idempotent unifiers θ such that D(θ)∩ I(θ) = ∅
in what follows. This will simplify our presentation.

Finally, we examine the relevance of solved form systems in Lη.

Lemma 4.7 If S = {〈x1, t1〉, . . . , 〈xn, tn〉} is a system in solved form, then {σS} is a

CSU(S)[W ] for any W such that W ∩ FV (S) = ∅.

Proof . The first two conditions in Definition 4.5 are satisfied, since σS is an idempotent

mgu of S, W ∩ FV (S) = ∅, and I(σS) ⊆ FV (S). Now, if θ ∈ U(S), then θ =β σS ◦ θ,
since θ(xi)

∗←→β θ(ti) = θ(σS(xi)) for 1 ≤ i ≤ n, and θ(x) = θ(σS(x)) otherwise. Thus

σS ≤β θ and so obviously σS ≤β θ[FV (S)] .

4.1 Transformations for Higher Order Unification

We may analyze the process of higher-order unification as follows. Let us assume, without

loss of generality, that u and v are two lambda terms in Lexp and that θ is an idempotent,

normalized unifier of u and v. Thus there exists some sequence of reductions to a β-normal

form: θ(u)
∗−→β w

∗←−β θ(v). (Note that if all the terms instantiated by the substitution are

first-order, then this sequence is trivial, since there are no β-reductions.) We may analyse

this sequence top-down, examining the way in which each binding in the substitution (with

its subsequent β-reduction, if the binding is higher-order) makes the two terms identical

at each level of the terms. We have the following five cases (which are not intended to be

mutually exclusive).

(A) u = v and no unification is necessary. (Assume u 6= v in the remaining cases.)

(B) No substitution takes place at the head in either term. In this case, Head(u) =

Head(v) and, since u 6= v, we must have |u|, |v| > 0. Thus, suppose u = λxk. a(un) ,

w = λxk. a(wn) , and v = λxk. a(vn), where n > 0 and either a ∈ Σ, or a = xi for

some i, 1 ≤ i ≤ k, or a is a free variable not in D(θ). In this case we must have

θ(λxk. ui)
∗−→β λxk. wi

∗←−β θ(λxk. vi) for 1 ≤ i ≤ n , that is, the subterms of u and v

are pair-wise unifiable by θ.

(C) Our two terms are u = λxk. F (xk) and v = λxk. v
′, for some variable F and

some term v′, and where F 6∈ FV (v). In this case, we must have

θ(λxk. F (xk))
∗←→β θ(λxk. v

′),
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where F 6∈ FV (v), and, if θ = [λyk. t/F ] ∪ θ′ , then since

θ(F )←−β θ(λxk. F (xk)),8 we have θ(F )
∗←→β θ(λxk. v

′) , where F does not occur in v′, so

that we may use the same argument we used in the first-order case. If we let σ = [λxk. v
′/F ]

then θ =β σ ◦ θ, since θ and σ ◦ θ differ only at F , but

θ(F )
∗←→β θ(λxk. v

′) = σ ◦ θ(F ).

This in fact shows that a pair of terms in this form has a single mgu. (For example,

λx. F (x) and λx. f(x, z) are unified by θ = [λy. f(y, a)/F, a/z] , but σ = [λy. f(y, z)/F ]

is an mgu.) It should be obvious that this is a generalization of variable elimination to

higher-order, since u is (up to η-equivalence) simply a variable not occurring in FV (v).

(D) Some substitution takes place at the head of only one term; assume that this term

is u (so that Head(w) = Head(v) ). Then let u = λxk. F (un) and v = λxk. a(vm) for

some atom a 6= F which is either a function constant, a bound variable, or a free variable

not in D(θ). Now in order for the two terms to unify, we must make the head of u become

a at some point in the sequence of β-reductions from θ(u) to w. There are two possibilities:

either we imitate the head of v by substituting a term for F whose head is a, or we substitute

a term for F which projects up a subterm of u. (The latter case is only possible if F is of

higher-order type.) We consider each of these in turn.

(Imitation) The substitution for F matches the head symbol of v by imitating the

head symbol a, where a ∈ Σ or a is a free variable not in D(θ), as we saw in Example 4.2.9

Thus we have θ(F ) = λzn. a(rm) for some terms rm and we have a reduction sequence of

the form

θ(u) = θ(λxk. ((λzn. a(rm))un)) −→β θ(λxk. a(r′m))
∗←→β θ(λxk. a(vm)),

where r′i = ri[u1/z1, . . . , un/zn] for 1 ≤ i ≤ m. (Notice that by the idempotency of θ, for

illustration we can partially instantiate the term u with just the binding for the head F in

this sequence.)

(Projection) The substitution for F attempts to match the head symbol a of v by

projecting up a subterm of u. There are three ways to do this, depending upon the head

symbol of the term projected up. First of all, perhaps a subterm of u has a head a which

provides the match; for example, F (λx. f(x, a)) and f(b, a) will be unified by the substitu-

tion [λy. y(b)/F ] in this fashion (note that we had to provide an argument b to the subterm

8 Note that the β-reduction simply replaces the bound variables y1, . . . , yk with x1, . . . , xk, a useless
operation in view of our assumption of α-equivalence.

9 Note that it is impossible to imitate a bound variable, since the rules of the calculus disallow free
variable capture.
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λx. f(x, a) for the projection to work). The second reason to project is that perhaps a sub-

term of u is flexible, allowing us to start all over again in attempting to match the head of

this new term to v. For example F (λx.G(x, a)) and b can be unified by the substitution

[λy. y(b)/F, λx1x2. x1/G] , where the binding for F works in this way. The third motivation

for projection is that perhaps the subterm is itself a projection, and after some sequence of

reductions, we have a term which is either flexible (and so we continue), or whose head is

a and the match succeeds. For example, θ = [λy1. y1(λy2. y2(a))/F ] unifies the two terms

u = F (λx1. x1(λx2. f(x2))) and v = f(a) in this manner:

θ(u) = [λy1. y1(λy2. y2(a))]λx1. x1(λx2. f(x2))

−→β [λx1. x1(λx2. f(x2))]λy2. y2(a)

−→β (λy2. y2(a))λx2. f(x2)

−→β (λx2. f(x2)) a

−→β f(a) = θ(f(a)).

