
Kripke models and the (in)equational logic of

the second-order λ-calculus

Jean Gallier∗

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St.
Philadelphia, PA 19104, USA

e-mail: jean@saul.cis.upenn.edu

December 17, 2010

Abstract. We define a new class of Kripke structures for the second-order λ-calculus, and investi-
gate the soundness and completeness of some proof systems for proving inequalities (rewrite rules)
as well as equations. The Kripke structures under consideration are equipped with preorders that
correspond to an abstract form of reduction, and they are not necessarily extensional. A novelty
of our approach is that we define these structures directly as functors A:W → Preor equipped
with certain natural transformations corresponding to application and abstraction (where W is a
preorder, the set of worlds, and Preor is the category of preorders). We make use of an explicit
construction of the exponential of functors in the Cartesian-closed category PreorW , and we also
define a kind of exponential

∏
Φ(As)s∈T to take care of type abstraction. However, we strive for

simplicity, and we only use very elementary categorical concepts. Consequently, we believe that
the models described in this paper are more palatable than abstract categorical models which re-
quire much more sophisticated machinery (and are not models of rewrite rules anyway). We obtain
soundness and completeness theorems that generalize some results of Mitchell and Moggi to the
second-order λ-calculus, and to sets of inequalities (rewrite rules).

∗This research was partially supported by ONR Grant NOOO14-93-1-1217.

1



1 Introduction

In order to have a deeper and hopefully more intuitive understanding of various typed λ-calculi
and their logical properties, it is useful to define and study classes of models for these calculi.
Typically, given some typed λ-calculus, we are interested in reduction or conversion properties of
this calculus, and the crucial properties of reduction and conversion are axiomatized by a proof
system for deriving equations or rewrite rules (for example, β-conversion). Models will be useful
only if they are sound with respect to the given proof system, in the sense that provable equations
(or rewrite rules) must be valid. Then, models can be helpful for showing that a certain equation
M

.
= N is not derivable from a given set E of equations: it is sufficient to exhibit a model in which

all equations in E are valid and in which M
.
= N is falsified. Conversely, we can better calibrate the

strength of a proof system if we can prove a completeness theorem. For example, we say that we
have strong completeness if we can show that for any set E of equations and any equation M

.
= N ,

if M
.
= N is valid in every model of the equations in E, then M

.
= N is provable from E. Then, we

know that if M
.
= N is not a consequence of E, then there is a model of E that falsifies M

.
= N .

One can also consider refinements of strong completeness theorems where completeness is shown
for classes of models with certain required properties.

For the simply-typed λ-calculus, models inspired by Henkin models [7] were defined by Friedman
[2], who proved a strong completeness theorem, as well as another interesting completeness theorem.
Plotkin [14] and Statman [17], [18], also proved some refinements of the strong completeness theorem
for the simply-typed λ-calculus.

So far, we have assumed that the models under consideration have nonempty carriers for all
types. However, in computer science applications, the assumption that carriers are nonempty may
be unreasonable, because too restrictive. This fact was first observed by Goguen and Meseguer [5]
in the framework of many-sorted algebras, and later on, by Meyer, Mitchell, Moggi, and Statman
[10], for the second-order λ-calculus. The example of the polymorphic boolean type polybool is
particularly illuminating. Consider the type

polybool: = ∀X. (X → (X → X)),

of polymorphic booleans, and define the terms True, False, and Cond, as

True: = λX. λx:X. λy:X. x,

False: = λX. λx:X. λy:X. y,

Cond: = λb: polybool. b.

The terms True and False are the only (pure) closed terms of type polybool, and it is easy to
verify that the equations

Cond True Xxy
.
= x Cond False Xxy

.
= y

are provable, for any term X.

For any b: polybool, what about the equation

Cond True bXyy
.
= y (1)

2



In fact, it can be shown that this equation does not follow from the previous one. This is
because there are models where (1) fails, e.g. when there are elements in polybool other than True,
False, for instance b = ⊥polybool (the least element of a cpo) as in the usual cpo-based model. The
previous example suggets the following question:

Question: Is it consistent to assume that True and False are the only elements of polybool?

Ingenious contructions of Moggi and Coquand show that the answer is yes. Indeed, it can be
shown that there is a model of the polymorphic λ-calculus in which polybool consists exactly of
two elements. In this model, (1) is valid. But, these models contain empty types. In fact, Meyer,
Mitchell, Moggi, and Statman [10] showed that

In any (nontrivial) model of the polymorphic λ-calculus with all types nonempty, equation (1)
is not valid. In particular, there must be at least three elements of type polybool in such a model.

Breazu-Tannen and Coquand [1] showed that these results can be extended to types of the form
σ = ∀X1 . . . ∀Xn. τ , where τ is a quantifier-free type (in the sense that there is a model in which
elements of the type σ are precisely those definable by the pure closed terms of type σ iff models
have empty types).

Thus, models with empty types are indispensable. Unfortunately, empty types cause trouble
w.r.t. soundness and completeness! The “generic” model property also fails for models with empty
carriers. For example, consider the set E consisting of the single equation

E = { . λx:σ. λy: τ. T rue
.
= λx:σ. λy: τ. False}.

Meyer, Mitchell, Moggi, and Statman [10] proved that the theory of the class C of all models of
E (with empty carriers) is not equal to the theory of any single model.

In turn, the absense of the generic model property causes problems for completeness proofs. In
the traditional proof system w.r.t. models without empty types, we need the rule:

Γ, x:σ .M1
.
= M2: τ

Γ . M1
.
= M2: τ

(nonempty)

provided that x /∈ FV (M1) ∪ FV (M2).

But rule (nonempty) is not sound w.r.t. models with empty carriers! So, we can try to delete
rule (nonempty) from the traditional proof system. But then, we loose completeness!

Let π1 and π2 be the simply-typed terms

π1 = λx:σ. λy:σ. x, π2 = λx:σ. λy:σ. y,

and let f : (σ → σ → σ)→ σ. Then,

. λx:σ. (fπ1)
.
= λx:σ. (fπ2): (σ → σ) (2)

semantically implies
. fπ1

.
= fπ2:σ. (3)

3



However, the above implication cannot be derived in the traditional proof system without rule
(nonempty).

Meyer, Mitchell, Moggi, and Statman [10], gave a complete proof system w.r.t. models with
empty carriers. However, reasoning in such a system is rather complicated, since it is necessary to
add new axioms

empty(σ), x:σ . True
.
= False: polybool

and a new rule to reason by cases:

Γ, x:σ .M
.
= N : τ Γ, empty(σ) . M

.
= N : τ

Γ . M
.
= N : τ

(cases)

where x /∈ FV (M) ∪ FV (N).

Also, to the best of our knowledge, a detailed completeness proof has not been published. Thus,
it appears that dealing with models with empty types is not such a simple matter, and that classical
models do not seem well suited.

Mitchell and Moggi [12] observed that after all, proof systems for typed λ-calculi are intuition-
istic (in most cases), and that the semantics in terms of Henkin-like models with possibly empty
carriers is just too classical in nature, in the sense that arguments where we assume that a carrier
is either empty or nonempty, may be used freely. Thus, Mitchell and Moggi suggested to consider
intuitionistic semantics such as Kripke-style semantics. Indeed, a Kripke-style semantics forces an
intuitionistic interpretation of the connectives, and extended completeness holds again for the usual
proof system, regardless of the fact that carriers may be empty. Also, in the Kripke semantics, for
any set E of equations, there is a Kripke model A such that, an equation M

.
= N is valid in A iff

M
.
= N is provable from E. Besides having the virtue that these desirable completeness properties

are regained in the Kripke semantics, from a categorical point of view, Kripke models are essentially
equivalent to arbitrary CCC’s, as sketched in Mitchell and Moggi [12]. However, this relationship
will not be considered in the present paper.

In this paper, we define a new class of Kripke structures for the second-order λ-calculus, and
investigate the soundness and completeness of some proof systems for proving inequalities (rewrite
rules) or equations. Actually, we consider a more general class of structures. Traditionally, only
models of conversion have been considered. However, we believe that models can also be used to
prove properties of the reduction relation. Thus, the Kripke structures considered in this paper
are equipped with preorders that correspond to an abstract form of reduction, and they are not
necessarily extensional. This approach allows us to consider models of sets of rewrite rules, as well
as sets of equations. We obtain soundness and completeness theorems that generalize some results
of Mitchell and Moggi [12] to the second-order λ-calculus, and to sets of inequalities (rewrite rules).

Since the paper is quite technical, in order to help the reader sort out what is really new, which
difficulties had to be overcome, and where are the most important results of this paper, we provide
the following summary.

The new contributions are:

(1) A construction of Kripke models of the second-order λ-calculus, extending that of Mitchell and
Moggi for the simply-typed λ-calculus.

4



(2) The fact that these Kripke models are models of the reduction relation, and not just of the
conversion relation.

(3) A clarification of the nature of extensionality.

(4) Proof systems for rewrite rules as well as equations, and proofs of soundness and completeness
with respect to the new class of Kripke models (also, the generic model property).

Not surprisingly, the greatest difficulties were encountered in looking for an interpretation of
second-order types. Inspired by Breazu-Tannen and Coquand’s notion of a type algebra [1] and a
model constuction in Gunter [6], we eventually came up with the idea of the dependent product
DΠΦ(As)s∈T . We were stuck for quite a while, not having realized that DΠΦ(As)s∈T is really an
exponential. Once we realized that a functorial contruction was necessary, everything got unlocked.
We believe that our construction is quite elegant (although hard-core category scientists might have
preferred an invocation of the Yoneda lemma). The construction of a generic model is not that
different from that of Mitchell and Moggi, except that checking the details regarding polymorphic
types is quite involved. Similarly, the soundness proof is very tedious, but fairly standard.

Another point that gave us quite a bit of trouble is extensionality. It took us a long time to
realize that extensionality corresponds to the injectivity of some of the primitive operators involved
in the definition of models. Again, we believe that our solution is quite elegant, and sheds some
new light on the nature of extensionality.

Finding the proof systems for rewrite rules was fairly straightforward, but tuning the extension-
ality rules was a bit tricky. Contrary to proof systems for equations, extensionality rules are not
equivalent to η-like rules. We also observed that the substitution rule cannot always be dispended
with (in the nonextensional case).

The most important sections of this paper are section 4, where Kripke structures are defined,
section 6, where the proof systems are defined, and section 7, where the soundness and completeness
results are proved (lemma 7.1, lemma 7.2, theorem 7.3).

Although we were not expecting to use any category theory in this paper, we realized that
this was almost unvoidable in order to come up with the “right” concepts. In particular, we don’t
believe that we would have come up with the right notion of dependent product for interpreting
typed λ-abstraction, if we had not known that categories of presheaves are Cartesian-closed. Thus,
we found it convenient to define these structures directly as functors A:W → Preor equipped
with certain natural transformations corresponding to application and abstraction (where W is a
preorder, the set of worlds, and Preor is the category of preorders). We make use of an explicit
construction of the exponential of functors in the Cartesian-closed category PreorW , and we also
define a kind of exponential

∏
Φ(As)s∈T to take care of type abstraction. However, we only use

elementary categorical concepts, and we do not appeal to any fancy machinery.

Actually, categorical models of polymorphic λ-calculi have been investigated by Seely [16] and
Pitts [13]. Seely works with so-called PL categories, and obtains a soundness and completeness
theorem for the equational βη-theory of a version of the ω-order λ-calculus. The completeness
theorem is a consequence of an equivalence of categories. We have no idea how to construct a
counter-example model, or whether this can be done at all, but we also have to admit that the
categorical machinery is well beyond our level of sophistication. Pitts gives a construction for
embedding a so-called 2TΛC-hyperdoctrine into a topos model. This is achieved in two steps, the

5



first one beeing a Grothendieck fibration construction, and the second one a Yoneda embedding.
Pitts does obtain a soundness and completeness theorem for the the equational βη-theory of the
second-order λ-calculus. Again, we have to confess that the categorical machinery is well beyond
our level of sophistication. Nevertheless, in view of these two rather abstract constructions, we do
not see how explicit counter-example models could be obtained easily. With our class of models,
such counter-examples can be obtained rather easily by a quotient construction. Furthermore, we
can also handle nonextensional models, and rewrite rules. Considering the level of sophistication
required to handle equations with categorical models, we worry that constructing categorical models
of reduction could be really complicated. We view our work as a necessary preliminary step in
investigating models of reduction for the second-order λ-calculus, more in a proof-theoretic spirit
than a categorical spirit, and we leave the more sophisticated categorical constructions as a challenge
to categorists.

In order to understand what motivated our definition of a Kripke structure for the second-order
λ-calculus, it is useful to review the usual definition of an applicative structure for the simply-typed
λ-calculus (for example, as presented in Gunter [6]). For simplicity, we are restricting our attention
to arrow types. Let T be the set of simple types built up from some base types using the constructor
→. Given a signature Σ of function symbols, where each symbol in Σ is assigned some type in T ,
an applicative structure A is defined as a triple

〈(Aσ)σ∈T , (appσ,τ )σ,τ∈T , Const〉,

where

(Aσ)σ∈T is a family of nonempty sets called carriers,

(appσ,τ )σ,τ∈T is a family of application operators, where each appσ,τ is a total function
appσ,τ :Aσ→τ ×Aσ → Aτ ;

and Const is a function assigning a member of Aσ to every symbol in Σ of type σ.

The meaning of simply-typed λ-terms is usually defined using the notion of an environment ,
or valuation. A valuation is a function ρ:X →

⋃
(Aσ)σ∈T , where X is the set of term variables.

Although when nonempty carriers are considered (which is the case right now), it is not really
necessary to consider judgements for interpreting λ-terms, since we are going to consider more
general applicative structures, we define the semantics of terms using judgements. Recall that a
judgement is an expression of the form Γ . M :σ, where Γ, called a context, is a set of variable
declarations of the form x1:σ1, . . . , xn:σn, where the xi are pairwise distinct and the σi are types,
M is a simply-typed λ-term, and σ is a type. There is a standard proof system that allows to type-
check terms. A term M type-checks with type σ in the context Γ (where Γ contains an assignment
of types to all the variables in M) iff the judgement Γ . M :σ is derivable in this proof system.
Given a context Γ, we say that a valuation ρ satisfies Γ iff ρ(x) ∈ Aσ for every x:σ ∈ Γ (in other
words, ρ respects the typing of the variables declared in Γ). Then given a context Γ and a valuation
ρ satisfying Γ, the meaning [[Γ . M :σ]]ρ of a judgement Γ . M :σ is defined by induction on the
derivation of Γ . M :σ, according to the following clauses:

[[Γ . x:σ]]ρ = ρ(x), if x is a variable;

[[Γ . c:σ]]ρ = Const(c), if c is a constant;

6



[[Γ . MN : τ ]]ρ = appσ,τ ([[Γ . M : (σ → τ)]]ρ, [[Γ . N :σ]]ρ),

[[Γ.λx:σ.M : (σ → τ)]]ρ = f , where f is the unique element of Aσ→τ such that appσ,τ (f, a) =
[[Γ, x:σ .M : τ ]]ρ[x: = a], for every a ∈ Aσ.

Note that in order for the element f ∈ Aσ→τ to be uniquely defined in the last clause, we
need to make certain additional assumptions. First, we assume that we are considering extensional
applicative structures, which means that for all f, g ∈ Aσ→τ , if app(f, a) = app(g, a) for all a ∈ Aσ,
then f = g. This condition garantees the uniqueness of f if it exists. The second condition is more
technical, and asserts that each Aσ contains enough elements so that there is an element f ∈ Aσ→τ
such that appσ,τ (f, a) = [[Γ, x:σ .M : τ ]]ρ[x: = a], for every a ∈ Aσ.

Note that each operator appσ,τ :Aσ→τ×Aσ → Aτ induces a function funσ,τ :Aσ→τ → [Aσ ⇒ Aτ ],
where [Aσ ⇒ Aτ ] denotes the exponential of Aσ and Aτ (in this case, since we are in the category
of sets, the set of functions from Aσ to Aτ ), defined such that

funσ,τ (f)(a) = appσ,τ (f, a),

for all f ∈ Aσ→τ , and all a ∈ Aσ. Then, extensionality is equivalent to the fact that each funσ,τ is
injective. Note that funσ,τ :Aσ→τ → [Aσ ⇒ Aτ ] is the “curried” version of appσ,τ :Aσ→τ×Aσ → Aτ ,
and it exists because the category of sets is Cartesian-closed. For the category of sets, the fact that
[Aσ ⇒ Aτ ] is an exponential object is a triviality, but for more general categories, as this will be
the case when we define Kripke structures (categories of presheaves), the existence of exponentials
is no longer a trivial fact (but not a difficult one).

The clause defining [[Γ . λx:σ.M : (σ → τ)]]ρ suggests that a partial map abstσ,τ : [Aσ ⇒ Aτ ] →
Aσ→τ , “abstracting” a function ϕ ∈ [Aσ ⇒ Aτ ] into an element abstσ,τ (ϕ) ∈ Aσ→τ , can be defined.
For example, the function ϕ defined such that ϕ(a) = [[Γ, x:σ .M : τ ]]ρ[x: = a] would be mapped to
[[Γ . λx:σ.M : (σ → τ)]]ρ. In order for the resulting structure to be a model of β-reduction, we just
have to require that funσ,τ and abstσ,τ satisfy the axiom

funσ,τ (abstσ,τ (ϕ)) = ϕ,

whenever ϕ ∈ [Aσ ⇒ Aτ ] is in the domain of abstσ,τ . But now, observe that if pairs of operators
funσ,τ , abstσ,τ satisfying the above axiom are defined, the injectivity of funσ,τ is superfluous for
defining [[Γ . λx:σ. M : (σ → τ)]]ρ.