In substituting a projection for the head of a flexible term u = λxk. F (un), we are

restricted by the type of F to projecting up a subterm ui which will preserve the type of u. In

particular, since we can only substitute a term of the same type as F , and since unification is

only defined between terms of the same type, if τ(u) = τ(v) = α1, . . . , αk → β, then τ(ui)

must be some type γ1, . . . , γm′ → β in order that the result of the projection preserves

the type of u. Thus the type of the matrix of ui must be the same as the matrix of u,

and the substitution must provide arguments for each of the variables in the lambda binder

of ui. Thus if θ(F ) = λzn. zi(rm′) for some i, 1 ≤ i ≤ n, then ui must be in the form

ui = λym′ . u′i where the type of the matrix u′i is the same as the type of the matrices of u

and v. In this case, the head a of u can be a function constant, a free variable, or a bound

variable (i.e., one of the xi), and thus we have a reduction sequence of the form

θ(u) = θ(λxk. [(λzn. zi(rm′))un]) −→β θ(λxk. [(λym′ . u′i)r
′
m′ ])

∗−→β θ(λxk. a
′(tp))

∗←→β θ(λxk. a(vm)),

where r′i = ri[u1/z1, . . . , un/zn] for 1 ≤ i ≤ m′, λxk. a′(tp) = (λxk. [(λym′ . u′i)r
′
m′ ])↓ , and

either a′ = a or a′ is a free variable in D(θ).

(E) Substitutions take place at the heads of both terms. Then let u = λxk. F (un)

and v = λxk. G(vm) , where both F and G are in D(θ). Here we must eventually match

the heads of the two terms, but we can do it in a large number of ways. In order to simplify

our analysis, we attempt to reduce it to the previous case if we can. Let us (without loss of

generality) focus on the binding made for the variable F . There are two subcases.



28 Higher-Order Unification Revisited

(i) θ substitutes a non-projection term for F , e.g., θ(F ) = λzn. a(sp), where a 6= G is not

a bound variable (and by idempotency is not a variable in D(θ) ), and then (possibly)

causes a β-reduction, after which we can analyse the result using case (D).

(ii) θ substitutes a projection term for F (which obeys the typing constraints discussed

above), e.g., θ(F ) = λzn. zj(tq), and then, after we reduce to normal form, if the head

symbol is either a function constant, a bound variable, or a variable not in D(θ),

we may analyse the result using case (D); if the head is a variable in D(θ), then we

(recursively) apply case (E) to these new terms.

By recursively applying this analysis to the subproblems generated we may account for every

binding made by θ and every β-reduction in the original sequence. This forms the basis

for the set of transformation rules below, which find unifiers by ‘incrementally’ building up

bindings using partial bindings, as informally shown in the introduction. In case (D) above,

this means that there will only be a finite number of choices for a partial binding, since

there is only one possible imitation and only a finite number of possible projections. In case

(E), unfortunately, this is not true. As shown in [26], the problem is that two flexible terms

may not possess a finite CSU , and in fact there may be an infinite number of independent

unifiers which contain flexible terms as bindings, so that even if we only attempt to find

the top function symbol of the binding, there are potentially an infinite number of choices,

since for each type there is always an infinite number of function variables. Thus, even if

there is only a finite number of function constants in the language, it is not possible to

reduce the non-determinism of this case in general to a finite number of choices of partial

bindings, and so the search tree must be infinitely branching.10

Given a system S of terms from Lexp and some normalized θ ∈ U(S), a complete

unification procedure must always be able to find some substitution σ such that σ ∈ U(S)

and σ ≤β θ[FV (S)]. Recall from the introduction that the basic idea of the transformation

method is that, given some θ ∈ U(S) , we attempt to find ‘pieces’ of θ by finding solved

pairs 〈x, t〉 such that θ(x)
∗←→β θ(t) ; in this case, we know by an argument similar to that

used in Lemma 4.7 that θ =β [t/x]◦θ, and by finding enough such pairs, we eventually have

a σ =β [t1/x1] ◦ . . . ◦ [tn/xn], where σ is a unifier of S more general than (or equivalent to)

θ. In other words, we may successively approximate θ until we have built up just enough

of the substitution to unify the system. We do this by ‘solving’ variables (as in case (C)

above) or using approximations to individual bindings, as in Huet’s method and in [15],

which we call partial bindings.

Definition 4.8 A partial binding of type α1, . . . , αn → β (where β is a base type) is a

10 See Section §5, where we discuss Huet’s solution to this problem.
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term of the form

λyn. a
(
λz1p1 . H1(yn, z1p1), . . . , λzmpm . Hm(yn, zmpm)

)
for some atom a, where

(1) τ(yi) = αi for 1 ≤ i ≤ n,

(2) τ(a) = γ1, . . . , γm → β, where γi = ϕi1, . . . , ϕ
i
pi → γ′i for 1 ≤ i ≤ m,

(3) τ(zij) = ϕij for 1 ≤ i ≤ m and 1 ≤ j ≤ pi;
(4) τ(Hi) = α1, . . . , αn, ϕ

i
1, . . . , ϕ

i
pi → γ′i for 1 ≤ i ≤ m,

where γ′1, . . . , γ
′
m are of base types. The immediate subterms of a partial binding (i.e., the

arguments to the atom a) will be called general flexible terms.

Note that these partial bindings are uniquely determined (up to renaming of the free

variables) by their type and by their head symbol a.

Definition 4.9 For a partial binding as in the previous definition, if a is either a function

constant or a free variable, then such a binding is called an imitation binding for a; if a is

a bound variable yi for some i, 1 ≤ i ≤ n , then it is called an ith projection binding . A

variant of a partial binding t is a term ρ(t)↓ , where ρ is a renaming of the set H1, . . . , Hm

of free variables at the heads of the general flexible terms in t away from all variables in the

context in which t will be used. For any variable F , a partial binding t is appropriate to F

if τ(t) = τ(F ). An imitation binding is appropriate to λxk. F (un) iff it is appropriate to

F .

In the case of an ith projection binding t for some i, 1 ≤ i ≤ n, appropriate to a term

λxk. F (un) of type α1, . . . , αk → β, the reader may check that τ(ui) = ϕ1, . . . , ϕq → β

for some types ϕ1, . . . , ϕq, so that the result of substituting the binding and β-reducing

will preserve the type of the term.

For notational brevity we shall extend our vector style notation to represent partial

bindings in the form

λyn. a(λzpm . Hm(yn, zpm)).

Following our analysis of higher-order unification given above, we have the following

set of transformations.

Definition 4.10 (The set of transformations HT .) Let S be a system of lambda-terms

(possibly empty). We have the following transformations.

{〈u, u〉} ∪ S =⇒ S (1)
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{
〈λxk. a(un), λxk. a(vn)〉

}
∪ S =⇒

⋃
1≤i≤n

{
〈λxk. ui, λxk. vi〉

}
∪ S, (2)

where a is an arbitrary atom.

If u = λxk. F (xk) and v = λxk. v
′, for some k, some variable F , and some term v′,

where F 6∈ FV (v) , then

{〈u, v〉} ∪ S =⇒ {〈F, λxk. v′〉} ∪ σ(S)↓, (3)

where σ = [λxk. v
′/F ].

These three transformations are analogous to the set ST . To provide for function

variables, we need one more transformation, which is divided into three cases.

{〈λxk. F (un), λxk. a(vm)〉} ∪ S =⇒ {〈F, t〉, 〈λxk. F (un), λxk. a(vm)〉} ∪ S, (4a)

where a is either a function constant or a free variable not equal to F and t is a variant of

an imitation binding for a appropriate to F , e.g., t = λyn. a(λzpm . Hm(yn, zpm)).

{〈λxk. F (un), λxk. a(vm)〉} ∪ S =⇒ {〈F, t〉, 〈λxk. F (un), λxk. a(vm)〉} ∪ S, (4b)

where a is some arbitrary atom (possibly bound) and t is a variant of an ith projec-

tion binding for some i, 1 ≤ i ≤ n, appropriate to the term λxk. F (un), that is,

t = λyn. yi(λzpq . Hq(yn, zpq )), such that if Head(ui) is a function constant, then

Head(ui) = a.

{〈λxk. F (un), λxk. G(vm)〉} ∪ S =⇒ {〈F, t〉, 〈λxk. F (un), λxk. G(vm)〉} ∪ S, (4c)

where t = λyn. a(λzpm . Hm(yn, zpm)) is a variant of some arbitrary partial binding appro-

priate to the term λxk. F (un) such that a 6= F and a 6= G.

As a part of the transformations (4a)–(4c), we immediately apply transformation (3)

to the new pair 〈F, t〉, which effectively amounts to just applying the substitution [t/F ] to

the rest of the system. As in the set ST , note that the unions above are multiset unions.

Henceforth we say that θ ∈ Unify(S) iff there exists a series of transformations

S
∗

=⇒ Sn, with Sn in solved form, and θ = σSn
|FV (S) .
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Example 4.11 For example, the following series of transformations leads to a system in

solved form.11

〈F (f(a)), f(F (a))〉
=⇒4a 〈F, λx. f(Y (x))〉, 〈 (λx. f(Y (x)))f(a)

f(Y (f(a))) , f( (λx. f(Y (x)))a
f(Y (a)) )〉

=⇒2 〈F, λx. f(Y (x))〉, 〈Y (f(a))), f(Y (a))〉
=⇒4b 〈F, λx. f( (λx. x)x

x )〉, 〈Y, λx. x〉, 〈 (λx. x)f(a)f(a) , f( (λx. x)a
a )〉

=⇒1 〈F, λx. f(x)〉, 〈Y, λx. x〉

Hence, [λx. f(x)/F ] ∈ Unify(F (f(a)), f(F (a))).

4.2 Soundness of the Transformations

The following lemmas will enable us to prove the soundness of this set of transformations.

Lemma 4.12 If S =⇒ S′ using transformation (1) or (3), then U(S) = U(S′) .

Proof . As in the first-order case, the only difficulty is in transformation (3). We must

show that U({〈x, v〉} ∪ S) = U({〈x, v〉} ∪ σ(S) ↓) where σ = [v/x] and x 6∈ FV (v) .

For any substitution θ, if θ(x)
∗←→β θ(v) , then θ =β σ ◦ θ , since σ ◦ θ differs from θ

only at x, but θ(x)
∗←→β θ(v) = σ ◦ θ(x) . But then, using Lemma 2.21, it is easy to

see that θ ∈ U(S) iff σ ◦ θ ∈ U(S). Furthermore, since for any term u we must have

σ ◦θ(u) = θ(σ(u))
∗−→β θ(σ(u)↓), it can easily be shown that σ ◦θ ∈ U(S) iff θ ∈ U(σ(S)↓).

Thus,

θ ∈ U({〈x, v〉} ∪ S)

iff θ(x)
∗←→β θ(v) and θ ∈ U(S)

iff θ(x)
∗←→β θ(v) and σ ◦ θ ∈ U(S)

iff θ(x)
∗←→β θ(v) and θ ∈ U(σ(S)↓)

iff θ ∈ U({〈x, v〉} ∪ σ(S)↓).

This lemma shows that the invariant properties of a problem are preserved under these

two transformations, as they were in the first-order case.