Thus, by defining a more general kind of applicative structure using the operators funσ,τ and
abstσ,τ , we can still give meanings to λ-terms, even when these structures are nonextensional. In
particular, our approach is an alternative to the method where one considers applicative structures
with meaning functions, as for example in Mitchell [11]. In particular, the term structure together
with the meaning function defined using substitution can be seen to be an applicative structure
according to our definition. In fact, this approach allows us to go further. We can assume that
each carrier Aσ is equipped with a preorder �σ, and rather than considering the equality

funσ,τ (abstσ,τ (ϕ)) = ϕ,

we can consider inequalities
funσ,τ (abstσ,τ (ϕ)) � ϕ.

7



This way, we can deal with intentional (nonapplicative) structures that model reduction rather than
conversion. We learned from Gordon Plotkin that models of β-reduction (or βη-reduction) have
been considered before, in particular by Girard [4], Jacobs, Margaria, and Zacchi [8], and Plotkin
[15]. However, except for Girard who studies qualitative domains for system F, the other authors
consider models of the untyped λ-calculus. In [4], definition 1.12, Girard defines a λ-structure as a
triple D = 〈X,H,K〉 consisting of

(i) a qualitative domain X,

(ii) a stable function H from X to X ⇒ X, and

(iii) a stable function K from X ⇒ X to X,

where X ⇒ X is the set of all traces of stable functions from X to X. Girard then shows
that a λ-structure D models β-reduction if H ◦ K ⊂ IdX⇒X , and that D models η-reduction if
K ◦H ⊂ IdX (note that the partial order ⊂ corresponds to the opposite of our ordering �). Girard
also states that such structures have nice features, in particular because they can be approximated
by finite λ-structures.

The major difference with our approach is that the above models are intended for the untyped
λ-calculus.

In [15], section 3, Plotkin introduces a notion of model of β-reduction that he calls an ordered
λ-interpretation. After Mitchell [11], Plotkin defines such a structure as a triple P = 〈P, ·, [[·]](·)〉,
where P is a partial order, · is a monotonic application operation ·:P × P → P , and [[·]](·) is a
meaning function, that maps terms and environments to P , and such that some obvious conditions
on [[]](·) hold. If the condition

[[λx. M ]](ρ) · a � [[M ]](ρ[x: = a]),

holds, we say that P is a model of β-reduction. Plotkin then proceeds to show that such models are
sound and complete with respect to Curry-style type inference systems (also know as systems for F -
deducibility), for various type disciplines. The main difference with our approach is that Plotkin’s
structures are models of the untyped λ-calculus, and that meaning functions are an intrinsic part
of their definition. In our definition, the meaning function is not part of the definition, but it is
uniquely defined. For our purposes, this is a much more suitable approach.

We now show how to construct Kripke structures along the ideas sketched above. First, we
review Mitchell and Moggi’s definition [12]. The main new ingredient is that we have a preordered
set 〈W, v〉, intuitively, a set of worlds. Then, a Kripke applicative structure is defined as a tuple

〈W, v, (Aσw)σ∈T ,w∈W , (appσ,τw )σ,τ∈T ,w∈W , (iσw1,w2
)σ∈T ,w1,w2∈W〉,

where,

W is a set of worlds preordered by v,

(Aσw)σ∈T ,w∈W is a family of (possibly empty) sets called carriers,

(appσ,τw )σ,τ∈T ,w∈W is a family of application operators, where each appσ,τw is a total function
appσ,τw :Aσ→τw ×Aσw → Aτw;

iσw1,w2
:Aσw1

→ Aσw2
is a transition function, whenever w1 v w2.

8



Furthermore, certain conditions hold, making each Aσ into a functor fromW to Sets, and each
appσ,τ into a natural transformation between the functors Aσ→τ × Aσ and Aτ . For example, we
have

iτw1,w2
(appσ,τw1

(f, a)) = appσ,τw2
(iσ→τw1,w2

(f), iσw1,w2
(a)),

for all f ∈ Aσ→τw1
and all a ∈ Aσw1

.1

If we want to adapt this definition to give a more general definition in terms of the operators
funσ,τ and abstσ,τ , we need to define funσ,τ as the “curried” version of the natural transformation
appσ,τ between the functors Aσ→τ×Aσ and Aτ . This is where we use a bit of category theory. Each
Aσ can be viewed as a functor Aσ:W → Sets from the preorder W viewed as a category, and the
category of sets, and these functors together with the natural transformations between them form
a category, a presheaf category , which is known to be Cartesian-closed (see Mac Lane and Moerdijk
[9]). Furthermore, it is possible to give an explicit construction of the exponential [Aσ ⇒ Aτ ] (see
definition 3.5) between two functors Aσ and Aτ , and to define fun as curry(app). Then, it is easy
to define a Kripke applicative structure in terms of the natural transformations funσ,τ and abstσ,τ .

In order to deal with second-order types, first, we need to provide an interpretation of the type
variables. Thus, as in Breazu-Tannen and Coquand [1], we assume that we have an algebra of types
T , which consists of a quadruple

〈T,→, [T ⇒ T ],∀〉,

where T is a nonempty set of types, →:T × T → T is a binary operation on T , [T ⇒ T ] is a
nonempty set of functions from T to T , and ∀ is a function ∀: [T ⇒ T ]→ T .

We hope that readers will forgive us for using the same letter T to denote an algebra of types
and its carrier. Intuitively, given a valuation θ:V → T (where V is the set of type variables), a type
σ ∈ T will be interpreted as an element [[σ]]θ of T . Then, a second-order applicative structure is
defined as a tuple

〈T, (As)s∈T , (apps,t)s,t∈T , (tappΦ)Φ∈[T→T ]〉,

where

T is an algebra of types;

(As)s∈T is a family of nonempty sets called carriers,

(apps,t)s,t∈T is a family of application operators, where each apps,t is a total function
apps,t:As→t ×As → At;

(tappΦ)Φ∈[T→T ] is a family of type-application operators, where each tappΦ is a total function

tappΦ:A∀(Φ) × T →
∐

(AΦ(s))s∈T , such that tappΦ(f, t) ∈ AΦ(t), for every f ∈ A∀(Φ), and
every t ∈ T .

In order to define second-order applicative structures using operators like fun and abst, we
need to define the curried version tfunΦ of tappΦ:A∀(Φ) × T →

∐
(AΦ(s))s∈T . For this, we define

a kind of dependent product DΠΦ(As)s∈T (see definition 3.8). Then, we have families of operators
tfunΦ:A∀(Φ) → DΠΦ(As)s∈T , and tabstΦ:DΠΦ(As)s∈T → A∀(Φ), for every Φ ∈ [T ⇒ T ].

Now, if we want to adapt the above definition to define Kripke applicative structures, we
have to view A∀(Φ) × T and

∐
(AΦ(s))s∈T as functors, and tappΦ:A∀(Φ) × T →

∐
(AΦ(s))s∈T as

1Constants can be handled too, but for simplicity, they are dropped.

9



a natural transformation between them. Then, we need to define some form of exponential of T
and

∐
(AΦ(s))s∈T . Such an exponential can indeed be constructed as a functor

∏
Φ(As)s∈T defined

in terms of the dependent products DΠΦ(Asw)s∈T (see definition 3.8). We also need to show that
the functor

∏
Φ(As)s∈T satisfies a universal property analogous to the property satisfied by the

functor [As ⇒ At]. For this, we define the set NatΦ(H × T,
∐

(AΦ(s))s∈T ) as the set of natural

transformations η:H × T →
∐

(AΦ(s))s∈T , such that, ηu(a, t) ∈ AΦ(t)
u , for every a ∈ Hu and every

t ∈ T (see definition 3.9). Then, we can prove a lemma (lemma 3.11) that shows that
∏

Φ(As)s∈T
is indeed a certain kind of exponential. Thus, at the level of presheaf categories, we have the
usual maps curry and uncurry that set up a (natural) bijection between Nat(H × F, G) and
Nat(H, [F ⇒ G]), but also some maps curryΦ and uncurryΦ that set up a (natural) bijection
between the sets of natural transformations NatΦ(H × T,

∐
(AΦ(s))s∈T ) and Nat(H,

∏
Φ(As)s∈T ).

Armed with the definition of the functors [As ⇒ At] and
∏

Φ(As)s∈T , and the natural trans-
formations fun, abst, tfun, and tabst, we can define Kripke applicative structures (see definition
4.1). In fact, the definition also applies to the product and sum types, and to carriers Asw equipped
with preorders. This way, we can define models of sets of rewrite rules, as well as models of sets of
equations.

The paper is organized as follows. Section 2 is a review of the syntax of the second-order typed
λ-calculus λ→,×,+,∀

2
. Section 3 contains a review of some elementary notions of category theory.

An explicit construction of the exponential of functors F,G:W → Preor, where W is a preorder,
and Preor is the category of preorders, is given. The dependent product

∏
Φ(As)s∈T is also defined.

Kripke pre-applicative structures are defined in section 4. In section 5, we show how to interpet
second-order λ-terms using Kripke applicative structures. A number of proof systems for proving
inequalities (rewrite rules) and equations are defined in section 6. Satisfaction and validity (in a
Kripke structure) is also defined. Some soundness and completeness results are proved in section
7. The results of section 7 are adapted to equations in section 8. Section 9 contains the conclusion
and some suggestions for further research.

2 Syntax of the Second-Order Typed λ-Calculus λ→,×,+,∀
2

In this section, we review quickly the syntax of the second-order typed λ-calculus λ→,×,+,∀
2
. This

includes a definition of the second-order types under consideration, of raw terms, or the type-
checking rules for judgements, and of the reduction rules. For more details (on the subsystem
λ→,∀

2
), the reader should consult Breazu-Tannen and Coquand [1].

Let T denote the set of second-order types. This set comprises type variables X, type constants
k, and compound types (σ → τ), (σ × τ), (σ + τ), and ∀X. σ. It is assumed that we have a set
TC of type constants (also called base types of kind ?). We have a countably infinite set V of type
variables (denoted as upper case letters X,Y, Z), and a countably infinite set X of term variables
(denoted as lower case letters x, y, z). We denote the set of free type variables occurring in a type σ
as FTV (σ). We use the notation ? for the kind of types. Since we are only considering second-order
quantification over predicate symbols (of kind ?) of arity 0, this is superfluous. However, it will
occasionally be useful to consider contexts Γ in which type variables are explicitly present, since this
makes the type-checking rules more uniform in the case of λ-abstraction and typed λ-abstraction.
Thus, officially, a context Γ is a set {x1:σ1, . . . , xn:σn}, where x1, . . . , xn are term variables, and

10



σ1, . . . , σn are types. We let dom(Γ) = {x1, . . . , xn}. As usual, we assume that the variables xj
are pairwise distinct. We also assume that x /∈ dom(Γ) in a context Γ, x:σ. Informally, we will
also consider contexts {X1: ?, . . . , Xm: ?, x1:σ1, . . . , xn:σn}, where X1, . . . , Xm are type variables,
and x1, . . . , xn are term variables, with the two sets {X1, . . . , Xm} and {x1, . . . , xn} disjoint, the
variables Xi pairwise distinct, and the variables xj pairwise distinct. We assume that X /∈ dom(Γ)
in a context Γ, X: ?. For the sake of brevity, rather than writing typed λ-abstraction as λX: ?. M ,
it will be written as λX. M .

It is assumed that we have a set Const of constants, together with a function Type: Const → T ,
such that every constant c is assigned a closed type Type(c) in T . The set TC of type constants,
together with the set Const of constants, and the function Type, constitute a signature Σ. Let us
review the definition of raw terms.

Definition 2.1 The set of raw terms is defined inductively as follows: every variable x ∈ X is a
raw term, every constant c ∈ Const is a raw terms, and if M,N are raw terms and σ, τ are types,
then (MN), (Mτ), λx:σ. M , λX. M , π1(M), π2(M), 〈M, N〉, inl(M), inr(M), and [M, N ], are
raw terms.

We let FV (M) denote the set of free term-variables in M . Raw terms may contain free variables
and may not type-check (for example, (xx)). In order to define which raw terms type-check, we
consider expressions of the form Γ .M :σ, called judgements, where Γ is a context in which all the
free term variables in M are declared. A term M type-checks with type σ in the context Γ iff the
judgement Γ . M :σ is provable using axioms and rules summarized in the following definition.

Definition 2.2 The judgements of the polymorphic typed λ-calculus λ→,×,+,∀
2

are defined by the
following rules.

Γ . x:σ, when x:σ ∈ Γ,

Γ . c: Type(c), when c is a constant,

Γ, x:σ .M : τ

Γ . (λx:σ. M): (σ → τ)
(abstraction)

Γ . M : (σ → τ) Γ . N :σ

Γ . (MN): τ
(application)

Γ . M :σ Γ . N : τ

Γ . 〈M, N〉:σ × τ
(pairing)

Γ . M :σ × τ
Γ . π1(M):σ

(projection)
Γ . M :σ × τ
Γ . π2(M): τ

(projection)

Γ . M :σ

Γ . inl(M):σ + τ
(injection)

Γ . M : τ

Γ . inr(M):σ + τ
(injection)

Γ . M : (σ → δ) Γ . N : (τ → δ)

Γ . [M, N ]: (σ + τ)→ δ
(co-pairing)

11



Γ, X: ? . M :σ

Γ . (λX. M):∀X. σ
(∀-intro)

provided that X /∈
⋃
x:τ∈Γ FTV (τ);

Γ . M : ∀X. σ
Γ . (Mτ):σ[τ/X]

(∀-elim)

The reason why we do not officially consider that a context contains type variables, is that
in the rule (∀-elim), the type τ could contain type variables not declared in Γ, and it would be
necessary to have a weakening rule to add new type variables to a context (or some other mechanism
to add new type variables to a context). As long as we do not deal with dependent types, this
technical annoyance is most simply circumvented by assuming that type variables are not included
in contexts.

Instead of using the construct case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N , we found it more
convenient and simpler to use the slightly more general construct [M, N ], where M is of type
σ → δ and N is of type τ → δ, even when M and N are not λ-abstractions. This will be especially
advantageous for the semantic treatment to follow. Then, we can define the conditional construct
case P of inl(x:σ)⇒M | inr(y: τ)⇒ N , where P is of type σ + τ , as [λx:σ. M, λy: τ. N ]P .

Definition 2.3 The reduction rules of the system λ→,×,+,∀ are listed below:

(λx:σ. M)N −→M [N/x],

π1(〈M,N〉) −→M,

π2(〈M,N〉) −→ N,

[M, N ]inl(P ) −→MP,

[M, N ]inr(P ) −→ NP,

(λX. M)τ −→M [τ/X].

The reduction relation defined by the rules of definition 2.3 is denoted as −→β (even though
there are reductions other than β-reduction). From now on, when we refer to a λ-term, we mean a
λ-term that type-checks. In order to define Kripke models for λ→,×,+,∀

2
, we need to review a few

concepts from category theory.

3 Exponentials and Dependent Products in the Category PreorW

In this section, we define an algebra of polymorphic types, and review some elementary notions of
category theory. We give an explicit construction of the exponential of functors F,G:W → Preor,
where W is a preorder, and Preor is the category of preorders. We also define the dependent
product

∏
Φ(As)s∈T , and show that this functor is a certain kind of exponential, if the right set of

natural transformations is considered.

Definition 3.1 An algebra of (polymorphic) types is a tuple

〈T,→,×,+, [T ⇒ T ],∀〉,

12



where T is a nonempty set of types, →,×,+:T × T → T are binary operations on T , [T ⇒ T ] is a
nonempty set of functions from T to T , and ∀ is a function ∀: [T ⇒ T ]→ T .

We hope that readers will forgive us for using the same letter T to denote an algebra of types
and its carrier. Intuitively, given a valuation θ:V → T , a type σ ∈ T will be interpreted as an
element [[σ]]θ of T .

We need to define two categories of preorders.

Definition 3.2 The category Preor is the category whose objects are preordered sets 〈W, v〉, and
whose arrows f :W1 → W2 are monotonic functions (with respect to v1 and v2). The category
Preorp is the category whose objects are preordered sets 〈W, v〉, and whose arrows f :W1 → W2

are monotonic partial functions (with respect to v1 and v2).

It is obvious that Preor and Preorp are categories. Given a monotonic function f :W1 → W2,
where W1 and W2 are preorders, we say that f is isotone iff f(w1) v f(w2) implies that w1 v w2,
for all w1, w2 ∈W1.

Any preordered set 〈W, v〉 can be viewed as the category whose objects are the elements
of W, and such that there is a single arrow denoted w1 → w2 from w1 to w2 iff w1 v w2. We
will be interested in functors F :W → Preor. Such a functor assigns a preorder F (w) to every
w ∈ W, and an arrow F (w1 → w2):F (w1) → F (w2) to every pair such that w1 v w2. The
preorder F (w) is also denoted as 〈Fw, �Fw〉, and the arrow F (w1 → w2) is a monotonic function
denoted as iFw1,w2

:Fw1 → Fw2 . The fact that F is a functor means that iFw,w = id, and that

iFw1,w3
= iFw2,w3

◦ iFw1,w2
, whenever w1 v w2 v w3.