11 In order to show the effect of the β-reductions which follow the application of substitutions in (3), we
often explicitly represent these reductions using an ‘inference’ style notation, e.g., we represent the

effect of the substitution θ on the term e as
θ(e)
θ(e)↓ , to illustrate both the effect of the substitution

and the subsequent β-normal form.
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Lemma 4.13 Let S =⇒2 S′ where the pair in S transformed is 〈λxn. a(un), λxn. a(vn)〉.
For any substitution θ,

(i) if a is either a constant or a bound variable or a free variable not in D(θ), then

θ ∈ U(S) iff θ ∈ U(S′);

(ii) if a ∈ D(θ) then θ ∈ U(S′) implies that θ ∈ U(S).

Proof . If θ(λxk. ui)
∗←→β θ(λxk. vi) for 1 ≤ i ≤ n, then clearly we must have

θ(λxk. a(un)) = λxk. θ(a)(θ(u1), . . . , θ(un))
∗←→β λxk. θ(a)(θ(v1), . . . , θ(vn)) = θ(λxk. a(vn)),

and so for any atom a we have θ ∈ U(S) whenever θ ∈ U(S′). If a is either a function

constant, a bound variable, or a variable not in D(θ), then θ(a) = a and it is easy to see

that the reverse direction holds as well.

Lemma 4.14 If S =⇒ S′ using transformation (2) or (4), then U(S′) ⊆ U(S) .

Proof . For (2) the result is a consequence of our previous lemma. Transformation (4) is in

two parts, first adding a pair 〈F, t〉 to the system S, and then applying (3) to this new pair.

Clearly, since S ⊆ {〈F, t〉}∪S we must have U({〈F, t〉}∪S) ⊆ U(S). That the subsequent

application of (3) to the new pair is sound has been shown by lemma 4.12.

Since in transformation (4) we effectively commit ourselves to a particular approxi-

mation of a solution, it is hardly surprising that the inclusion U(S′) ⊆ U(S) is in general

proper. Similarly, in the case of (2), decomposing flexible pairs may eliminate unifiers; for

example 〈F (a, b), F (c, d)〉 has an infinite number of unifiers, but the system 〈a, c〉, 〈b, d〉
has none. These results show us that in higher-order unification, the set of solutions is

invariant only under transformations (1), (3), and (2) in the case of two rigid terms.

Finally, using these lemmas we have

Theorem 4.15 (Soundness) If S
∗

=⇒ S′, with S′ in solved form, then the substitution

σS′ |FV (S) ∈ U(S) .

Proof . By a simple induction on the length of transformation sequences, and using the

previous lemmas in the induction step, we may show that σS′ ∈ U(S) . But since the

restriction has no effect as regards the effect of the substitution on the terms in S, we see

that σS′ |FV (S) ∈ U(S) .

4.3 Completeness of the Transformations

The completeness of our set of transformations will be proved along the lines of the proof of

completeness of the set of transformations ST given earlier, except that now the transfor-

mation relation is not terminating in general, so we shall prove only the non-deterministic
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completeness of the set, i.e., we show that for any system S, if θ ∈ U(S), then there exists

some sequence of transformations which finds a unifier σ such that σ ≤β θ[FV (S)].

First we show the exact sense in which partial bindings can be considered to be

approximations to bindings in substitutions.

Lemma 4.16 If s = λxn. a(sm) is any term, then there exists a variant of a partial

binding t and a substitution η such that η(t)
∗−→β s.

Proof . If m = 0, i.e. s = λxk. a, then the result is trivial by taking t = s and η = Id.

Otherwise, assume m > 0, and let t = λxn. a(λzpm . Hm(xn, zpm)) and

η = [λxn. s1/H1, . . . , λxn. sm/Hm]. Then by the type of the head a, the ith subterm si
must be in the form λzpi . s

′
i, so that

η
(
λzpi . Hi(xn, zpi)

)
−→β si,

for each i, 1 ≤ i ≤ m. Thus η(t)
∗−→β s.

Lemma 4.17 If θ = [s/F ]∪θ′ then there exists a variant of a partial binding t appropriate

to F and a substitution η such that

θ = [s/F ] ∪ η ∪ θ′[D(θ)]

=β [t/F ] ◦ η ∪ θ′[D(θ)].

Furthermore, if D(θ)∩ I(θ) = ∅, then θ′′ = [s/F ]∪ η ∪ θ′ is a unifier of the pair 〈F, t〉 and

D(θ′′) ∩ I(θ′′) = ∅.

Proof . Given the term s, let t and η be as in the previous lemma. Since t is a variant,

D(η)∩D(θ) = ∅, and since furthermore η(t)
∗−→β s, we have [s/F ] = [s/F ]∪ η =β [t/F ] ◦

η[D(θ)], from which the first part follows. If D(θ) ∩ I(θ) = ∅ (so that θ is idempotent),

then since t is a variant, D(η) ∩ I(θ) = ∅, so that D(θ′′) ∩ I(θ′′) = ∅ (and θ′′(s) = s ) and

finally, θ′′(F ) = s
∗←−β η(t) = θ′′(t).

Note that if D(θ) ∩ I(θ) 6= ∅ in this lemma, then potentially θ has a binding for the

head of s and t, and so possibly θ′′(t) 6= η(t). Also, notice that [s/F ] ∪ η and [t/F ] ◦ η
are only β-equal (over D(θ)) because we do not assume that the implicit β-reductions are

performed when substitutions are composed. These lemmas show the motivation for the

term ‘partial binding’ and provide the formal justification for the assertion that partial

bindings can be used to build up substitutions incrementally.

Next we define a set of transformations on pairs θ, S which shows how the structure

of a substitution θ can determine an appropriate sequence of transformations.
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Definition 4.18 (The set CT ) Let θ be a normalized substitution and S be an arbitrary

system. The first three transformations are essentially from the set HT :

θ, S =⇒i θ, S
′

for 1 ≤ i ≤ 3 iff S =⇒i S
′ in the set HT , with the restriction that (2) is only applied to

a pair 〈u, v〉 if the top function symbol in u and v is not a free variable in D(θ). Also, we

have

[s/F ] ∪ θ, {〈λxk. F (un), λxk. v〉} ∪ S =⇒4 [s/F ] ∪ η ∪ θ, {〈F, t〉, 〈λxk. F (un), λxk. v〉} ∪ S,

where F is not solved in the system on the left side, s is some term λyn. a(sm) ,

t = λyn. a(λzpm . Hm(yn, zpm))

is a partial binding appropriate to F with the same (up to α-conversion) head as s, and

η = [λyn. s1/H1, . . . , λyn. sm/Hm].