Recall that a natural transformation η:F → G between two functors F,G:W → Preor is a
family η = (ηw)w∈W , where ηw:Fw → Gw is an arrow in Preor, and such that the following
naturality conditions hold whenever w1 v w2:

ηw2 ◦ iFw1,w2
= iGw1,w2

◦ ηw1 ,

or in diagram form:

Fw1

ηw1−→ Gw1

iFw1,w2

y yiGw1,w2

Fw2 −→
ηw2

Gw2

Definition 3.3 The set of natural transformations between two functors F,G:W → Preor is
denoted as Nat(F, G). The set of natural transformations between two functors F,G:W → Preorp
is denoted as Natp(F, G). Functors F :W → Preor and natural transformations between them form
a category (of presheaves), denoted as PreorW . Similarly, we have the category PreorWp .

The categories PreorW (and PreorWp ) are Cartesian-closed (see Mac Lane and Moerdijk [9]),
and we will be interested in an explicit description of the exponentials.

13



Given an indexed family of sets (Ai)i∈I , we let
∏

(Ai)i∈I be the product of the family (Ai)i∈I ,
and

∐
(Ai)i∈I be the coproduct (or disjoint sum) of the family (Ai)i∈I . The disjoint sum

∐
(Ai)i∈I

is the set
⋃
{〈a, i〉 | a ∈ Ai}i∈I . If the sets Ai are preorders, then

∏
(Ai)i∈I is a preorder under the

product preorder, where (ai)i∈I v (bi)i∈I iff ai vi bi for all i ∈ I, and
∐

(Ai)i∈I is a preorder under
the (disjoint) sum preorder, where 〈a, i〉 v 〈b, j〉 iff i = j and a vi b. When I = {1, 2}, we also
denote

∏
(Ai)i∈I as A1 ×A2, and

∐
(Ai)i∈I as A1 +A2.

Definition 3.4 Given a family of functors (Fi)i∈I , where Fi:W → Preor, we define the functors∏
(Fi)i∈I :W → Preor and

∐
(Fi)i∈I :W → Preor as follows. In order to abbreviate the notation,

let PI =
∏

(Fi)i∈I , and SI =
∐

(Fi)i∈I . Then

(i) For every w ∈ W, PI(w) =
∏

(Fi(w))i∈I , and arrows are defined in the following way:
iPI
w1,w2

:PI(w1)→ PI(w2) is the I-indexed family
∏

(iFi
w1,w2

)i∈I , where w1 v w2.

(ii) For every w ∈ W, SI(w) =
∐

(Fi(w))i∈I , and arrows are defined in the following way:
iSI
w1,w2

:SI(w1)→ SI(w2) is the I-indexed family
∐

(iFi
w1,w2

)i∈I , where w1 v w2.

It is immediately verified that
∏

(Fi)i∈I and
∐

(Fi)i∈I are functors
∏

(Fi)i∈I :W → Preor and∐
(Fi)i∈I :W → Preor. Thus, the category of functors F :W → Preor has products and coproducts.

It also has a terminal object, the constant functor from W to the one object preorder (and an
initial object). We will now define a notion of exponential, showing that the category of functors
F :W → Preor (with natural transformations between them) is Cartesian-closed. This can be
shown using the Yoneda lemma (see Mac Lane and Moerdijk [9]), but we will give an explicit
construction.

Definition 3.5 Given a preorder 〈W,v〉 and two functors F :W → Preor and G:W → Preor, we
define the functor [F ⇒ G] as follows: For any u ∈ W, [F ⇒ G]u is the set of families ϕ = (ϕw)wwu,
where each ϕw is an arrow ϕw:Fw → Gw (in the category Preor), such that the following naturality
conditions hold whenever w2 w w1 w w:

ϕw2 ◦ iFw1,w2
= iGw1,w2

◦ ϕw1 .

or as a diagram:

Fw2

ϕw2−→ Gw2

iFw1,w2

x xiGw1,w2

Fw1 −→
ϕw1

Gw1

The preorder on [F ⇒ G]u is defined as follows: Given two families ϕ = (ϕw)wwu and ψ =
(ψw)wwu, ϕ �u ψ iff ϕw �w ψw for all w w u.2 Whenever w1 v w2, we define iF⇒Gw1,w2

: [F ⇒ G]w1 →
[F ⇒ G]w2 as follows:

For every family ϕ = (ϕw)www1 in [F ⇒ G]w1 (where ϕw:Fw → Gw),

iF⇒Gw1,w2
((ϕw)www1) = (ϕw)www2 .

Thus, iF⇒Gw1,w2
is the restriction function that restricts every family (ϕw)www1 in [F ⇒ G]w1 to the

subfamily (ϕw)www2 in [F ⇒ G]w2 , where w1 v w2.

2Given two functions f, g:Fw → Gw, f �w g iff f(a) �G
w g(a) for all a ∈ Fw.

14



It is clear that [F ⇒ G] is a functor [F ⇒ G]:W → Preor. In fact, [F ⇒ G] is an exponential
in the category of functors F :W → Preor, and this makes this category Cartesian-closed. To make
this precise, we have to define the evaluation map eval: [F ⇒ G] × F → G.

Definition 3.6 Given a preorder 〈W,v〉 and two functors F :W → Preor and G:W → Preor, we
define the evaluation map evalF,G: [F ⇒ G] × F → G as follows:

For every u ∈ W, for every family ϕ = (ϕw)wwu in [F ⇒ G]u (where ϕw:Fw → Gw), for every
a ∈ Fu,

evalF,Gu ((ϕw)wwu, a) = ϕu(a).

Given any functors F,G,H:W → Preor, for any natural transformation η:H × F → G, we define
the natural transformation curry(η):H → [F ⇒ G] as follows:

For every u ∈ W, curry(η)u:Hu → [F ⇒ G]u is the arrow (in the category Preor) such that,
for every a ∈ Hu,

curry(η)u(a) = {curry(ηw)(iHu,w(a)):Fw → Gw | w w u},

where curry(ηw)(iHu,w(a)):Fw → Gw, is the arrow (in the category Preor), such that, for every

b ∈ Fw, curry(ηw)(iHu,w(a))(b) = ηw(iHu,w(a), b).

Lemma 3.7 Given any two functors F,G:W → Preor, evalF,G: [F ⇒ G] × F → G is a natural
transformation. Furthermore, Given any functors F,G,H:W → Preor, for any natural trans-
formation η:H × F → G, curry(η):H → [F ⇒ G] (as in definition 3.6) is the unique natural
transformation such that

η = evalF,G ◦ (curry(η)× idF ).

If θ:H → [F ⇒ G] is a natural transformation, then θ = curry(evalF,G ◦ (θ × idF )).

Proof . It is easily verified that evalF,G: [F ⇒ G] × F → G and curry(η):H → [F ⇒ G] are
indeed natural transformations. It can also be checked that for any η:H × F → G, the natural
transformation curry(η):H → [F ⇒ G] is the unique natural transformation such that

η = evalF,G ◦ (curry(η)× idF ).

Finally, letting η = evalF,G ◦ (θ × idF ), since θ satisfies the property η = evalF,G ◦ (θ × idF ), by
uniqueness of curry(η), we have θ = curry(evalF,G ◦ (θ × idF )).

Thus, the category of all functors F :W → Preor is Cartesian-closed. Given a natural transfor-
mation θ:H → [F ⇒ G], if we define the natural transformation uncurry such that uncurry(θ) =
evalF,G ◦ (θ × idF ), then we have immediately that

uncurry ◦ curry = id and curry ◦ uncurry = id,

which shows that curry and uncurry set up a (natural) bijection between Nat(H × F, G) and
Nat(H, [F ⇒ G]).

We view T as the constant functor T :W → Preor such that Tw = T for every w ∈ W, the
preorder on T being the identity relation. Before defining a Kripke pre-applicative structure, we
need to define the notion of a dependent product. The construction is quite similar to that of
definition 3.5.

15



Definition 3.8 Given an algebra of types T , and a T -indexed family of preorders 〈As, �s〉, for ev-
ery function Φ ∈ [T ⇒ T ], the dependent product DΠΦ(As)s∈T is the cartesian product

∏
(AΦ(t))t∈T ,

which is also described explicitly as the set of functions in (
∐

(AΦ(s))s∈T )
T

defined as follows:

DΠΦ(As)s∈T = {f :T →
∐

(AΦ(s))s∈T | f(t) ∈ AΦ(t), for all t ∈ T}.

The set DΠΦ(As)s∈T is given the preorder �Φ defined such that, f �Φ g iff f(t) �Φ(t) g(t), for
every t ∈ T .

Given a preorder 〈W, v〉, an algebra of types T , and a family of functors As:W → Preor

(where s ∈ T ), for every Φ ∈ [T ⇒ T ], we define the functor
∏

Φ(As)s∈T :W → Preor as follows:
for any u ∈ W,

∏
Φ(Asu)s∈T is the set of families ϕ = (ϕw)wwu, where ϕw ∈ DΠΦ(Asw)s∈T , such that

the following naturality conditions hold whenever w2 w w1 w w:

ϕw2(t) = iΦ(t)
w1,w2

(ϕw1(t)),

for every t ∈ T , or as a diagram:

T
ϕw2−→

∐
(A

Φ(s)
w2 )s∈T

Id

x xi∐(AΦ(s))s∈T
w1,w2

T −→
ϕw1

∐
(A

Φ(s)
w1 )s∈T

The preorder on
∏

Φ(Asu)s∈T is defined as follows: Given two families ϕ = (ϕw)wwu and ψ =
(ψw)wwu, ϕ �u ψ iff ϕw �Φ

w ψw for all w w u. Whenever w1 v w2, we define iΠΦ
w1,w2

:
∏

Φ(Asw1
)s∈T →∏

Φ(Asw2
)s∈T as follows:

For every family ϕ = (ϕw)www1 in
∏

Φ(Asw1
)s∈T (where ϕw:T →

∐
(A

Φ(s)
w )s∈T ),

iΠΦ
w1,w2

((ϕw)www1) = (ϕw)www2 .

Thus, iΠΦ
w1,w2

is the restriction function that restricts every family (ϕw)www1 in
∏

Φ(Asw1
)s∈T to the

subfamily (ϕw)www2 in
∏

Φ(Asw2
)s∈T , where w1 v w2.

It is clear that
∏

Φ(As)s∈T is a functor
∏

Φ(As)s∈T :W → Preor. The functor
∏

Φ(As)s∈T is
universal in a certain sense that makes it a kind of exponential with respect to certain natural
tranformations. This universality is made precise in what follows.

Definition 3.9 Given any functor H:W → Preor and any family of functors As:W → Preor

(where s ∈ T ), we define the set of natural transformation NatΦ(H × T,
∐

(AΦ(s))s∈T ) as the set

of natural transformations η:H × T →
∐

(AΦ(s))s∈T , such that, ηu(a, t) ∈ AΦ(t)
u , for every a ∈ Hu

and every t ∈ T .

Definition 3.10 Given a preorder 〈W,v〉, and a family of functors As:W → Preor (where s ∈ T ),

we define the polymorphic evaluation map evalAΦ: (
∏

Φ(Asu)s∈T )× T →
∐

(A
Φ(s)
u )s∈T as follows:

For every u ∈ W, for every family ϕ = (ϕw)wwu in
∏

Φ(Asu)s∈T (where ϕw:T →
∐

(A
Φ(s)
w )s∈T ),

for every t ∈ T ,
evalAΦ,u((ϕw)wwu, t) = ϕu(t).

16



Given any functor H:W → Preor and any family of functors As:W → Preor (where s ∈ T ), for
any natural transformation η ∈ NatΦ(H × T,

∐
(AΦ(s))s∈T ), we define the natural transformation

curryΦ(η):H →
∏

Φ(As)s∈T as follows:

For every u ∈ W, curryΦ(η)u:Hu →
∏

Φ(Asu)s∈T is the arrow (in the category Preor), such
that, for every a ∈ Hu,

curryΦ(η)u(a) = {curryΦ(ηw)(iHu,w(a)):T →
∐

(AΦ(s)
w )s∈T , | w w u},

where curryΦ(ηw)(iHu,w(a)):T →
∐

(A
Φ(s)
w )s∈T is the arrow (in

∏
Φ(Asw)s∈T ) such that, for every

t ∈ T , curryΦ(ηw)(iHu,w(a))(t) = ηw(iHu,w(a), t).

Lemma 3.11 Given an algebra of types T and family of functors As:W → Preor (where s ∈ T ),

evalAΦ: (
∏

Φ(As)s∈T ) × T →
∐

(A
Φ(s)
w )s∈T is a natural transformation. Furthermore, Given any

functor H:W → Preor and any family of functors As:W → Preor (where s ∈ T ), for any natural
transformation η ∈ NatΦ(H×T,

∐
(AΦ(s))s∈T ), curryΦ(η):H →

∏
Φ(As)s∈T (as in definition 3.10)

is the unique natural transformation such that

η = evalAΦ ◦ (curryΦ(η)× idT ).

If θ ∈ NatΦ(H × T,
∐

(AΦ(s))s∈T ), then θ = curryΦ(evalAΦ(θ × idT )).

Proof . The calculations are straightforward.

Thus, given a natural transformation θ ∈ NatΦ(H × T,
∐

(AΦ(s))s∈T ), if we define the natural
transformation uncurryΦ such that uncurryΦ(θ) = evalAΦ ◦ (θ × idT ), then we have immediately
that

uncurryΦ ◦ curryΦ = id and curryΦ ◦ uncurryΦ = id,

which shows that curryΦ and uncurryΦ set up a (natural) bijection between the sets of natural
transformations NatΦ(H × T,

∐
(AΦ(s))s∈T ) and Nat(H,

∏
Φ(As)s∈T ).

4 Kripke Pre-Applicative Structures

In this section, we define Kripke pre-applicative structures, as suggested in the introduction. The
basic version (see definition 4.1) is intentional (i.e. nonextensional). We also consider a version
with η-like rules, and an extensional version. An important example of a Kripke pre-applicative
structure is given in definition 4.4. Definition 4.8 contains an example also satisfying the η-like
rules. We conclude this section with a characterization of extensionality, showing the equivalence
between our definition of extensionality and Mitchell and Moggi’s definition [12], in the case of
first-order applicative structures.

Definition 4.1 Given a preorder 〈W,v〉 viewed as a category, and T an algebra of types, a Kripke
pre-applicative β-structure is a structure

A = 〈A, fun, abst, tfun, tabst, Π, 〈−,−〉, inl, inr, [−, −]〉,

where

17



A = (As)s∈T , a family of functors As:W → Preor (recall that for every w ∈ W, we write As(w)
as Asw);

funs,t:As→t → [As ⇒ At], a family of natural transformations in Nat(As→t, [As ⇒ At]);

absts,t: [As ⇒ At] → As→t, a family of natural transformations in Natp([A
s ⇒ At], As→t);

tfunΦ:A∀(Φ) →
∏

Φ(As)s∈T , a family of natural transformations in Nat(A∀(Φ),
∏

Φ(As)s∈T ), for
every Φ ∈ [T ⇒ T ];

tabstΦ:
∏

Φ(As)s∈T → A∀(Φ), a family of natural transformations in Natp(
∏

Φ(As)s∈T , A
∀(Φ)),

for every Φ ∈ [T ⇒ T ];

Πs,t:As×t → As ×At, a family of natural transformations in Nat(As×t, As ×At),
〈−,−〉s,t:As ×At → As×t, a family of natural transformations in Natp(A

s ×At, As×t);
[−, −]s,t,d:As→d × At→d → A(s+t)→d, a family of natural transformations in Natp(A

s→d ×
At→d, A(s+t)→d);

inls,t:As → As+t, a family of natural transformations in Nat(As, As+t);

inrs,t:At → As+t, a family of natural transformations in Nat(At, As+t).

For every u ∈ W, we define cinlu:A
(s+t)→d
u → [As ⇒ Ad]u and cinru:A

(s+t)→d
u → [At ⇒ Ad]u

as follows: For every h ∈ A(s+t)→d
u , for every w w u,

(cinlu(h))w(a) = evalw(funw(i(s+t)→du,w (h)), inlw(a)),

for every a ∈ Asw, and

(cinru(h))w(b) = evalw(funw(i(s+t)→du,w (h)), inrw(b)),

for every b ∈ Atw.

Furthermore, the following conditions are satisfied for every w ∈ W:

(1) For all s, t ∈ T , if Asw 6= ∅ and Atw 6= ∅, then As→tw 6= ∅, and funs,tw (absts,tw (ϕ)) �w ϕ,
whenever absts,tw (ϕ) is defined, for ϕ ∈ [As ⇒ At]w;

(2) If A
Φ(t)
w 6= ∅ for every t ∈ T , then A

∀(Φ)
w 6= ∅, and tfunΦ

w(tabstΦ
w(ϕ)) �w ϕ, whenever

tabstΦ
w(ϕ) is defined, for ϕ ∈

∏
Φ(Asw)s∈T ;

(3) For all s, t ∈ T , if Asw 6= ∅ and Atw 6= ∅, then As×tw 6= ∅, and Πs,t
w (〈a, b〉) �w (a, b), for all

a ∈ Asw, b ∈ Atw, whenever 〈a, b〉 is defined;

(4) For all s, t ∈ T , if Asw 6= ∅ and Atw 6= ∅, then As+tw 6= ∅, and cinlw([f, g]) �w funw(f), and
cinrw([f, g]) �w funw(g), whenever [f, g] is defined, for f ∈ As→dw and g ∈ At→dw .

We say that a Kripke pre-applicative β-structure is an applicative β-structure iff in conditions
(1)-(4), �w is replaced by the identity relation =w.