(Note that perhaps m = 0 in which case η is omitted.) Transformation (3) is immediately

applied as a part of (4), as in the set HT . Again, notice that [s/F ]∪ η∪ θ =β [t/F ] ◦ η∪ θ.

Example 4.19 Let θ = [λx. f(x)/F ] and S = {〈F (f(a)), f(F (a))〉}. We have the fol-

lowing sequence of CT -transformations.

[λx. f(x)/F ], {〈F (f(a)), f(F (a))〉}
=⇒4 [λx. f(x)/F, λx. x/Y ], {〈F, λx. f(Y (x))〉, 〈 (λx. f(Y (x)))f(a)

f(Y (f(a))) , f( (λx. f(Y (x)))a
f(Y (a)) )〉}

=⇒2 [λx. f(x)/F, λx. x/Y ], {〈F, λx. f(Y (x))〉, 〈Y (f(a))), f(Y (a))〉}
=⇒4 [λx. f(x)/F, λx. x/Y ], {〈F, λx. f( (λx. x)x

x )〉, 〈Y, λx. x〉, 〈 (λx. x)f(a)f(a) , f( (λx. x)a
a )〉}

=⇒1 [λx. f(x)/F, λx. x/Y ], {〈F, λx. f(x)〉, 〈Y, λx. x〉}

The next lemma shows us how these transformations are useful for proving complete-

ness.

Lemma 4.20 If θ ∈ U(S) for some system S not in solved form, and W is a set of

variables, then there exists some transformation θ, S =⇒ θ′, S′ such that

(i) θ = θ′[W ];

(ii) If D(θ) ∩ I(θ) = ∅ then θ′ ∈ U(S′) and D(θ′) ∩ I(θ′) = ∅; and

(iii) S =⇒ S′ with respect to the set HT .
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Proof . Since S is not in solved form, there must exist some pair 〈u, v〉 which is not

solved in S. We have three cases: (A) If u = v then we may apply (1) or (2); (B) if

Head(u) = Head(v) 6∈ D(θ), then we can apply (2); otherwise, (C) we have u 6= v and

either Head(u) 6= Head(v) or Head(u) = Head(v) ∈ D(θ). In case (C), either u or v has

an unsolved variable from D(θ) at its head; without loss of generality, assume that u has.

Thus, we have u = λxk. F (un) and v = λxk. v
′ with F ∈ D(θ) and F not solved in S and

(4) must apply, and in the special case that u
∗−→η F and F 6∈ FV (v), we can alternately

apply (3). Although there may not be a unique choice about which transformation to apply,

at least one must apply, and thus we have some transformation θ, S =⇒i θ
′, S′. In the case

that 1 ≤ i ≤ 3, (i) holds because θ′ = θ , by our soundness lemmas of the previous section

we have (ii), and (iii) holds by the definition of the set CT . If i = 4 then by our previous

corollary we have extended θ = [s/F ]∪ϕ to a substitution θ′ = [s/F ]∪η∪ϕ =β [t/F ]◦η∪ϕ
where we can assume that D(η) ∩W = ∅ (showing (i)), and we have added a pair 〈F, t〉
to S to form S′. From the definition of CT and the previous lemma it is clear that we

have D(θ′) ∩ I(θ′) = ∅ and θ′(F ) = s
∗←−β η(t) = θ′(t), so that θ′ ∈ U(S′), showing (ii).

Finally, since S is unifiable it is not hard to see that the conditions imposed on (4) in CT
are consistent with (4) in HT . If Head(v) is not a variable in D(θ), then we have two

cases: if Head(s) = Head(v), then S =⇒4a S′ (i.e., this is an imitation case); otherwise,

s is a projection, and S =⇒4b S′. If Head(v) ∈ D(θ) then S =⇒4c S′.

Corollary 4.21 If θ ∈ U(S) and no transformation applies to θ, S then S is in solved

form.

Finally, we may present our completeness proof.

Theorem 4.22 (Completeness of HT ) For any system S, if θ ∈ U(S) then there exists

some sequence of transformations

S = S0 =⇒ S1 =⇒ S2 =⇒ . . . =⇒ Sn,

where Sn is in solved form and σSn
≤β θ[FV (S)].

Proof . By Lemma 2.26 we may assume without loss of generality that D(θ) ∩ I(θ) = ∅
(since if not we may find a substitution θ′′ = θ[FV (S)] fulfilling these conditions). We

prove this result using the set CT , first showing that every sequence of CT transformations

terminates. For any θ and S, define the complexity measure µ(θ, S) =< M,n >, where

n is the sum of the sizes (i.e., the number of atomic subterms) of all terms in S, and M is

the sum of the sizes of the bindings in θ for variables which are not solved in S:

M =
∑
{ |θ(x)| |x ∈ D(θ)− Sol(S) },
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where Sol(S) is the set of all variables solved in S. The standard lexicographic ordering

on pairs of natural numbers is well-founded, and any CT -transformation produces a pair

strictly smaller under the ordering: (1) and (2) reduce n without affecting M , (3) reduces M

by removing a variable from D(θ) − Sol(S), and (4) reduces M . In (4), for some variable

F in D(θ) − Sol(S) , the binding [s/F ] is deleted from θ where s is some term of the

form λyn. a(sm) , and some new bindings [λyn. s1/H1, . . . , λyn. sm/Hm] associated with

new unsolved variables are added to θ to form θ′. However, the sum of the sizes of the new

bindings in θ′ is strictly smaller than the size of s (since s also contains a). Hence every

sequence of CT -transformations is finite.