We think ofW as a set of worlds. When A is a Kripke applicative β-structure, then, in definition
4.1, conditions (1)-(4) amount to

(1) funs,tw ◦ absts,tw = idw on the domain of definition of abstw;

(2) tfunΦ
w ◦ tabstΦ

w = idw on the domain of definition of tabstw;

18



(3) Πs,t
w ◦ 〈−, −〉s,tw = idw on the domain of definition of 〈−, −〉w; and

(4) 〈cinlw, cinrw〉 ◦ [−, −] = funs,dw × funt,dw on the domain of definition of [−, −].

In view of (1), from (4), we get

〈cinlw, cinrw〉 ◦ ([−, −]w ◦ (absts,dw ×abstt,dw )) = idw on the domain of definition of [−, −]w ◦
(absts,dw × abstt,dw ).

In this case, abstw is injective and funw is surjective on the domain of definition of abstw
(and left inverse to abstw), tabstw is injective and tfunw is surjective on the domain of definition
of tabstw (and left inverse to tabstw), 〈−, −〉w is injective and Πw is surjective on the domain
of definition of 〈−, −〉w (and left inverse to 〈−, −〉w), [−, −]w ◦ (absts,dw × abstt,dw ) is injective
on its domain of definition, and 〈cinlw, cinrw〉 is surjective on this domain (and left inverse to
[−, −]w ◦ (absts,dw × abstt,dw )).

When we use a Kripke pre-applicative β-structure to interpret λ-terms, we assume that 〈−,−〉
and [−, −] are total, and that the domains of abst and tabst are sufficiently large, but we have
not elucidated this last condition yet.

Using lemma 3.7, given funs,t:As→t → [As ⇒ At], we can define a natural transformation
apps,t:As→t ×As → At, by

apps,t = evalA
s,At ◦ (funs,t × idAs).

Since θ = curry(evalF,G ◦ (θ × idF )), from lemma 3.7, we also have

funs,t = curry(apps,t).

Thus, apps,t and funs,t correspond to each other in the isomorphism between Nat(As→t ×As, At)
and Nat(As→t, [As ⇒ At]) set up by curry, uncurry. Thus, we could have used apps,t instead of
funs,t in definition 4.1. More explicitly, apps,tw (f, a) is defined such that, for every f ∈ As→tw and
every a ∈ Asw,

apps,tw (f, a) = evalA
s,At

(funs,tw (f), a).

Then, the functions cinlu and cinru of definition 4.1 can be expressed in terms of app as

follows: For every h ∈ A(s+t)→d
u ,

(cinlu(h))w(a) = appw(i(s+t)→du,w (h), inlw(a)),

for every a ∈ Asw, and

(cinru(h))w(b) = appw(i(s+t)→du,w (h), inrw(b)),

for every b ∈ Atw.

Using lemma 3.11, given tfuns,t:A∀(Φ) →
∏

Φ(As)s∈T , we can define a natural transformation
tappΦ:A∀(Φ) × T →

∐
(AΦ(s))s∈T , by

tappΦ = evalAΦ ◦ (tfunΦ × idT ).

19



Since θ = curryΦ(evalAΦ ◦ (θ × idT )), from lemma 3.11, we also have

tfunΦ = curryΦ(tappΦ).

Thus, tappΦ and tfunΦ correspond to each other in the isomorphism between the sets of natural
transformations NatΦ(A∀(Φ) × T,

∐
(AΦ(s))s∈T ) and Nat(A∀(Φ),

∏
Φ(As)s∈T ) set up by curryΦ,

uncurryΦ. Thus, we could have used tappΦ instead of tfunΦ in definition 4.1. More explicitly,

tappΦ
w(f, t) is defined such that, for every f ∈ A∀(Φ)

w and every t ∈ T ,

tappΦ
w(f, t) = evalAΦ(tfunΦ

w(f), t).

The projection operators Πw induce projections πs,t1,w:As×tw → Asw and πs,t2,w:As×tw → Atw, such
that for every a ∈ As×tw , if Πs,t

w (a) = (a1, a2), then

πs,t1,w(a) = a1 and πs,t2,w(a) = a2.

Let us now unravel the naturality conditions.

Definition 4.2 The following conditions hold whenever w1 v w2.

(1) funs,t:As→t → [As ⇒ At]. The naturality conditions are

funw2 ◦ is→tw1,w2
= is⇒tw1,w2

◦ funw1 .

These can be rewritten as follows: for any g ∈ As→tw1
, if funw1(g) = (ϕw)www1 , then

funw2(is→tw1,w2
(g)) = (ϕw)www2 .

In terms of the operators app (recall that app = evalA
s,At ◦ (fun× idAs)), the condition is written

as
appw2

(is→tw1,w2
(g), isw1,w2

(b)) = itw1,w2
(appw1

(g, b)),

for every g ∈ As→tw1
, and every b ∈ Asw1

.

(2) absts,t: [As ⇒ At] → As→t. The naturality conditions are

abstw2 ◦ is⇒tw1,w2
= is→tw1,w2

◦ abstw1 .

These can be rewritten as follows:

abstw2((ϕw)www2) = is→tw1,w2
(abstw1((ϕw)www1)),

for every ϕ = (ϕw)www1 ∈ [As ⇒ At]w1 .

(3) tfunΦ:A∀(Φ) →
∏

Φ(As)s∈T . The naturality conditions are

tfunw2 ◦ i∀(Φ)
w1,w2

= iΠΦ
w1,w2

◦ tfunw1 .

These can be rewritten as follows: for any g ∈ A∀(Φ)
w1 , if tfunw1(g) = (ϕw)www1 , then

tfunw2(i∀(Φ)
w1,w2

(g)) = (ϕw)www2 .

20



In terms of the operators tapp (recall that tappΦ = evalAΦ◦(tfunΦ×idT )), the condition is written
as

tappw2
(i∀(Φ)
w1,w2

(g), t) = iΦ(t)
w1,w2

(tappw1
(g, t)),

for every g ∈ A∀(Φ)
w1 , and every t ∈ T .

(4) tabstΦ:
∏

Φ(As)s∈T → A∀(Φ). The naturality conditions are

tabstw2 ◦ iΠΦ
w1,w2

= i∀(Φ)
w1,w2

◦ tabstw1 .

These can be rewritten as follows:

tabstw2((ϕw)www2) = i∀(Φ)
w1,w2

(tabstw1((ϕw)www1)),

for every ϕ = (ϕw)www1 ∈
∏

Φ(Asw1
)s∈T .

(5) Πs,t:As×t → As ×At. The naturality conditions are

Πw2 ◦ is×tw1,w2
= (isw1,w2

× itw1,w2
) ◦Πw1 .

These can be rewritten as

Πw2(is×tw1,w2
(b)) = (isw1,w2

(π1,w1(b)), itw1,w2
(π2,w1(b)),

for all b ∈ As×tw1
.

(6) 〈−,−〉s,t:As ×At → As×t. The naturality conditions are

〈−, −〉w2 ◦ (isw1,w2
× itw1,w2

) = is×tw1,w2
◦ 〈−, −〉w1 .

These can be rewritten as

〈isw1,w2
(b1), itw1,w2

(b2)〉w2 = is×tw1,w2
(〈b1, b2〉w1),

for all b1 ∈ Asw1
and all b2 ∈ Atw1

.

(7) inls,t:As → As+t and inrs,t:At → As+t. The naturality conditions are

inlw2 ◦ isw1,w2
= is+tw1,w2

◦ inlw1 and inrw2 ◦ itw1,w2
= is+tw1,w2

◦ inrw1 .

These can be rewritten as

inlw2(isw1,w2
(a)) = is+tw1,w2

(inlw1(a)) and inrw2(itw1,w2
(b)) = is+tw1,w2

(inrw1(b)),

where in the first case, a ∈ Asw1
, and in the second case, b ∈ Atw1

.

(8) [−, −]s,t,d:As→d ×At→d → A(s+t)→d. The naturality conditions are

[−, −]w2 ◦ (is→dw1,w2
× it→dw1,w2

) = i(s+t)→dw1,w2
◦ [−, −]w1 .

These can be rewritten as

[is→dw1,w2
(f), it→dw1,w2

(g)]w2 = i(s+t)→dw1,w2
([f, g]w1),

where f ∈ As→dw1
and g ∈ At→dw1

.

21



Let us give an (important) example of a Kripke pre-applicative structure. First, we review the
notion of a substitution.

Definition 4.3 A substitution ϕ is a function ϕ:V ∪ X → T ∪ Terms, such that ϕ(X) ∈ T
if X ∈ V, ϕ(x) ∈ Terms if x ∈ X , and ϕ(x) 6= x only for finitely many variables. We let
dom(ϕ) = {x ∈ V ∪X | ϕ(x) 6= x}. We say that ϕ is a type-substitution if dom(ϕ) ⊆ V. Given two
contexts Γ and ∆, we say that ϕ satisfies Γ at ∆, denoted as ∆ `̀ Γ[ϕ], iff ∆ . ϕ(x):σ[ϕ], for every
x:σ ∈ Γ (Compare with definition 5.4: ϕ is a valuation, the type-substitution part of ϕ being a
type valuation).

Definition 4.4 Let 〈W, v〉 be the poset of all type assignments Γ = x1:σ1, . . . , xn:σn ordered by
inclusion, T be the free algebra of second-order types, and let AσΓ be the set of all provable typing
judgements Γ .M :σ. For [T ⇒ T ], we can take the set of all functions Φ of the form τ 7→ σ[τ/X],
where σ, τ ∈ T are any types, and X is any fixed variable that does not occur in Γ. Then,
∀(Φ) = ∀X. σ.3 The map iσΓ1,Γ2

:AσΓ1
→ AσΓ2

is the function such that iσΓ1,Γ2
(Γ1 .M :σ) = Γ2 .M :σ.

We let Π, 〈−,−〉, inl, inr, and [−, −], be the obvious. For example, 〈Γ . M1:σ, Γ . M2: τ〉 =
Γ . 〈M1, M2〉:σ × τ . Define Γ . N :σ � Γ . M :σ iff M

∗−→β N . Finally, we need to define fun,
abst, tfun, and tabst.

We define funΓ(Γ . M :σ → τ) as the family of functions ([Γ . M :σ → τ ]∆)Γ⊆∆, where the
function [Γ . M :σ → τ ]∆ is from Aσ∆ to Aτ∆, such that

[Γ . M :σ → τ ]∆(∆ . N :σ) = ∆ . MN : τ,

for every ∆ . N :σ ∈ Aσ∆.

We define tfunΓ(Γ . M : ∀X. σ) as the family of functions ([Γ . M :∀X. σ]∆)Γ⊆∆, where the
function [Γ . M : ∀X. σ]∆ is from T to

∐
(Aσ∆)σ∈T , such that

[Γ . M :∀X. σ]∆(τ) = ∆ . Mτ :σ[τ/X],

for every τ ∈ T . In this case, the Φ in tfunΦ
Γ is the function from T to T induced by σ, such that

Φ(τ) = σ[τ/X] for every τ ∈ T .

For every (type and term)-substitution ϕ, every judgement Γ, x:σ .M : τ , and every context ∆
such that ∆ `̀ (Γ, x:σ)[ϕ], consider the family of functions (ϕ[Γ, x:σ . M : τ ]∆′)∆⊆∆′ , where the

function ϕ[Γ, x:σ .M : τ ]∆′ is from A
σ[ϕ]
∆′ to A

τ [ϕ]
∆′ , defined such that,

ϕ[Γ, x:σ .M : τ ]∆′(∆
′ . N :σ[ϕ]) = ∆′ . M [ϕ[x: = N ]]: τ [ϕ],

for every ∆′ . N :σ[ϕ] ∈ Aσ[ϕ]
∆′ . Given any such family (ϕ[Γ, x:σ .M : τ ]∆′)∆⊆∆′ , we let

abst∆((ϕ[Γ, x:σ .M : τ ]∆′)∆⊆∆′) = ∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ].

For every (type and term)-substitution ϕ, every judgement Γ, X: ? .M :σ, and every context ∆
such that ∆ `̀ (Γ, X: ?)[ϕ], consider the family of functions (ϕ[Γ, X: ? . M :σ]∆′)∆⊆∆′ , where the
function ϕ[Γ, X: ? . M :σ]∆′ is from T to

∐
(Aσ∆′)σ∈T , defined such that,

ϕ[Γ, X: ? . M :σ]∆′(τ) = ∆′ . M [ϕ[X: = τ ]]:σ[ϕ[X: = τ ]],

3The choice of X is irrelevant as long as X does not occur in Γ, since X is bound in ∀X. σ.

22



for every τ ∈ T .

Given any such family (ϕ[Γ, X: ? . M :σ]∆′)∆⊆∆′ , we let

tabst∆((ϕ[Γ, X: ? . M :σ]∆′)∆⊆∆′) = ∆ . (λX. M)[ϕ]:∀X. σ[ϕ].

The Kripke pre-applicative β-structure just defined is denoted as LT β.

It is clear that (ϕ[Γ, x:σ .M : τ ]∆′)∆⊆∆′ is in [Aσ[ϕ] ⇒ Aτ [ϕ]]∆. Let us verify that

fun∆(abst∆((ϕ[Γ, x:σ .M : τ ]∆′)∆⊆∆′)) � (ϕ[Γ, x:σ .M : τ ]∆′)∆⊆∆′ .

Since

fun∆(abst∆((ϕ[Γ, x:σ .M : τ ]∆′)∆⊆∆′)) = fun∆(∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ]),

fun∆(∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ]) = ([∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ]]∆′)∆⊆∆′ ,

[∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ]]∆′(∆
′ . N :σ[ϕ]) = ∆′ . ((λx:σ. M)[ϕ])N : τ [ϕ],

ϕ[Γ, x:σ .M : τ ]∆′(∆
′ . N :σ[ϕ]) = ∆′ . M [ϕ[x: = N ]]: τ [ϕ],

and
((λx:σ. M)[ϕ])N −→β M [ϕ[x: = N ]],

the inequality holds. Indeed, (λx:σ. M)[ϕ] is α-equivalent to (λy:σ. M [y/x])[ϕ] for any variable y
such that y /∈ dom(ϕ) and y /∈ ϕ(z) for every z ∈ dom(ϕ), and for such a y, (λy:σ. M [y/x])[ϕ] =
(λy:σ[ϕ]. M [y/x][ϕ]). Then, for this choice of y,

(λy:σ[ϕ]. M [y/x][ϕ])N −→β M [y/x][ϕ][N/y] = M [ϕ[x: = N ]].

Regarding the definition of tabst, letting Φ be the function from T to T induced by σ, such
that Φ(τ) = σ[τ/X] for every τ ∈ T , it is clear that (ϕ[Γ, X: ? . M :σ]∆′)∆⊆∆′ is in

∏
Φ(As∆)s∈T .

Let us now verify that

tfun∆(tabst∆((ϕ[Γ, X: ? . M :σ]∆′)∆⊆∆′)) � (ϕ[Γ, X: ? . M :σ]∆′)∆⊆∆′ .

Since

tfun∆(tabst∆((ϕ[Γ, X: ? . M :σ]∆′)∆⊆∆′)) = tfun∆(∆ . (λX. M)[ϕ]:∀X. σ[ϕ]),

tfun∆(∆ . (λX. M)[ϕ]:∀X. σ[ϕ]) = ([∆ . (λX. M)[ϕ]:∀X. σ[ϕ]]∆′)∆⊆∆′ ,

[∆ . (λX. M)[ϕ]:∀X. σ[ϕ]]∆′(τ) = ∆′ . ((λX. M)[ϕ])τ :σ[ϕ][τ/X],

ϕ[Γ, X: ? . M :σ]∆′(τ) = ∆′ . M [ϕ[X: = τ ]]:σ[ϕ[X: = τ ]],

σ[ϕ][τ/X] = σ[ϕ[X: = τ ]],

(by a suitable α-renaming on X), and

((λX. M)[ϕ])τ −→β M [ϕ[X: = τ ]],

the inequality holds (the details of the verification using α-renaming are similar to the previous
case).

The other conditions of definition 4.1 are easily verified.

We now define extensional Kripke pre-applicative β-structures and Kripke pre-applicative βη-
structures.

23



Definition 4.5 A Kripke pre-applicative β-structure 〈W, T,A〉 is extensional iff funw, tfunw, Πw,
and 〈cinlw, cinrw〉, are isotone, and the following conditions hold for every w ∈ W:

(1) ran(funw) ⊆ dom(abstw);

(2) ran(tfunw) ⊆ dom(tabstw);

(3) ran(Πw) ⊆ dom(〈−, −〉w);

(4) ran(〈cinls,t,dw , cinrs,t,dw 〉) ⊆ dom([−, −]w ◦ (absts,dw × abstt,dw )).

When A is an applicative Kripke β-structure, conditions (1)-(4) hold, and the functions funw,
tfunw, Πw, and 〈cinlw, cinrw〉, are injective, we say that we have an extensional Kripke applicative
β-structure.

When A is a Kripke extensional pre-applicative β-structure, by condition (1), abstw(funw(f))
is defined for any f ∈ As→tw . Observe that by condition (1) of definition 4.1, we have funw(f) �
funw(abstw(funw(f))), and since funw is isotone, this implies that

(1) abstw(funw(f)) �w f , for all f ∈ As→tw .

Similarly, we can prove that

(2) tabstw(tfunw(f)) �w f , for all f ∈ A∀(Φ)
w ;

(3) 〈π1(a), π2(a)〉w �w a, for all a ∈ As×tw ; and

(4) [abstw(cinlw(h)), abstw(cinrw(h))]w �w h, for all h ∈ A(s+t)→d
w .

We will call the above inequalities the η-like rules.