Thus there must exist a sequence of transformations

θ, S = θ0, S0 =⇒ θ1, S1 =⇒ . . . =⇒ θm, Sm

such that no transformation applies, and by induction on m using the previous lemma, with

FV (S) for the set W , we have θ = θm[FV (S)], θm ∈ U(Sm), and there is a corresponding

sequence of HT -transformations

S = S0 =⇒ S1 =⇒ . . . =⇒ Sm

and by the corollary we know that Sm is in solved form. Finally, by Lemma 4.7 we have

σSm
≤β θm = θ[FV (S)] .

The reader should note that this proof is essentially similar to that of Theorem 3.9.

Finally, combining our soundness and completeness results, we have that this method is

capable of non-deterministically finding a unifier of S more general than any given unifier.

More formally, we may characterize the set of substitutions non-deterministically found by

the set of transformations HT as follows.

Theorem 4.23 For any system S, the set

{σS′ |FV (S) | S
∗

=⇒ S′, and S′ is in solved form}

is a CSU(S). By application of the appropriate renaming substitution away from W , this

set is a CSU(S)[W ] for any W .

Proof . We must simply verify the conditions in Definition 4.5. Coherence was shown in

Theorem 4.15 and our previous result demonstrated completeness. By restricting the idem-

potent substitution σS′ to FV (S) we satisfy purity for W empty. If W is not empty, we

may suitably rename the variables introduced by each of the substitutions σS′ away from

W , using Lemma 4.6.
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The careful reader will note that we have made no assumptions about the order in

which transformations are performed, and so these results apply in a very general way to the

derivation of solved form systems from initial systems of terms. In particular, we see that

the strategy of eager variable elimination, in which transformation (3) is performed as soon

as possible on any pair to which it applies, is complete (in the case of general E-unification

this problem is still open, see [15]). The search space is thereby reduced, since we do not

need to build up such solved pairs one symbol at a time. In addition, it shows how this

set of transformations is a true generalization of the transformations used for first-order

unification.

5 Huet’s Procedure Revisited

The set of transformations given in the previous section were proved to be complete for the

problem of general higher-order unification, that is, they can non-deterministically find any

higher-order unifier of two arbitrary terms. Unfortunately, as remarked above, the ‘don’t

know’ non-determinism of this set causes severe implementation problems in the case of two

flexible terms (case (E) in our analysis), and, as discussed above, this ‘guessing’ of partial

bindings in this case can not be avoided without sacrificing completeness, and so the search

tree of all transformation sequences may be infinitely branching at certain nodes, causing

a disastrous explosion in the size of the search space.

Huet’s well-known solution to this problem [25, 26] was to redefine the problem in

such a way that such flexible-flexible pairs are considered to be already solved; this par-

tial solution of the general higher-order unification problem turns out to be sufficient for

refutation methods (see [24]), and this is the method used in most current systems. We

show here how to explain this approach in terms of transformations on systems. The only

changes have to do with redefining the notion of a solved system and restricting the set of

transformations.

Definition 5.1 A pair of terms 〈x, e〉 is in presolved form in a system S if it is in solved

form in S (as above) or if it is a pair consisting of two flexible terms. A system is in

presolved form if each member is in presolved form. For a set S in presolved form, define

the associated substitution σS as the mgu σS′ of the set S′ of solved pairs of S.

Definition 5.2 Let ∼= be the least congruence relation on L containing the set of pairs

{(u, v) |u, v are both flexible terms } . A substitution θ is a preunifier of u and v if θ(u)↓∼=
θ(v)↓ .

The importance of pre-unifiers is shown by our next definition and lemma.
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Definition 5.3 For every φ = α1, . . . , αn → β ∈ T , with n ≥ 0 , define a term

êφ = λx1 . . . xn. v,

where τ(xi) = αi for 1 ≤ i ≤ n and v ∈ Vβ is a new variable which will never be used in

any other term. Let ζ be an (infinite) set of bindings

ζ = {êτ(x)/x |x ∈ V }.

Finally, if S′ is a pre-solved system containing a set S′′ of flexible-flexible pairs, then define

the substitution

ζS′ = ζ|FV (S′′).

As in [26], it is easy to show this next result.

Lemma 5.4 If S is a system in pre-solved form then the substitution σS ∪ ζS is a unifier

of S.

This lemma asserts that pre-unifiers may always be extended to true unifiers by finding

trivial unifiers for the flexible-flexible terms in the pre-solved system.

The set of transformations for finding preunifiers is a slightly restricted version of the

set of transformations HT .

Definition 5.5 (The set of transformations PT ) Let S be a system, possibly empty. To

the transformations (1) and (3) from HT we add three (restricted) transformations:

{
〈λxk. a(un), λxk. a(vn)〉

}
∪ S =⇒

⋃
1≤i≤n

{
〈λxk. ui, λxk. vi〉

}
∪ S, (2′)

where a ∈ Σ or a = xj for some j, 1 ≤ j ≤ k.

{〈λxk. F (un), λxk. a(vm)〉} ∪ S =⇒ {〈F, t〉, 〈λxk. F (un), λxk. a(vm)〉} ∪ S, (4′a)

where a ∈ Σ and t is a variant of an imitation binding for a appropriate to F .

{〈λxk. F (un), λxk. a(vm)〉} ∪ S =⇒ {〈F, t〉, 〈λxk. F (un), λxk. a(vm)〉} ∪ S, (4′b)

where either a ∈ Σ or a = xj for some j, 1 ≤ j ≤ k, and t is a variant of an ith projection

binding for some i, 1 ≤ i ≤ n, appropriate to the term λxk. F (un).
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After each of (4′a) and (4′b), we apply transformation (3) to the new pair introduced.

As in our previous definitions, recall that the unions are multiset unions.

We say that θ ∈ PreUnify(S) iff there exists a series of transformations from PT

S = S0 =⇒ S1 =⇒ . . . =⇒ Sn,

with Sn in pre-solved form, and θ = σSn
|FV (S).