In many cases, a Kripke pre-applicative β-structure that satisfies the η-like rules is not exten-
sional. This motivates the next definition.

Definition 4.6 A Kripke pre-applicative β-structure 〈W, T,A〉 is a βη-structure if the following
conditions hold for every w ∈ W:

(1) ran(funw) ⊆ dom(abstw), and abstw(funw(f)) �w f , for all f ∈ As→tw ;

(2) ran(tfunw) ⊆ dom(tabstw), and tabstw(tfunw(f)) �w f , for all f ∈ A∀(Φ)
w ;

(3) ran(Πw) ⊆ dom(〈−, −〉w), and 〈π1(a), π2(a)〉w �w a, for all a ∈ As×tw ; and

(4) ran(〈cinls,t,dw , cinrs,t,dw 〉) ⊆ dom([−, −]w ◦ (absts,dw × abstt,dw )), and

[abstw(cinlw(h)), abstw(cinrw(h))]w �w h, for all h ∈ A(s+t)→d
w .

When A is an applicative Kripke β-structure and in conditions (1)-(4), �w is replaced by =w,
we say that we have a Kripke applicative βη-structure.

From the remark before definition 4.6, an extensional Kripke pre-applicative β-structure is a
βη-structure. When A is a Kripke applicative βη-structure, conditions (1)-(4) of definition 4.6
amount to:

(1) absts,tw ◦ funs,tw = idw;

24



(2) tabstΦ
w ◦ tfunΦ

w = idw;

(3) 〈−, −〉s,tw ◦Πs,t
w = idw; and

(4) ([−, −]w ◦ (absts,dw × abstt,dw )) ◦ 〈cinls,t,dw , cinrs,t,dw 〉 = idw.

This implies that funw, tfunw, Πw, and 〈cinlw, cinrw〉, are injective. Thus, a Kripke ap-
plicative βη-structure is extensional. In this case, (together with conditions (1)-(4) of definition
4.1 in the case of a Kripke applicative β-structure), we have dom(abstw) = funw(As→tw ), funw
is a bijection between As→tw and a subset of [As ⇒ At]w (with inverse abstw), dom(tabstw) =

tfunw(A
∀(Φ)
w ), tfunw is a bijection between A

∀(Φ)
w and a subset of

∏
Φ(Asw)s∈T (with inverse

tabstw), Πw is a bijection between As×tw and a subset of Asw × Atw (with inverse 〈−, −〉w), and

〈cinls,t,dw , cinrs,t,dw 〉 is a bijection between A
(s+t)→d
w and a subset of [As ⇒ Ad]w × [At ⇒ Ad]w

(with inverse [−, −]w ◦ (absts,dw × abstt,dw )).

We now show how the structure LT β of definition 4.4 can be made into a pre-applicative
βη-structure. First, we recall the η-like rules.

Definition 4.7 The set of η-like reduction rules is defined as follows.

λx:σ. (Mx) −→M, if x /∈ FV (M),

λX. (MX) −→M, if X /∈ FTV (M),

〈π1(M), π2(M)〉 −→M,

[λx:σ. (Minl(x)), λy: τ. (Minr(y))] −→M.

We will denote the reduction relation defined by the union of the rules of definition 2.3 and of
definition 4.7 as −→βη (even though there are reductions other than β-reduction and η-reduction).

Definition 4.8 We define a Kripke pre-applicative structure as in definition 4.4, except that Γ .
M :σ � Γ.N :σ iff N

∗−→βη M , and that abst and tabst have a larger domain of definition. First,
recall the definition of families of functions used in defining fun and tfun.

funΓ(Γ . M :σ → τ) is defined as the family of functions ([Γ . M :σ → τ ]∆)Γ⊆∆, where the
function [Γ . M :σ → τ ]∆ is from Aσ∆ to Aτ∆, such that

[Γ . M :σ → τ ]∆(∆ . N :σ) = ∆ . MN : τ,

for every ∆ . N :σ ∈ Aσ∆.

tfunΓ(Γ . M : ∀X. σ) is defined as the family of functions ([Γ . M :∀X. σ]∆)Γ⊆∆, where the
function [Γ . M : ∀X. σ]∆ is from T to

∐
(Aσ∆)σ∈T , such that

[Γ . M : ∀X. σ]∆(τ) = ∆ . Mτ :σ[τ/X],

for every τ ∈ T . In this case, the Φ in tfunΦ
Γ is the function from T to T induced by σ, such that

Φ(τ) = σ[τ/X] for every τ ∈ T .

Then, we define

abstΓ(([Γ . M :σ → τ ]∆)Γ⊆∆) = Γ . λx:σ. (Mx):σ → τ,

25



where x /∈ FV (M), and

tabstΓ(([Γ . M : ∀X. σ]∆)Γ⊆∆) = Γ . λX. (MX):∀X. σ,

where X /∈ FTV (M). The structure just defined is denoted as LT βη.

We need to check that LT βη is a Kripke pre-applicative βη-structure. Let us first verify that

funΓ(abstΓ(([Γ . M :σ → τ ]∆)Γ⊆∆)) � ([Γ . M :σ → τ ]∆)Γ⊆∆.

Since
funΓ(abstΓ(([Γ . M :σ → τ ]∆)Γ⊆∆)) = funΓ(Γ . λx:σ. (Mx):σ → τ),

funΓ(Γ . λx:σ. (Mx):σ → τ) = ([Γ . λx:σ. (Mx):σ → τ ]∆)Γ⊆∆,

[Γ . λx:σ. (Mx):σ → τ ]∆(∆ . N :σ) = ∆ . (λx:σ. (Mx))N : τ,

[Γ . M :σ → τ ]∆(∆ . N :σ) = ∆ . MN : τ,

and
(λx:σ. (Mx))N −→β MN,

since x /∈ FV (M), the inequality holds.

Let us now verify that

tfunΓ(tabstΓ(([Γ . M :∀X. σ]∆)Γ⊆∆)) � ([Γ . M : ∀X. σ]∆)Γ⊆∆.

Since
tfunΓ(tabstΓ(([Γ . M :∀X. σ]∆)Γ⊆∆)) = tfunΓ(Γ . λX. (MX):∀X. σ),

tfunΓ(Γ . λX. (MX):∀X. σ) = ([Γ . λX. (MX):∀X. σ]∆)Γ⊆∆,

[Γ . λX. (MX):∀X. σ]∆(τ) = ∆ . (λX. (MX))τ :σ[τ/X],

[Γ . M : ∀X. σ]∆(τ) = ∆ . Mτ :σ[τ/X],

and
(λX. (MX))τ −→β Mτ,

since X /∈ FTV (M), the inequality holds.

We also need to verify the conditions of definition 4.6.

We have abstΓ(funΓ(Γ . M :σ → τ)) = abstΓ(([Γ . M :σ → τ ]∆)Γ⊆∆), and since

abstΓ(([Γ . M :σ → τ ]∆)Γ⊆∆) = Γ . λx:σ. (Mx):σ → τ,

where x /∈ FV (M), and by the η-like rule, λx:σ. (Mx) −→βη M , we have

abstΓ(funΓ(Γ . M :σ → τ)) � Γ . M :σ → τ.

Similarly, we have tabstΓ(tfunΓ(Γ . M :∀X. σ)) = tabstΓ(([Γ . M : ∀X. σ]∆)Γ⊆∆), and since

tabstΓ(([Γ . M :∀X. σ]∆)Γ⊆∆) = Γ . λX. (MX):∀X. σ,

26



where X /∈ FTV (M), and by the η-like rule, λX. (MX) −→βη M , we have

tabstΓ(tfunΓ(Γ . M :∀X. σ)) � Γ . M : ∀X. σ.

The other conditions of definition 4.6, are immediately verified. We now give a convenient
characterization of the isotonicity of funu and tfunu. This lemma shows the equivalence between
our definition of extensionality and Mitchell and Moggi’s definition [12], in the case of first-order
applicative structures.

Lemma 4.9 Given a Kripke pre-applicative β-structure A, then the following properties hold for
every u ∈ W: (1) funu is isotone iff for every f, g ∈ As→tu , if appv(i

s→t
u,v (f), b) � appv(i

s→t
u,v (g), b)

for all b ∈ Asv and all v w u, then f � g.

(2) tfunu is isotone iff for every f, g ∈ A∀(Φ)
u , if tappv(i

∀(Φ)
u,v (f), t) � tappv(i

∀(Φ)
u,v (g), t) for all

t ∈ T and all v w u, then f � g.

Proof . (1) First, assume that funu is isotone. Recall that the naturality condition for fun is

funw2(is→tw1,w2
(g)) = (ϕw)www2 ,

for any g ∈ As→tw1
, if funw1(g) = (ϕw)www1 . Let funu(f) = (ϕw)wwu and funu(g) = (ψw)wwu. If

appv(i
s→t
u,v (f), b) � appv(i

s→t
u,v (g), b) for all b ∈ Asv and all v w u, since app is defined from fun as

app = evalA
s,At ◦ (fun× idAs), and evalA

s,At

u ((ϕw)wwu, a) = ϕu(a), we have

appv(i
s→t
u,v (f), b) = evalA

s,At

v (funv(i
s→t
u,v (f)), b)

= evalA
s,At

v ((ϕw)wwv, b)

= ϕv(b).

Similarly, we get
appv(i

s→t
u,v (g), b) = ψv(b).

Thus, the hypothesis implies that ϕv(b) � ψv(b) for all b ∈ Asv, and thus ϕv � ψv. Since this holds
for all v w u, we have (ϕv)vwu � (ψv)vwu, that is, funu(f) � funv(f), and since funu is isotone, we
have f � g.

Now, assume that f � g whenever appv(i
s→t
u,v (f), b) � appv(i

s→t
u,v (g), b) for all b ∈ Asv and all

v w u. Again, let funu(f) = (ϕw)wwu and funu(g) = (ψw)wwu, and assume that funu(f) � funu(g).
Then, we have (ϕv)vwu � (ψv)vwu, that is, ϕv � ψv for every v w u. By the calculations above, we
have

appv(i
s→t
u,v (f), b) = ϕv(b) and appv(i

s→t
u,v (g), b) = ψv(b),

and so, we have appv(i
s→t
u,v (f), b) � appv(i

s→t
u,v (g), b) for all b ∈ Asv and all v w u. Then, f � g.

(2) First, assume that tfunu is isotone. Recall that the naturality condition for tfun is

tfunw2(i∀(Φ)
w1,w2

(g)) = (ϕw)www2 ,

27



for any g ∈ A∀(Φ)
w1 , if tfunw1(g) = (ϕw)www1 . Let tfunu(f) = (ϕw)wwu and tfunu(g) = (ψw)wwu.

If tappv(i
∀(Φ)
u,v (f), t) � tappv(i

∀(Φ)
u,v (g), t) for all t ∈ T and all v w u, since tapp is defined from tfun

as tapp = evalAΦ ◦ (tfun× idT ), and evalAΦ,u((ϕw)wwu, t) = ϕu(t), we have

tappv(i
∀(Φ)
u,v (f), t) = evalΦ,v(tfunv(i

∀(Φ)
u,v (f)), t)

= evalΦ,v((ϕw)wwv, t)

= ϕv(t).

Similarly, we get
tappv(i

∀(Φ)
u,v (g), t) = ψv(t).

Thus, the hypothesis implies that ϕv(t) � ψv(t) for all t ∈ T , and thus ϕv � ψv. Since this holds
for all v w u, we have (ϕv)vwu � (ψv)vwu, that is, tfunu(f) � tfunv(f), and since tfunu is isotone,
we have f � g.

Now, assume that f � g whenever tappv(i
∀(Φ)
u,v (f), t) � tappv(i

∀(Φ)
u,v (g), t) for all t ∈ T and all

v w u. Again, let tfunu(f) = (ϕw)wwu and tfunu(g) = (ψw)wwu, and assume that tfunu(f) �
tfunu(g). Then, we have (ϕv)vwu � (ψv)vwu, that is, ϕv � ψv for every v w u. By the calculations
above, we have

tappv(i
∀(Φ)
u,v (f), t) = ϕv(t) and tappv(i

∀(Φ)
u,v (g), t) = ψv(t),

and so, we have tappv(i
∀(Φ)
u,v (f), t) � tappv(i

∀(Φ)
u,v (g), t) for all t ∈ T and all v w u. Then, f � g.

For the sake of brevity, we will abbreviate Kripke pre-applicative (β or βη)-structures as Kripke
pre-applicative structures. We now show how to interpret λ-terms in a Kripke pre-applicative
structure. For this, we will use valuations.

5 Interpreting λ-Terms in Kripke Pre-Applicative Structures

In this section, we show how to interpet second-order λ-terms using Kripke applicative structures.
Then, we prove several basic lemmas that will be needed in section 7, in particular, lemma 5.10 (and
lemma 5.11), the “substitution lemma”, which is crucial in proving the soundness of β-reduction
and typed β-reduction.

Definition 5.1 Given an algebra of polymorphic types T , it is assumed that we have a function
TI: TC → T assigning an element TI(k) ∈ T to every type constant k ∈ TC . A type valuation is
a function θ:V → T . Given a type valuation θ, every type σ ∈ T is interpreted as an element [[σ]]θ
of T as follows:

[[X]]θ = θ(X), where X is a type variable,

[[k]]θ = TI(k), where k is a type constant,

[[σ → τ ]]θ = [[σ]]θ → [[τ ]]θ,

[[σ × τ ]]θ = [[σ]]θ × [[τ ]]θ,

[[σ + τ ]]θ = [[σ]]θ + [[τ ]]θ,

[[∀X. σ]]θ = ∀(Λt ∈ T. [[σ]]θ[X: = t]).

28



In the above definition, Λt ∈ T. [[σ]]θ[X: = t] denotes the function Φ from T to T such that
Φ(t) = [[σ]]θ[X: = t] for every t ∈ T . We say that T is a type interpretation iff Φ ∈ [T → T ] for
every type σ and every valuation θ.

In other words, T is a type interpretation iff [[σ]]θ is well-defined for every valuation θ. The
following lemmas will be needed later.

Lemma 5.2 For every type σ ∈ T , and every pair of type valuations θ1 and θ2, if θ1(X) = θ2(X),
for all X ∈ FTV (σ), then [[σ]]θ1 = [[σ]]θ2.

Proof . A straightforward induction on σ.

Lemma 5.3 Given a type interpretation T , for all σ, τ ∈ T , for every type valuation θ, we have

[[σ[τ/X]]]θ = [[σ]]θ[X: = [[τ ]]θ].

Proof . The proof is by induction on σ. The case where σ = X is trivial, since then X[τ/X] = τ ,
and

[[X]]θ[X: = [[τ ]]θ] = θ[X: = [[τ ]]θ](X) = [[τ ]]θ.

The induction steps are straightforward, and we only treat the case where σ = ∀Y. σ1. In this case,

[[(∀Y. σ1)[τ/X]]]θ = ∀(Λt ∈ T. [[σ1[τ/X]]]θ[Y : = t]),

(where the bound variable Y is renamed in a suitable fashion if necessary), and where Λt ∈
T. [[σ1[τ/X]]]θ[Y : = t] denotes the function Φ from T to T such that Φ(t) = [[σ1[τ/X]]]θ[Y : = t]
for every t ∈ T . By the induction hypothesis, we have

Φ(t) = [[σ1[τ/X]]]θ[Y : = t] = [[σ1]]θ[X: = [[τ ]]θ, Y : = t].

Then, since
[[∀Y. σ1]]θ[X: = [[τ ]]θ] = ∀(Λt ∈ T. [[σ1]]θ[X: = [[τ ]]θ, Y : = t]),

we have
[[(∀Y. σ1)[τ/X]]]θ = [[∀Y. σ1]]θ[X: = [[τ ]]θ].

Definition 5.4 Given a type interpretation T , given a Kripke pre-applicative structure A, a val-
uation is a pair ρ = 〈θ, η〉, where θ:V → T is a type valuation, and η:X ×W →

⋃
(Atw)t∈T, w∈W

is a partial function called an environment satisfying the following condition:

For every x ∈ X , whenever w1 v w2, if η(x,w1) is defined and η(x,w1) ∈ Atw1
(where t ∈ T )

then η(x,w2) is defined and
η(x,w2) = itw1,w2

(η(x,w1)).

We denote η(x, u) as ηu(x). Given a valuation ρ = 〈θ, η〉, for any s ∈ T and a ∈ Asu we let
ρ[X: = s, x: = a] = 〈θ[X: = s], η[x: = a]〉 be the valuation, such that, θ[X: = s](Y ) = θ(Y ) for
every Y 6= X and θ[X: = s](X) = s, and ηw[x: = a](y) = ηw(y) for all w ∈ W and all y 6= x, and

ηw[x: = a](x) = isu,w(a), for all w w u,

29



and undefined otherwise.

A global element of As is a function a:W →
⋃

(Asw)w∈W , such that, au ∈ Asu and av = isu,v(au)
whenever v w u.

Given a context Γ, we say that w ∈ W satisfies Γ at ρ, written as w `̀ Γ[ρ] (where ρ = 〈θ, η〉)
iff

ηw(x) ∈ A[[σ]]θ
w for every x:σ ∈ Γ.

Given a valuation ρ = 〈θ, η〉, we often denote θ as [ρ] (or ρt), and η as ρ or (ρx).

Note that if w1 v w2, by the definition of a valuation ρ = 〈θ, η〉 (the condition η(x,w2) =
itw1,w2

(η(x,w1))), if w1 `̀ Γ[ρ], then w2 `̀ Γ[ρ]. Also, conditions (1)-(4) of definition 4.1 imply that
the following conditions hold:

For all w ∈ W, for all types σ, τ ∈ T , if A
[[σ]]θ
w 6= ∅ and A

[[τ ]]θ
w 6= ∅, then A

[[σ→τ ]]θ
w 6= ∅, A[[σ×τ ]]θ

w 6= ∅,
A

[[σ+τ ]]θ
w 6= ∅, and if A

[[σ[τ/X]]]θ
w 6= ∅ for every τ ∈ T , then A

[[∀X. σ]]θ
w 6= ∅.

We are now ready to interpret λ-terms.

Definition 5.5 Given a type interpretation T and a Kripke pre-applicative structure A, let
AI: Const → A be a function assigning a global element AI(c) of ATI(Type(c)) to every constant
c ∈ Const . For every valuation ρ = 〈θ, η〉, every context Γ, and every world u ∈ W, if u `̀ Γ[ρ],
we define the interpretation (or meaning) A[[Γ . M :σ]]ρu of a judgement Γ . M :σ, inductively as
follows:

A[[Γ . x:σ]]ρu = ηu(x)

A[[Γ . c: Type(c)]]ρu = AI(c)u

A[[Γ . MN : τ ]]ρu = app
[[σ]]θ, [[τ ]]θ
u (A[[Γ . M :σ → τ ]]ρu, A[[Γ . N :σ]]ρu)

A[[Γ . λx:σ. M :σ → τ ]]ρu = abst
[[σ]]θ, [[τ ]]θ
u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,

ϕw(a) = A[[Γ, x:σ .M : τ ]]ρ[x: = a]w, for every a ∈ A[[σ]]θ
w

A[[Γ . Mτ :σ[τ/X]]]ρu = tappΦ
u (A[[Γ . M :∀X. σ]]ρu, [[τ ]]θ),

where Φ is the function such that Φ(s) = [[σ]]θ[X: = s] for every s ∈ T

A[[Γ . λX. M : ∀X. σ]]ρu = tabstΦ
u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,
ϕw(s) = A[[Γ, X: ? . M :σ]]ρ[X: = s]w, for every s ∈ T , and where Φ is the function such that
Φ(s) = [[σ]]θ[X: = s] for every s ∈ T

A[[Γ . π1(M):σ]]ρu = π1(A[[Γ . M :σ × τ ]]ρu)

A[[Γ . π2(M): τ ]]ρu = π2(A[[Γ . M :σ × τ ]]ρu)

A[[Γ . 〈M1, M2〉:σ × τ ]]ρu = 〈A[[Γ . M1:σ]]ρu, A[[Γ . M2: τ ]]ρu〉

A[[Γ . inl(M):σ + τ ]]ρu = inl(A[[Γ . M :σ]]ρu)

30



A[[Γ . inr(M):σ + τ ]]ρu = inr(A[[Γ . M : τ ]]ρu)

A[[Γ . [M, N ]: (σ + τ)→ δ]]ρu = [A[[Γ . M : (σ → δ)]]ρu, A[[Γ . N : (τ → δ)]]ρu].

We are assuming that 〈−,−〉 and [−, −] are total, and that the domains of abst and tabst

are sufficiently large for the above definitions to be well-defined for all ρ, Γ . M :σ, and u ∈ W. In
this case, we say that A is a Kripke pre-interpretation.

In the special case whereW = {0} consists of a single world, and A is an extentional applicative
structure, it is not difficult to show that definition 5.5 is equivalent to Breazu-Tannen and Coquand’s
definition of a polymorphic λ-interpretation, or pli (see [1]).

In order to be sure that in definition 5.5, A[[Γ . M :σ]]ρu is a well defined element of A
[[σ]]θ
u , we

need to verify that (ϕw)wwu ∈ [A[[σ]]θ ⇒ A[[τ ]]θ]u in the case of λ-abstraction, and that (ϕw)wwu ∈∏
Φ(Asu)s∈T , in the case of typed λ-abstraction. For this, we show the following lemma.

Lemma 5.6 Given a type interpretation T and a Kripke pre-applicative (β or βη)-structure A,
for every valuation ρ = 〈θ, η〉, every context Γ, and every world u ∈ W, if u `̀ Γ[ρ], then for every
judgement Γ . M :σ, whenever v w u,

A[[Γ . M :σ]]ρv = i[[σ]]θ
u,v (A[[Γ . M :σ]]ρu).

Proof . We proceed by induction on typing derivations. Except for the cases of λ-abstraction
and typed λ-abstraction, the induction is straightforward and uses the naturality conditions of
definition 4.2. Let us consider the case of λ-abstraction. We need to show that the family of
functions ϕ = (ϕw)wwu defined such that,

ϕw(a) = A[[Γ, x:σ .M : τ ]]ρ[x: = a]w,

for every a ∈ A[[σ]]θ
w , satisfies the naturality condition

ϕv(i
[[σ]]θ
u,v (a)) = i[[τ ]]θ

u,v (ϕu(a)),

for every a ∈ A[[σ]]θ
u , whenever v w u. Thus, we need to show that

A[[Γ, x:σ .M : τ ]]ρ[x: = i[[σ]]θ
u,v (a)]v = i[[τ ]]θ

u,v (A[[Γ, x:σ .M : τ ]]ρ[x: = a]u).

By the induction hypothesis applied to ρ[X: = a] and Γ, x:σ . M : τ , which is legitimate, since

u `̀ Γ[ρ] implies that u `̀ (Γ, x:σ)[ρ[X: = a]], since a ∈ A[[σ]]θ
u , we have

A[[Γ, x:σ .M : τ ]]ρ[x: = a]v = i[[τ ]]θ
u,v (A[[Γ, x:σ .M : τ ]]ρ[x: = a]u).

However, by definition 5.4, ηv[x: = a](x) = i
[[σ]]θ
u,v (a) and thus,

A[[Γ, x:σ .M : τ ]]ρ[x: = i[[σ]]θ
u,v (a)]v = A[[Γ, x:σ .M : τ ]]ρ[x: = a]v,

and thus, we have

A[[Γ, x:σ .M : τ ]]ρ[x: = i[[σ]]θ
u,v (a)]v = i[[τ ]]θ

u,v (A[[Γ, x:σ .M : τ ]]ρ[x: = a]u).

31



Thus, we know that A[[Γ . λx:σ. M :σ → τ ]]ρu is well defined, and we have

A[[Γ . λx:σ. M :σ → τ ]]ρu = abst[[σ]]θ, [[τ ]]θ
u ((ϕw)wwu),

and
A[[Γ . λx:σ. M :σ → τ ]]ρv = abst[[σ]]θ, [[τ ]]θ

v ((ϕw)wwv).

Recalling that the naturality condition (2) of definition 4.2 is

abstw2((ϕw)www2) = is→tw1,w2
(abstw1((ϕw)www1)),

we have
A[[Γ . λx:σ. M :σ → τ ]]ρv = i[[σ→τ ]]θ

u,v (A[[Γ . λx:σ. M :σ → τ ]]ρu).

Let us now consider the case of typed λ-abstraction. We need to show that the family of
functions ϕ = (ϕw)wwu defined such that,

ϕw(s) = A[[Γ, X: ? . M :σ]]ρ[X: = s]w,

for every s ∈ T , satisfies the naturality condition

ϕv(s) = iΦ(s)
u,v (ϕu(s)),

for every s ∈ T , whenever v w u, where Φ is the function such that Φ(s) = [[σ]]θ[X: = s] for every
s ∈ T . Thus, we need to show that

A[[Γ, X: ? . M :σ]]ρ[X: = s]v = i[[σ]]θ[X:=s]
u,v (A[[Γ, X: ? . M :σ]]ρ[X: = s]u).

However, this follows directly from the induction hypothesis applied to ρ[X: = s] and Γ, X: ?.M :σ,
which is legitimate, since u `̀ Γ[ρ] obviously implies that u `̀ (Γ, X: ?)[ρ[X: = s]].

Thus, we know that A[[Γ . λX. M :∀X. σ]]ρu is well defined, and we have

A[[Γ . λX. M : ∀X. σ]]ρu = tabstΦ
u ((ϕw)wwu),

and
A[[Γ . λX. M :∀X. σ]]ρv = tabstΦ

v ((ϕw)wwv),

where Φ is the function defined above. Recalling that the naturality condition (4) of definition 4.2
is

tabstw2((ϕw)www2) = i∀(Φ)
w1,w2

(tabstw1((ϕw)www1)),

since by definition 5.1, ∀(Φ) = [[∀X. σ]]θ, we have

A[[Γ . λX. M :∀X. σ]]ρv = i[[∀X. σ]]θ
u,v (A[[Γ . λX. M : ∀X. σ]]ρu).

Consider the pre-applicative structure LT β of definition 4.4. Note that, according to definition
5.4, a valuation is a pair ρ = 〈θ, η〉, where θ is an infinite type substitution, and η is a partial
function η:X ×W →

⋃
(Atw)t∈T, w∈W . Thus, recalling that worlds are contexts, η∆(x) = Γ . M :σ

for some judgement Γ . M :σ, when defined. Furthermore, the condition for ρ to satisfy a context

32



Γ at a world ∆, is η∆(x) ∈ Aθ(σ)
∆ , that is, η∆(x) = ∆ . Mx: θ(σ), for some Mx, for every x:σ ∈ Γ.

Thus, if ρ = 〈θ, η〉 satisfies a context Γ at ∆, the valuation ρ defines a substitution ϕ such that
ϕ(X) = θ(X) for every X ∈

⋃
(FTV (σ))x:σ∈Γ, and ϕ(x) = Mx for every x ∈ dom(Γ) (where

η∆(x) = ∆ . Mx: θ(σ)), and we have ∆ `̀ Γ[ϕ], as in definition 4.3. Then, we have the following
useful property.

Lemma 5.7 For the pre-applicative structure LT β of definition 4.4, for every pair of contexts Γ
and ∆, for every valuation ρ = 〈θ, η〉, if ∆ `̀ Γ[ρ], then for every judgement Γ . M :σ, we have

LT β[[Γ . M :σ]]ρ∆ = ∆ . M [ϕ]:σ[ϕ],

and ∆ `̀ Γ[ϕ], where ϕ is the substitution defined by the restriction of ρ∆ to Γ, as explained just
before stating this lemma. The same result holds for the βη-structure LT βη of definition 4.8.

Proof . A straighforward induction on the derivation of Γ . M :σ.

The following lemmas will be needed later.

Lemma 5.8 Given a type interpretation T and a Kripke pre-applicative (β or βη)-structure A, for
every pair of contexts Γ1 and Γ2, for every world u ∈ W, for every pair of valuations ρ1 = 〈θ1, η1〉
and ρ2 = 〈θ2, η2〉, for every pair of judgements Γ1.M :σ and Γ2.M :σ, if u `̀ Γ1[ρ1] and u `̀ Γ2[ρ2],
Γ1(x) = Γ2(x), for all x ∈ FV (M), θ1(X) = θ2(X), for all X ∈

⋃
(FTV (τ))x:τ∈Γ ∪ FTV (M), and

η1(x) = η2(x), for all x ∈ FV (M), then

A[[Γ1 . M :σ]]ρ1u = A[[Γ2 . M :σ]]ρ2u.

Proof . A straightforward induction on typing derivations (and using lemma 5.2).

Lemma 5.9 Given a type interpretation T and a Kripke pre-applicative (β or βη)-structure A,
for every context Γ, for every world u ∈ W, for every pair of valuations ρ1 = 〈θ1, η1〉 and ρ2 =
〈θ2, η2〉, for every judgement Γ . M :σ, if u `̀ Γ[ρ1] and u `̀ Γ[ρ2], θ1(X) = θ2(X), for all
X ∈

⋃
(FTV (τ))x:τ∈Γ ∪ FTV (M), and η1(x) � η2(x), for all x ∈ FV (M), then

A[[Γ . M :σ]]ρ1u � A[[Γ . M :σ]]ρ2u.

Proof . A straightforward induction on typing derivations.

The following “substitution lemma” is needed to establish the soundness of Kripke interpreta-
tions with respect to β-reduction and typed β-reduction.

Lemma 5.10 Given a type interpretation T and a Kripke pre-applicative (β or βη)-structure A,
for every context Γ, for every world u ∈ W, for every valuation ρ = 〈θ, η〉, the following properties
hold: (1) for every judgements Γ, x:σ .M : τ and Γ . N :σ, if u `̀ Γ[ρ], then

A[[Γ . M [N/x]: τ ]]ρu = A[[Γ, x:σ .M : τ ]]ρ[x: = A[[Γ . N :σ]]ρu]u.

(2) for every judgement Γ, X: ? . M :σ and every τ ∈ T , if u `̀ Γ[ρ], then

A[[Γ . M [τ/X]:σ[τ/X]]]ρu = A[[Γ, X: ? . M :σ]]ρ[X: = [[τ ]]θ]u.

33



Proof . We proceed by induction on typing derivations.

(1) When M = x, we have x[N/x] = N , and by definition 5.5,

A[[Γ, x:σ .M : τ ]]ρ[x: = A[[Γ . N :σ]]ρu]u = ηu[x: = A[[Γ . N :σ]]ρu](x) = A[[Γ . N :σ]]ρu.

The induction steps are straightforward, except for λ-abstraction and typed λ-abstraction.

(1a) Consider the judgements Γ, x:σ.λy: δ.M1: (δ → τ) and Γ.N :σ, and assume that u `̀ Γ[ρ].
Recall that

A[[Γ . λy: δ. (M1[N/x]): (δ → τ)]]ρu = abst[[δ]]θ, [[τ ]]θ
u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,

ϕw(a) = A[[Γ, y: δ . M1[N/x]: τ ]]ρ[y: = a]w,

for every a ∈ A
[[δ]]θ
w . Since u `̀ Γ[ρ] implies w `̀ Γ[ρ] when u v w, and a ∈ A

[[δ]]θ
w , we have

w `̀ (Γ, y: δ)[ρ] for every w w u. Thus, we can apply the induction hypothesis to (Γ, y: δ), w ∈ W,
ρ = 〈θ, η[y: = a]〉, and the judgements Γ, x:σ, y: δ . M1: τ , and Γ, y: δ . N :σ, and we have

A[[Γ, y: δ.M1[N/x]: τ ]]ρ[y: = a]w = A[[Γ, x:σ, y: δ.M1: τ ]]ρ[x: = A[[Γ, y: δ.N :σ]]ρ[y: = a]w, y: = a]w.

By lemma 5.8, since y /∈ dom(Γ), we have

A[[Γ, y: δ . N :σ]]ρ[y: = a]w = A[[Γ . N :σ]]ρw,

and so, we have

A[[Γ, y: δ . M1[N/x]: τ ]]ρ[y: = a]w = A[[Γ, x:σ, y: δ . M1: τ ]]ρ[x: = A[[Γ . N :σ]]ρw, y: = a]w,

that is,
ϕw(a) = A[[Γ, x:σ, y: δ . M1: τ ]]ρ[x: = A[[Γ . N :σ]]ρw, y: = a]w.

However, we also have

A[[Γ, x:σ . λy: δ. M1: (δ → τ)]]ρ[x: = A[[Γ . N :σ]]ρu]u = abst[[δ]]θ, [[τ ]]θ
u (ψ),

where ψ = (ψw)wwu is the family of functions defined such that,

ψw(a) = A[[Γ, x:σ, y: δ . M1: τ ]]ρ[x: = A[[Γ . N :σ]]ρu, y: = a]w,

for every a ∈ A[[δ]]θ
w . However, letting b = A[[Γ . N :σ]]ρu, by definition 5.4, for any valuation ρ, we

have ρw[x: = b](x) = isu,w(b) for all w w u, and since by lemma 5.6,

A[[Γ . N :σ]]ρw = i[[σ]]θ
u,w (A[[Γ . N :σ]]ρu),

we have
ψw(a) = A[[Γ, x:σ, y: δ . M1: τ ]]ρ[x: = A[[Γ . N :σ]]ρw, y: = a]w,

for every a ∈ A[[δ]]θ
w . Thus, ϕw(a) = ψw(a), for every a ∈ A[[δ]]θ

w and all w w u, that is, ϕ = ψ, and
thus

A[[Γ . λy: δ. (M1[N/x]): (δ → τ)]]ρu = A[[Γ, x:σ . λy: δ. M1: (δ → τ)]]ρ[x: = A[[Γ . N :σ]]ρu]u.

34



(1b) Consider the judgements Γ, x:σ . λY. M1:∀Y. σ1 and Γ . N :σ, and assume that u `̀ Γ[ρ].
Recall that

A[[Γ . λY. (M1[N/x]):∀Y. σ1]]ρu = tabstΦ
u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,

ϕw(s) = A[[Γ, Y : ? . M1[N/x]:σ1]]ρ[Y : = s]w,

for every s ∈ T , and where Φ is the function such that Φ(s) = [[σ1]]θ[Y : = s] for every s ∈ T . Since
u `̀ Γ[ρ] implies w `̀ Γ[ρ] when u v w, and s ∈ T , we have w `̀ (Γ, Y : ?)[ρ] for every w w u. Thus,
we can apply the induction hypothesis to (Γ, Y : ?), w ∈ W, ρ = 〈θ[Y : = s], η〉, the judgements
Γ, x:σ, Y : ? . M1:σ1, and Γ . N :σ, and we have

A[[Γ, Y : ? . M1[N/x]:σ1]]ρ[Y : = s]w =

A[[Γ, x:σ, Y : ? . M1:σ1]]ρ[x: = A[[Γ, Y : ? . N :σ]]ρ[Y : = s]w, Y : = s]w.