In terms of Huet’s procedure (see the Appendix) the first two transformations rep-

resent approximately the effect of Simplify, and (4′a) and (4′b) represent the processes of

imitation and projection respectively in Match. Transformation (3) represents the effect of

applying substitutions in Simplify, but also allows variable elimination, which was remarked

upon by Huet (see [26], p. 3-57) but not emphasized.12 Note that the transformations (1),

(2′), and (3) in PT preserve the set of solutions invariant, as discussed in Section §4.2.

We now present the major results concerning this formulation of higher-order unifica-

tion, following [26]. Their proofs are simple modifications of our previous results, and are

left to the reader.

Theorem 5.6 (Soundness) If S
∗

=⇒ S′, with S′ in presolved form, then the substitution

σS′ |FV (S) is a preunifier of S.

Theorem 5.7 (Completeness) If θ is some preunifier of the system S, then there exists

a sequence of transformations S
∗

=⇒ S′ , with S′ in presolved form, such that

σS′ |FV (S) ≤β θ.

The search tree for this method consists of all the possible sequences of systems created

by transforming the original two terms. Leaves consist of pre-solved systems or systems

where no transformation can be applied. These correspond to the S and F nodes in Huet’s

algorithm; in fact, the search trees generated are essentially the same as the matching trees

defined in [25], except that here an explicit representation of the matching substitutions

found so far is carried along in the system (see the Appendix). The set of pre-unifiers

potentially found by our procedure is the set of pre-solved leaves in the search tree.

As in the case of general higher-order unification, the strategy of eager variable elimi-

nation is complete, allowing a reduction in the size of the search space, since we do not need

to build up the terms using partial bindings. This rule had been suggested as a heuristic

12 Jensen and Pietrzykowski [41] suggest a similar rule as a heuristic improvement.
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in [26] and [41], but not emphasized as an essential part of the method of building up sub-

stitutions, as here. We note also as a minor point that in some cases it is possible to apply

variable elimination to a presolved system so that that this binding is incorporated into the

mgu of the final solved form system. For example, the following initial system is presolved,

but in fact has a mgu [λx.G(a, x)/F ]:

〈λx. F (x), λx.G(a, x)〉, 〈F (b), G(a, b)〉
=⇒3 〈F, λx.G(a, x)〉, 〈 (λx.G(a,x)) b

G(a,b) , G(a, b)〉
=⇒1 〈F, λx.G(a, x)〉.

We give a pseudo-code version of Huet’s method for the typed βη-calculus in an

appendix as an example of the way in which these transformations can be used to design

more practical procedures.

6 Conclusion

We have presented in this paper a reexamination of the problem of general higher-order

unification, using the abstract approach of transformations on systems of terms. We feel

that this kind of analysis provides the right level of abstraction by revealing the logical issues

in their purest form. As shown in our application of this method to general E-unification

[15], this abstract approach allows us to derive complete sets of abstract transformations for

unification in various contexts from an analysis of what it means for two terms to be ‘the

same’ (e.g., modulo a set of equations in E-unification and modulo β-reduction in higher-

order unification). We claim that this approach is more perspicuous than those previously

advanced, permits more direct soundness and completeness proofs, and unifies and justifies

the various approaches taken to unification problems. This abstract characterization of the

process of unification in various settings clarifies the basic similarities and differences of the

problems by removing the notion of control and showing exactly where non-determinism

arises and where it may be eliminated. The three sets of transformations ST , PT , and HT
thus represent an (inclusion) hierarchy of abstract methods for unification. One result that

came out of this is that variable elimination can be extended from first-order unification to

both general higher-order unification and to pre-unification; in particular, the strategy of

eager variable elimination is still complete. This work is part of a project [43] which attempts

to provide a general theory of complete sets of transformations for unification, including

higher-order unification and general E-unification; we hope to extend this approach to

higher-order E-unification and unification of polymorphic lambda terms. It is our hope

that the abstract method of transformations on systems will yield still further insights into

the nature of unification problems in the future as well.
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Appendix

The basic idea of the seminal higher-order preunification procedure developed by Huet [26]

is to search for preunifiers of two lambda-terms one substitution at a time by alternately

decomposing terms and finding matching substitutions for the heads, stopping when the

subterms are found to be either trivially unifiable, or not unifiable. More specifically, the

procedure generates a tree (of OR branches) from a root consisting of the original pair of

terms, whose nodes are disagreement sets of pairs of terms not yet unified, and whose arcs

are labelled by substitutions found and applied to generate new descendants. The tree is

explored and unifiers incrementally created by decomposing pairs of terms until their heads

are no longer equal and then finding substitutions which match the heads of pairs, if possible.

Identical pairs of terms are fully decomposed and eventually removed from the disagreement

set. When either a trivially unifiable disagreement set, composed only of flexible-flexible

pairs, is found (success) or an un-unifiable pair, i.e., a rigid-rigid pair with dissimilar top

function symbols, is found (failure), a branch is terminated. In general this process may

not terminate, since whether two lambda terms are unifiable is only semi-decidable.

We now present a pseudo-Pascal version of Huet’s non-deterministic procedure for

pre-unifying two terms in the βη−calculus.
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global variable T : searchTree;

procedure LambdaUnifiers( e1, e2 : λ-terms );
{ This procedure enumerates a complete set of pre-unifiers for

two λ-terms of the same type. }
var
N , N ′ : treeNodes; e′1, e

′
2 : λ-terms; Σ : substSet; σ, ρ, θ : unifier;

begin
T := the one node tree consisting of Simplify({(e1, e2)});
while exists an unmarked leaf node N in T do

begin
Pick some flexible-rigid pair (e1, e2) ∈ N ;
Σ := Match(e1,e2, FV (N));
if Σ = ∅

then mark N with “F”
else

for each σ ∈ Σ do
begin
N ′ := Simplify(σ(N));
Add a descendant arc from N to N ′ labelled by σ;
if N ′ is labelled “S”

then begin
θ := Id;
for each ρ on path from N ′ to root of T do
θ := ρ ◦ θ;

Output(θ)
end

end
end

end.