By lemma 5.8, since Y /∈ dom(Γ), we have

A[[Γ, Y : ? . N :σ]]ρ[Y : = s]w = A[[Γ . N :σ]]ρw,

and we get
ϕw(s) = A[[Γ, x:σ, Y : ? . M1:σ1]]ρ[x: = A[[Γ . N :σ]]ρw, Y : = s]w.

However, we also have

A[[Γ, x:σ . λY. M1:∀Y. σ1]]ρ[x: = A[[Γ . N :σ]]ρu]u = tabstΦ
u (ψ),

where ψ = (ψw)wwu is the family of functions defined such that,

ψw(s) = A[[Γ, x:σ, Y : ? . M1:σ1]]ρ[x: = A[[Γ . N :σ]]ρu, Y : = s]w,

for every s ∈ T , and where Φ is the function such that Φ(s) = [[σ1]]θ[Y : = s] for every s ∈ T . As in
case (1a), by lemma 5.6, we get

ψw(s) = A[[Γ, x:σ, Y : ? . M1:σ1]]ρ[x: = A[[Γ . N :σ]]ρw, Y : = s]w,

for every s ∈ T . Then, as in (1a), we have ϕ = ψ, and thus

A[[Γ . λY. (M1[N/x]):∀Y. σ1]]ρu = A[[Γ, x:σ . λY. M1:∀Y. σ1]]ρ[x: = A[[Γ . N :σ]]ρu]u.

(2) The only cases worth examining are λ-abstraction and typed λ-abstraction.

(2a) Consider the judgement Γ, X: ? . λY. M1: ∀Y. σ, and assume that u `̀ Γ[ρ]. Recall that

A[[Γ . λY. (M1[τ/X]):∀Y. (σ[τ/X])]]ρu = tabstΦ
u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,

ϕw(s) = A[[Γ, Y : ? . M1[τ/X]:σ[τ/X]]]ρ[Y : = s]w,

35



for every s ∈ T , and where Φ is the function such that Φ(s) = [[σ]]θ[Y : = s] for every s ∈ T . Since
u `̀ Γ[ρ] implies w `̀ Γ[ρ] when u v w, and s ∈ T , we have w `̀ (Γ, Y : ?)[ρ] for every w w u. Thus,
we can apply the induction hypothesis to (Γ, Y : ?), w ∈ W, ρ = 〈θ[Y : = s], η〉, the judgement
Γ, X: ?, Y : ? . M1:σ, and s ∈ T , and we have

A[[Γ, Y : ? . M1[τ/X]:σ[τ/X]]]ρ[Y : = s]w = A[[Γ, X: ?, Y : ? . M1:σ]]ρ[X: = [[τ ]]θ[Y : = s], Y : = s]w.

By lemma 5.2, since Y /∈ dom(Γ), we have

[[τ ]]θ[Y : = s] = [[τ ]]θ,

and so, we have

A[[Γ, Y : ? . M1[τ/X]:σ[τ/X]]]ρ[Y : = s]w = A[[Γ, X: ?, Y : ? . M1:σ]]ρ[X: = [[τ ]]θ, Y : = s]w,

that is,
ϕw(s) = A[[Γ, X: ?, Y : ? . M1:σ]]ρ[X: = [[τ ]]θ, Y : = s]w.

However, we also have

A[[Γ, X: ? . λY. M1: ∀Y. σ]]ρ[X: = [[τ ]]θ]u = tabstΦ
u (ψ),

where ψ = (ψw)wwu is the family of functions defined such that,

ψw(s) = A[[Γ, X: ?, Y : ? . M1:σ]]ρ[X: = [[τ ]]θ, Y : = s]w,

for every s ∈ T , and where Φ is the function such that Φ(s) = [[σ]]θ[Y : = s] for every s ∈ T . Thus,
ϕw(s) = ψw(s), for every s ∈ T and all w w u, that is, ϕ = ψ, and thus

A[[Γ . λY. (M1[τ/X]):∀Y. (σ[τ/X])]]ρu = A[[Γ, X: ? . λY. M1:∀Y. σ]]ρ[X: = [[τ ]]θ]u.

(2b) Consider the judgement Γ, X: ? .λy: δ.M1: (δ → γ), and assume that u `̀ Γ[ρ]. Recall that

A[[Γ . λy: δ[τ/X]. (M1[τ/X]): (δ → γ)[τ/X]]]ρu = abst[[δ[τ/X]]]θ, [[γ[τ/X]]]θ
u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,

ϕw(a) = A[[Γ, y: δ[τ/X] . M1[τ/X]: γ[τ/X]]]ρ[y: = a]w,

for every a ∈ A
[[δ[τ/X]]]θ
w . Since u `̀ Γ[ρ] implies w `̀ Γ[ρ] when u v w, and a ∈ A

[[δ[τ/X]]]θ
w , we

have w `̀ (Γ, y: δ[τ/X])[ρ] for every w w u. Thus, we can apply the induction hypothesis to
(Γ, y: δ[τ/X]), w ∈ W, ρ = 〈θ, η[y: = a]〉, the judgement Γ, X: ?, y: δ . M1: γ, and τ ∈ T , and we
have

A[[Γ, y: δ[τ/X] . M1[τ/X]: γ[τ/X]]]ρ[y: = a]w = A[[Γ, X: ?, y: δ . M1: γ]]ρ[X: = [[τ ]]θ, y: = a]w,

and so, we have
ϕw(a) = A[[Γ, X: ?, y: δ . M1: γ]]ρ[X: = [[τ ]]θ, y: = a]w.

36



However, we also have

A[[Γ, X: ? . λy: δ. M1: (δ → γ)]]ρ[X: = [[τ ]]θ]u = abst[[δ]]θ[X:=[[τ ]]θ], [[γ]]θ[X:=[[τ ]]θ]
u (ψ),

where ψ = (ψw)wwu is the family of functions defined such that,

ψw(a) = A[[Γ, X: ?, y: δ . M1: γ]]ρ[X: = [[τ ]]θ, y: = a]w,

for every a ∈ A[[δ]]θ[X:=[[τ ]]θ]
w . By lemma 5.3, we have

[[δ[τ/X]]]θ = [[δ]]θ[X: = [[τ ]]θ] and [[γ[τ/X]]]θ = [[γ]]θ[X: = [[τ ]]θ],

and so we have ϕw(a) = ψw(a), for every a ∈ A[[δ]]θ[X:=[[τ ]]θ]
w and all w w u, that is, ϕ = ψ. We also

have
abst[[δ]]θ[X:=[[τ ]]θ], [[γ]]θ[X:=[[τ ]]θ]

u (ψ) = abst[[δ[τ/X]]]θ, [[γ[τ/X]]]θ
u (ϕ),

and thus,

A[[Γ . λy: δ[τ/X]. (M1[τ/X]): (δ → γ)[τ/X]]]ρu = A[[Γ, X: ? . λy: δ. M1: (δ → γ)]]ρ[X: = [[τ ]]θ]u.

Actually, the following generalization of lemma 5.10 will also be needed.

Lemma 5.11 Given a type interpretation T and a Kripke pre-applicative (β or βη)-structure A,
for every pair of contexts Γ, ∆, for every world u ∈ W, for every valuation ρ1 = 〈θ, η〉, the
following property holds: for every judgement Γ . M :σ, for every substitution ϕ, if ∆ `̀ Γ[ϕ] and
u `̀ ∆[ρ1], then

A[[∆ . M [ϕ]:σ[ϕ]]]ρ1u = A[[Γ . M :σ]]ρ2u,

where, if Γ = {X1: ?, . . . , Xm: ?, x1:σ1, . . . , xn:σn}, for 1 ≤ i ≤ m, we let si = [[ϕ(Xi)]]θ, and for
1 ≤ j ≤ n, we let aj = A[[∆ . ϕ(xj):σj [ϕ]]]ρ1u, then

ρ2 = ρ1[X1: = s1, . . . , Xm: = sm, x1: = a1, . . . , xn: = an].

Proof . It is very similar to that of lemma 5.10, but the notation becomes quite formidable.

We will now consider inequalities on Kripke pre-applicative structures and equations on Kripke
applicative structures, and prove some soundness and completeness theorems.

6 Proving Inequalities (Rewrite rules) in λ→,×,+,∀
2

In this section, we define a number of proof systems for proving inequalities (rewrite rules) and
equations. We also define satisfaction and validity (in a Kripke structure). There are three varia-
tions of satisfaction and validity, depending whether we consider Kripke applicative β-structures,
Kripke applicative βη-structures, or extensional Kripke applicative β-structures.

Inequalities and equations are only defined between terms M and N such that Γ . M :σ and
Γ .N :σ for some common Γ and σ. An inequality is denoted as Γ .M � N :σ, and an equation as
Γ . M

.
= N :σ, and provability is defined as follows.

37



Definition 6.1 The axioms and inference rules of the inequational β-theory of λ→,×,+,∀
2

are defined
below.

Axioms:
Γ . M �M :σ (reflexivity)

Γ . M [N/x] � (λx:σ. M)N : τ (β)

Γ . M [τ/X] � (λX. M)τ :σ[τ/X] (type-β)

Γ . M � π1(〈M, N〉):σ (π1)

Γ . N � π2(〈M, N〉): τ (π2)

Γ . MP � [M, N ]inl(P ): δ (inl)

Γ . NP � [M, N ]inr(P ): δ (inr)

Inference Rules:
Γ . M1 �M2:σ

∆ . M1 �M2:σ
(addvar)

where Γ ⊆ ∆
Γ . M1 �M2:σ Γ . M2 �M3:σ

Γ . M1 �M3:σ
(transitivity)

Γ . M1 �M2: (σ → τ) Γ . N1 � N2:σ

Γ . (M1N1) � (M2N2): τ
(→-congruence)

Γ, x:σ .M1 �M2: τ

Γ . λx:σ. M1 � λx:σ. M2: (σ → τ)
(ξ)

Γ . M1 �M2:∀X. σ
Γ . (M1τ) � (M2τ):σ[τ/X]

(∀-congruence)

Γ, X: ? . M1 �M2:σ

Γ . λX. M1 � λX. M2:∀X. σ
(type-ξ)

Γ . M1 �M2:σ Γ . N1 � N2: τ

Γ . 〈M1, N1〉 � 〈M2, N2〉:σ × τ
(×-congruence)

Γ . M1 �M2:σ × τ
Γ . π1(M1) � π1(M2):σ

(π1-congruence)

Γ . M1 �M2:σ × τ
Γ . π2(M1) � π2(M2): τ

(π2-congruence)

Γ . M1 �M2: (σ → δ) Γ . N1 � N2: (τ → δ)

Γ . [M1, N1] � [M2, N2]: (σ + τ)→ δ
(copair-congruence)

Γ . M1 �M2:σ

Γ . inl(M1) � inl(M2):σ + τ
(inl-congruence)

38



Γ . M1 �M2: τ

Γ . inr(M1) � inr(M2):σ + τ
(inr-congruence)

Γ . M1 �M2:σ

∆ . M1[ϕ] �M2[ϕ]:σ[ϕ]
(substitution)

for every substitution ϕ such that ∆ `̀ Γ[ϕ].

The notation `β Γ . M � N :σ means that the inequality Γ . M � N :σ is provable from the
above axioms and inference rules.

The inequational βη-theory of the system λ→,×,+,∀
2

is obtained by adding the following η-like
rules to the axioms and inference rules of the β-theory:

Γ . M � λx:σ. (Mx): (σ → τ) (η)

where x /∈ FV (M);
Γ . M � λX. (MX):∀X. σ (type-η)

where X /∈ FTV (M);
Γ . M � 〈π1(M), π2(M)〉:σ × τ (pair)

Γ . M � [λx:σ. (Minl(x)), λy: τ. (Minr(y))]: (σ + τ)→ δ (copair)

The notation `βη Γ . M � N :σ means that the inequality Γ . M � N :σ is provable from all
the axioms and the inference rules of the βη-theory, including the η-like rules.

The extensional inequational βη-theory of the system λ→,×,+,∀
2

is obtained by adding the fol-
lowing inference rules (extensionality rules) to the axioms and inference rules of the β-theory of
λ→,×,+,∀

2
:

Γ, x:σ .M1x �M2x: τ

Γ . M1 �M2: (σ → τ)
(fun-extensionality)

where x /∈ FV (M1) ∪ FV (M2);

Γ, X: ? . M1X �M2X:σ

Γ . M1 �M2:∀X. σ
(tfun-extensionality)

where X /∈ FTV (M1) ∪ FTV (M2);

Γ . π1(M1) � π1(M2):σ Γ . π2(M1) � π2(M2): τ

Γ . M1 �M2: (σ × τ)
(Π-extensionality)

Γ, x:σ .M1inl(x) �M2inl(x): δ Γ, y: τ . M1inr(y) �M2inr(y): δ

Γ . M1 �M2: (σ + τ)→ δ
(inl, inr-extensionality)

where x, y /∈ FV (M1) ∪ FV (M2).

The notation `exβη Γ . M � N :σ means that the inequality Γ . M � N :σ is provable from all
the axioms and the inference rules of the extensional β-theory, including the extensionality rules.

39



By rule (addvar), if `β Γ . M � N :σ, then `β ∆ . M � N :σ, for any ∆ such that Γ ⊆ ∆, and
similarly for `βη and `exβη. Actually, this rule is only needed when we consider deductions from
nonempty sets of inequalities other than the axioms. Otherwise, due to the form of the axioms, by
induction on the structure of proofs, it is easily shown that rule (addvar) is a derived rule.

The following lemma shows the relationship between the η-like rules and the extensionality
rules. Given an inequality Γ . M � N :σ, its converse is the inequality Γ . N �M :σ.

Lemma 6.2 In the exβη-theory, the η-like rules are provable from the extensionality rules. If we
add the converse of each η-like rule to the βη-theory, then the extensionality rules are provable.

Proof . First, we prove that in the exβη-theory, the η-like rules are provable from the exten-
sionality rules.

If x /∈ FV (M), observe that

Γ, x:σ .Mx � (λx:σ. (Mx))x: τ

is a consequence of axiom (β), since (Mx)[x/x] = Mx. Thus, by the first extensionality rule, we
have

Γ . M � λx:σ. (Mx): (σ → τ)

where x /∈ FV (M). We prove in a similar fashion that

Γ . M � λX. (MX):∀X. σ.

where X /∈ FTV (M). Proving

Γ . M � 〈π1(M), π2(M)〉:σ × τ

is easy, and we prove that

Γ . M � [λx:σ. (Minl(x)), λy: τ. (Minr(y))]: (σ + τ)→ δ.

Assume that x /∈ FV (M) and y /∈ FV (M). Then, by axioms (β), (inl), and (inr), we have

Minl(x) � (λx:σ. (Minl(x)))x � [λx:σ. (Minl(x)), λy: τ. (Minr(y))]inl(x),

and
Minr(y) � (λy: τ. (Minr(y)))y � [λx:σ. (Minl(x)), λy: τ. (Minr(y))]inr(y).

We conclude using the last extensionality rule.

Conversely, we prove that from the η-like rules and their converse, we obtain the extensionality
rules. We consider the first rule, the others being similar.

Assume that `βη Γ, x:σ .M1x �M2x: τ , where x /∈ FV (M1) ∪ FV (M2). Then, by (ξ), we get

`βη Γ . λx:σ. (M1x) � λx:σ. (M2x): (σ → τ).

Since x /∈ FV (M1) ∪ FV (M2), using (η), we get

`βη Γ . M1 � λx:σ. (M1x): (σ → τ),

40



and using the converse of (η), we get

`βη Γ . λx:σ. (M2x) �M2: (σ → τ),

and by transitivity (twice), we have

`βη Γ . M1 �M2: (σ → τ).

The following lemma shows the relationship between the (ξ)- rule, the (substitution)-rule, and
the converse of the (β)-axioms. If Γ = {X1: ?, . . . , Xm: ?, x1:σ1, . . . , xn:σn}, given an inequality
Γ . M � N :σ, we let

. λX1 . . . λXm. λx1:σ1 . . . λxn:σn. M � λX1 . . . λXm. λx1:σ1 . . . λxn:σn. N : δ,

where δ = ∀X1 . . . ∀Xm. (σ1 → (. . . (σn → σ) . . .)), be the closure of Γ . M � N :σ, and we denote
it as . λ

−→
X. λ−→x :−→σ . M � λ−→X. λ−→x :−→σ . N :∀−→X.−→σ .

Lemma 6.3 If we add the converse of the β-rule and the converse of the (type-β)-rule to the β-
theory, then the following properties hold: (1) the substitution-rule is provable; (2) an inequality
Γ . M � N :σ is β-provable iff its closure is β-provable.

Proof . (1) Let ϕ be a substitution such that ∆ `̀ Γ[ϕ], and assume that `β Γ . M1 � M2:σ.
By applications of the (ξ)-rule and the (type-ξ)-rule, we get

`β . λ
−→
X. λ−→x :−→σ . M1 � λ

−→
X. λ−→x :−→σ . M2: ∀−→X.−→σ .

Thus, by a previous remark, we also have

`β ∆ . λ
−→
X. λ−→x :−→σ . M1 � λ

−→
X. λ−→x :−→σ . M2:∀−→X.−→σ .

We can make sure that Xi /∈
⋃

(FV T (ϕ(Xk)))1≤k≤m, and that xj /∈
⋃

(FV (ϕ(xl)))1≤l≤n, using
α-conversion, and since ∆ `̀ Γ[ϕ], by applications of the (congruence)-rules for → and ∀, we get

`β ∆ . ((λ
−→
X. λ−→x :−→σ . M1)

−−−→
ϕ(Xi))

−−−→
ϕ(xj) � ((λ

−→
X. λ−→x :−→σ . M2)

−−−→
ϕ(Xi))

−−−→
ϕ(xj):σ[ϕ].