function Simplify( N : disSet ) : node;
{ Takes a disagreement set of pairs of terms of the same type and returns

a node marked with “F” or “S”, or a new disagreement set containing
at least one flexible-rigid pair. }

begin
{ Dissolve all rigid-rigid pairs. }
while exists rigid-rigid pair (e1, e2) in N do

begin
{ Suppose e1 = λx1 . . . xn. a1(e11, . . . , e

1
p1

)

and e2 = λy1 . . . yn. a2(e21, . . . , e
2
p2

) }
{ See if heads same. }
if not (λx1 . . . xn. a1

∗←→α λy1, . . . , yn. a2)
then Return(N marked with “F”);
{ Else we know τ(a1) = τ(a2) and thus p1 = p2 }
Replace (e1, e2) by the pairs

(λx1 . . . xn. e1i , λy1 . . . yn. e
2
i ) for 1 ≤ i ≤ p1

end;
{ Orient pairs. }
while exists rigid-flexible pair (e1, e2) ∈ N do

Replace (e1, e2) by (e2, e1);
if exists some flexible-rigid pair in N

then Return(N)
else Return(N marked with“S”)

end;
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function Match(e1, e2 : λ−terms; V : setOfVars) : substSet;
{ Returns a set of substitutions which matches head of e1 to head of e2.
e1 is a flexible term λx1 . . . xn. F (e11, . . . , e

1
p1

)

and e2 is a rigid term λy1 . . . yn. a(e21, . . . , e
2
p2

),

where τ(e1) = τ(e2) = α1, . . . , αn → β. The set of unifiers
returned is obtained by imitating the head of e2 and
by projecting e1 on each of its arguments which preserves the type. }

var Σ : substSet; i : integer;
begin
{ Imitate heading of e2 if possible. }
if Constant(a)

then Σ := { [λz1 . . . zp1 . a(G1(z1, . . . , zp1 ), . . . , Gp2 (z1, . . . , zp1 ))/F ] };
{ Where τ(zi) = τ(e1i ), for 1 ≤ i ≤ p1, and the Gj are

variables not in V such that τ(Gj) = τ(e11), . . . , τ(e1p1 )→ τ(e2j )}
else Σ := ∅;

{ Next project F on each of its arguments which has appropriate type. }
for i := 1 to p1 do

if τ(e1i ) = γ1, . . . , γmi → β for some γj { Note that possibly mi = 0. }
then

Σ := Σ ∪ { [λz1 . . . zp1 . zi(H
i
1(z1, . . . , zp1 ), . . . , Hi

mi
(z1, . . . , zp1 ))/F ] };

{ Where τ(zi) = τ(e1i ) for 1 ≤ i ≤ p1
and the Hi

j for 1 ≤ j ≤ mi are variables not in V

of type τ(Hi
j) = τ(e11), . . . , τ(e1p1 )→ τ(e2j )}

Return(Σ)
end;

7 References

[1] Andrews, P.B., “Resolution in Type Theory,” JSL 36:3 (1971) 414-432.

[2] Andrews, P.B., “Theorem Proving via General Matings,” JACM 28:2 (1981) 193-214.

[3] Andrews, P.B., D. Miller, E. Cohen, F. Pfenning, “Automating Higher-Order Logic,”

Contemporary Mathematics 29 (1984) 169-192.

[4] Andrews, P.B., An Introduction to Mathematical Logic and Type Theory: To Truth

Through Proof , Academic Press, Inc. (1986).

[5] Barendregt, H.P., The Lambda Calculus, North-Holland (1984).

[6] Church, A., “A Formulation of the Simple Theory of Types,” JSL 5 (1940) 56-68.

[7] Darlington, J.L., “A Partial Mechanization of Second-Order Logic,” Machine Intelli-

gence 6 (1971) 91-100.

[8] Elliot, C., and Pfenning, F., “A Family of Program Derivations for Higher-Order

Unification,” Ergo Report 87-045, CMU, November 1987.



44 Higher-Order Unification Revisited

[9] Fages, F., and Huet, G., “Complete Sets of Unifiers and Matchers in Equational

Theories,” TCS 43 (1986) 189-200.

[10] Farmer, W., Length of Proofs and Unification Theory , Ph.D. Thesis, University of

Wisconsin—Madison (1984).

[11] Farmer, W. “A Unification Algorithm for Second-Order Monadic Terms,” Unpub-

lished Technical Report, MITRE Corporation, Bedford, MA.

[12] Felty, A., and Miller, D., “Specifying Theorem Provers in a Higher-Order Logic Pro-

gramming Language,” Ninth International Conference on Automated Deduction, Ar-

gonne, Illinois (1988).

[13] Gallier, J.H. Logic for Computer Science: Foundations of Automatic Theorem Prov-

ing, Harper and Row, New York (1986).

[14] Gallier, J.H., and Snyder, W., “A General Complete E-Unification Procedure,” RTA,

Bordeaux, 1987.

[15] Gallier, J.H., and Snyder, W., “Complete Sets of Transformations for General E-

Unification,” to appear in TCS (1989).

[16] Goldfarb, W., “The Undecidability of the Second-Order Unification Problem,” TCS

13:2 (1981) 225-230.

[17] Gould, W.E., A Matching Procedure for Omega-Order Logic, Ph.D. Thesis, Princeton

University, 1966.

[18] Guard, J.R., “Automated Logic for Semi-Automated Mathematics,” Scientific Report

1, AFCRL 64-411, Contract AF 19 (628)-3250 AD 602 710.

[19] Guard, J., Oglesby, J., and Settle, L., “Semi-Automated Mathematics,” JACM 16

(1969) 49-62.

[20] Hannan, J. and Miller, D., “Enriching a Meta-Language with Higher-Order Features,”

Workshop on Meta-Programming in Logic Programming, Bristol (1988).

[21] Hannan, J. and Miller, D., “Uses of Higher-Order Unification for Implementing Pro-

gram Transformers,” Fifth International Conference on Logic Programming, MIT

Press (1988).
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