Then, by applications of the (β, type-β)-rules and their converse, and using transitivity, we get

`β ∆ . M1[ϕ] �M2[ϕ]:σ[ϕ].

(2) By applications of the (ξ)-rule and the (type-ξ)-rule, if `β Γ . M1 �M2:σ, then

`β . λ
−→
X. λ−→x :−→σ . M1 � λ

−→
X. λ−→x :−→σ . M2: ∀−→X.−→σ .

Conversely, if
`β . λ

−→
X. λ−→x :−→σ . M1 � λ

−→
X. λ−→x :−→σ . M2: ∀−→X.−→σ ,

then
`β Γ . λ

−→
X. λ−→x :−→σ . M1 � λ

−→
X. λ−→x :−→σ . M2:∀−→X.−→σ ,

41



and by choosing ϕ to be the identity substitution on Γ, by the previous argument, we have

`β Γ . M1 �M2:σ,

since M1[ϕ] = M1, N1[ϕ] = N1, and σ[ϕ] = σ.

We now define provability from a set of inequalities, and the the notions of satisfaction and
validity. Let E be a set of inequalities (of the form Γ . M � N :σ).

Definition 6.4 An inequality Γ . M � N :σ is β-provable from a set E of inequalities, denoted
as E `β Γ . M � N :σ, iff Γ . M � N :σ is β-provable from the system obtained by adding all
inequalities in E to the axioms of the system of definition 6.1. Note that when E = ∅, this notion
coincides with `β Γ . M � N :σ. An inequality Γ . M � N :σ is βη-provable from a set E of
inequalities, denoted as E `βη Γ . M � N :σ, iff Γ . M � N :σ is βη-provable from the system
obtained by adding all inequalities in E to the axioms of the βη-system of definition 6.1, and
E `exβη Γ.M � N :σ is defined similarly for the exβη-theory. Note that when E = ∅, these notions
coincides with `βη Γ . M � N :σ and `exβη Γ . M � N :σ, respectively.

We also define the notion of satisfaction and validity.

Definition 6.5 Given a type interpretation T and a Kripke pre-applicative β-structure A, for
every Γ, for every world u ∈ W, for every valuation ρ = 〈θ, η〉, we have the following definitions:

(1) For every inequality Γ.M � N :σ, we say that Γ.M � N :σ holds at u and ρ in A, denoted
as A, u `̀ β (Γ . M � N :σ)[ρ], iff whenever u `̀ Γ[ρ], then

A[[Γ . M :σ]]ρu � A[[Γ . N :σ]]ρu.

(2) A satisfies Γ .M � N :σ, denoted as A `̀ β Γ .M � N :σ, iff A, u `̀ β (Γ .M � N :σ)[ρ] for
every world u and every valuation ρ for A.

(3) Given a set E of inequalities, A satisfies E , denoted as A `̀ β E , iff A `̀ β Γ . M � N :σ for
all Γ .M � N :σ ∈ E ; We say that Γ .M � N :σ is a semantic consequence of E , denoted as
E `̀ β Γ . M � N :σ, iff A `̀ β Γ . M � N :σ whenever A `̀ β E , for every Kripke β-structure
A.

(4) We say that Γ .M � N :σ is valid , denoted as `̀ β Γ .M � N :σ, iff A `̀ β Γ .M � N :σ for
every A.

The above notions are defined in a similar fashion for Kripke βη-structures and extensional
Kripke βη-structures, in which case we use `̀ βη and `̀ exβη instead of `̀ β.

7 Soundness and Completeness Results for Rewrite rules

In this section, we prove some soundness and completeness results. Soundness is shown in lemma
7.1. Lemma 7.2 shows the existence of a Kripke model associated with a set of inequalities (rewrite
rules). Extended completeness is shown in theorem 7.3. We also consider completeness with
respect to Kripke structures with nonempty carriers. By adding the rule (nonempty), we obtain
completeness (theorem 7.7).

First, we show a soundness lemma.

42



Lemma 7.1 For any set E of inequalities, for every inequality Γ . M � N :σ, the following prop-
erties hold: (1) if E `β Γ . M � N :σ, then E `̀ β Γ . M � N :σ; (2) if E `βη Γ . M � N :σ, then
E `̀ βη Γ . M � N :σ; (3) if E `exβη Γ . M � N :σ, then E `̀ exβη Γ . M � N :σ.

Proof . (1) We proceed by induction on the structure of the proof E `β Γ . M � N :σ.

Axiom (β). Assume that u `̀ Γ[ρ]. Recall from definition 4.1 that app is defined from fun as
app = evalA

s,At ◦ (fun × idAs), and from definition 3.6, that evalA
s,At

u ((ϕw)wwu, a) = ϕu(a), for
any ϕ = (ϕw)wwu ∈ [As ⇒ At]u and any a ∈ Asu. Also, recall from condition (1) of definition 4.1
that we have, funu(abstu(ϕ)) �u ϕ, for every ϕ ∈ [As ⇒ At]u. Thus, we have

appu(abstu(ϕ), a) = evalu(funu(abstu(ϕ)), a) �u evalu(ϕ, a) = ϕu(a),

that is, appu(abstu(ϕ), a) �u ϕu(a). From definition 5.5, we have

A[[Γ . MN : τ ]]ρu = app[[σ]]θ, [[τ ]]θ
u (A[[Γ . M :σ → τ ]]ρu, A[[Γ . N :σ]]ρu),

and
A[[Γ . λx:σ. M :σ → τ ]]ρu = abst[[σ]]θ, [[τ ]]θ

u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,

ϕw(a) = A[[Γ, x:σ .M : τ ]]ρ[x: = a]w,

for every a ∈ A[[σ]]θ
w . Then,

A[[Γ . (λx:σ. M)N : τ ]]ρu = app[[σ]]θ, [[τ ]]θ
u (A[[Γ . λx:σ. M :σ → τ ]]ρu, A[[Γ . N :σ]]ρu),

and letting a = A[[Γ . N :σ]]ρu, by the definition of A[[Γ . λx:σ. M :σ → τ ]]ρu and the fact that
appu(abstu(ϕ), a) �u ϕu(a), we have

A[[Γ . (λx:σ. M)N : τ ]]ρu � A[[Γ, x:σ .M : τ ]]ρ[x: = a]u,

with a = A[[Γ . N :σ]]ρu. However, by lemma 5.10, we have

A[[Γ . M [N/x]: τ ]]ρu = A[[Γ, x:σ .M : τ ]]ρ[x: = A[[Γ . N :σ]]ρu]u,

and thus,
A[[Γ . (λx:σ. M)N : τ ]]ρu � A[[Γ . M [N/x]: τ ]]ρu.

Axiom (type-β). Recall from definition 4.1 that tapp is defined from tfun as tapp = evalAΦ ◦
(tfun× idT ), and from definition 3.10, that evalAΦ,u((ϕw)wwu, s) = ϕu(s), for any ϕ = (ϕw)wwu ∈∏

Φ(Asu)s∈T and any s ∈ T . Also, recall from condition (2) of definition 4.1 that we have,
tfunu(tabstu(ϕ)) �u ϕ, for every ϕ ∈

∏
Φ(Asu)s∈T . Thus, we have

tappu(tabstu(ϕ), s) = evalΦ,u(tfunu(tabstu(ϕ)), s) �u evalΦ,u(ϕ, s) = ϕu(s),

that is, tappu(tabstu(ϕ), s) �u ϕu(s). From definition 5.5, we have

A[[Γ . Mτ :σ[τ/X]]]ρu = tappΦ
u (A[[Γ . M :∀X. σ]]ρu, [[τ ]]θ),

43



and
A[[Γ . λX. M :∀X. σ]]ρu = tabstΦ

u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,

ϕw(s) = A[[Γ, X: ? . M :σ]]ρ[X: = s]w,

for every s ∈ T , and where Φ is the function such that Φ(s) = [[σ]]θ[X: = s] for every s ∈ T . Then,

A[[Γ . (λX. M)τ :σ[τ/X]]]ρu = tappΦ
u (A[[Γ . λX. M : ∀X. σ]]ρu, [[τ ]]θ),

and letting s = [[τ ]]θ, by the definition of A[[Γ . λX.M :∀X. σ]]ρu and since tappu(tabstu(ϕ), s) �u
ϕu(s), we have

A[[Γ . (λX. M)τ :σ[τ/X]]]ρu � A[[Γ, X: ? . M :σ]]ρ[X: = s]u,

where s = [[τ ]]θ. However, by lemma 5.10, we have

A[[Γ . M [τ/X]:σ[τ/X]]]ρu = A[[Γ, X: ? . M :σ]]ρ[X: = [[τ ]]θ]u,

and thus
A[[Γ . (λX. M)τ :σ[τ/X]]]ρu � A[[Γ . M [τ/X]:σ[τ/X]]]ρu.

The other axioms are treated easily, and so are the inference rules. As an illustration, we treat
the rule (ξ) and the (substitution) rule.

Rule (ξ). Assume that `β Γ, x:σ .M1 �M2: τ . By the rule (ξ), we have

`β Γ . λx:σ. M1 � λx:σ. M2: (σ → τ).

By the induction hypothesis, we have

A `̀ β Γ, x:σ .M1 �M2: τ,

which means that
A, w `̀ β (Γ, x:σ .M1 �M2: τ)[ρ1]

for every world w ∈ W and every valuation ρ1. We need to show that

A `̀ β Γ . λx:σ. M1 � λx:σ. M2: (σ → τ)

for every Kripke pre-applicative β-structure A.

Let A be any Kripke pre-applicative β-structure, u ∈ W any world, and ρ2 any valuation, and
assume that u `̀ Γ[ρ2]. By definition 5.5, we have

A[[Γ . λx:σ. M1:σ → τ ]]ρ2u = abst[[σ]]θ, [[τ ]]θ
u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,

ϕw(a) = A[[Γ, x:σ .M1: τ ]]ρ2[x: = a]w,

44



for every a ∈ A[[σ]]θ
w , and similarly

A[[Γ . λx:σ. M2:σ → τ ]]ρ2u = abst[[σ]]θ, [[τ ]]θ
u (ψ),

where
ψw(a) = A[[Γ, x:σ .M2: τ ]]ρ2[x: = a]w,

for every a ∈ A
[[σ]]θ
w . Since u `̀ Γ[ρ2], for every a ∈ A

[[σ]]θ
w , and every w w u, we have w `̀

(Γ, x:σ)[ρ2[x: = a]], and since

A, w `̀ β (Γ, x:σ .M1 �M2: τ)[ρ1],

for every w ∈ W and every valuation ρ1, by definition 6.5, we have

A[[Γ, x:σ .M1: τ ]]ρ2[x: = a]w � A[[Γ, x:σ .M2: τ ]]ρ[x: = a]w.

Since this holds for every a ∈ A[[σ]]θ
w , we have ϕw � ψw for all w w u, and thus ϕ � ψ, that is,

A[[Γ . λx:σ. M1:σ → τ ]]ρ2u � A[[Γ . λx:σ. M2:σ → τ ]]ρ2u.

This shows that
A, u `̀ β (Γ . λx:σ. M1 � λx:σ. M2: (σ → τ))[ρ2],

for every u ∈ W and every valuation ρ2. Thus, we just showed that

A `̀ β Γ . λx:σ. M1 � λx:σ. M2: (σ → τ)

for every Kripke pre-applicative β-structure A, as desired.

Rule (substitution). Let ϕ be a substitution such that ∆ `̀ Γ[ϕ], and assume that `β Γ .M1 �
M2:σ. By the induction hypothesis,

A `̀ β Γ . M1 �M2:σ,

for every Kripke pre-applicative β-structure A. We need to prove that

A `̀ β ∆ . M1[ϕ] �M2[ϕ]:σ[ϕ],

for every Kripke pre-applicative β-structure A.

Let Γ = {X1: ?, . . . , Xm: ?, x1:σ1, . . . , xn:σn}, and let A be any Kripke pre-applicative β-
structure, u ∈ W any world, ρ1 any valuation, and assume that u `̀ ∆[ρ1]. By lemma 5.11, we
have

A[[∆ . M [ϕ]:σ[ϕ]]]ρ1u = A[[Γ . M :σ]]ρ2u,

where si = [[ϕ(Xi)]]θ, for 1 ≤ i ≤ m, aj = A[[∆ . ϕ(xj):σj [ϕ]]]ρ1u, for 1 ≤ j ≤ n, and

ρ2 = ρ1[X1: = s1, . . . , Xm: = sm, x1: = a1, . . . , xn: = an].

Note that u `̀ Γ[ρ2], and since we assumed that A `̀ β Γ . M1 � M2:σ holds, we have A, u `̀ β
(Γ . M1 �M2:σ)[ρ2], which means that

A[[Γ . M1:σ]]ρ2u � A[[Γ . M1:σ]]ρ2u,

45



which, in view of previous identities, is equivalent to

A[[∆ . M1[ϕ]:σ[ϕ]]]ρ1u � A[[∆ . M2[ϕ]:σ[ϕ]]]ρ1u,

that is
A, u `̀ β (∆ . M1[ϕ] �M2[ϕ]:σ[ϕ])[ρ1].

The above holds for all u ∈ W and all ρ1, and thus

A `̀ β ∆ . M1[ϕ] �M2[ϕ]:σ[ϕ],

for every Kripke pre-applicative β-structure A, as desired.

(2) We proceed by induction on the structure of the proof E `βη Γ . M � N :σ. The only new
cases are the η-like axioms.

Axiom (η). Assume that u `̀ Γ[ρ]. As in the case of axiom (β), we have app = evalA
s,At ◦

(fun × idAs) and evalA
s,At

u ((ϕw)wwu, a) = ϕu(a), for any ϕ = (ϕw)wwu ∈ [As ⇒ At]u and any
a ∈ Asu. For any f ∈ As→tu , if funu(f) = (ϕw)wwu, for every a ∈ Asw, we have

appw(is→tu,w (f), a) = evalw(funw(is→tu,w (f)), a) = evalw((ϕw′)w′ww, a) = ϕw(a).

This shows that (funu(f))w = ϕw is the function such that (funu(f))w(a) = appw(is→tu,w (f), a), for
every a ∈ Asw. By definition 5.5, we have

A[[Γ . λx:σ. (Mx):σ → τ ]]ρu = abst[[σ]]θ, [[τ ]]θ
u (ϕ),

where ϕ = (ϕw)wwu is the family of functions defined such that,

ϕw(a) = A[[Γ, x:σ .Mx: τ ]]ρ[x: = a]w,

for every a ∈ A[[σ]]θ
w . Again, by definition 5.5, we have

A[[Γ, x:σ .Mx: τ ]]ρw = app[[σ]]θ, [[τ ]]θ
w (A[[Γ, x:σ .M :σ → τ ]]ρw, A[[Γ, x:σ . x:σ]]ρw),

and since A[[Γ, x:σ . x:σ]]ρ[x: = a]w = a, we have

A[[Γ, x:σ .Mx: τ ]]ρ[x: = a]w = app(A[[Γ, x:σ .M :σ → τ ]]ρ[x: = a]w, a).

Since x /∈ FV (M), by lemma 5.8, we have A[[Γ, x:σ .M :σ → τ ]]ρ[x: = a]w = A[[Γ . M :σ → τ ]]ρw,
and so

A[[Γ, x:σ .Mx: τ ]]ρ[x: = a]w = app(A[[Γ . M :σ → τ ]]ρw, a),

for every a ∈ A[[σ]]θ
w . Since (funu(f))w(a) = appw(is→tu,w (f), a), for every a ∈ Asw, letting

f = A[[Γ . M :σ → τ ]]ρu,

since by lemma 5.6, A[[Γ . M :σ → τ ]]ρw = i
[[σ→τ ]]θ
u,w (A[[Γ . M :σ → τ ]]ρu), the above shows that

fun(A[[Γ . M :σ → τ ]]ρu) is the family of functions ϕ = (ϕw)wwu defined such that,

ϕw(a) = A[[Γ, x:σ .Mx: τ ]]ρ[x: = a]w,

46



for every a ∈ A[[σ]]θ
w . However, by condition (1) of definition 4.6, we have, abstu(funu(f)) �u f , for

every f ∈ As→tu , and since

abstu(funu(A[[Γ . M :σ → τ ]]ρu)) = abstu(ϕ) = A[[Γ . λx:σ. (Mx):σ → τ ]]ρu,

we have
A[[Γ . M :σ → τ ]]ρu � A[[Γ . λx:σ. (Mx):σ → τ ]]ρu,

which shows that A, u `̀ βη (Γ . M � λx:σ. (Mx):σ → τ)[ρ], as desired.

The other η-like rules are treated in a similar fashion.

(3) We only have to consider the extensional rules. Consider the rule

Γ, x:σ .M1x �M2x: τ

Γ . M1 �M2: (σ → τ)
(fun-extensionality)

where x /∈ FV (M1) ∪ FV (M2). By the induction hypothesis, we have

A `̀ exβη Γ, x:σ .M1x �M2x: τ.

Thus, for every extensional Kripke pre-applicative βη-structure A, every w ∈ W, and every valua-
tion ρ1, if w `̀ (Γ, x:σ)[ρ1], then

A[[Γ, x:σ .M1x: τ ]]ρ1w � A[[Γ, x:σ .M2x: τ ]]ρ1w.

Consider any u ∈ W and any valuation ρ such that u `̀ Γ[ρ]. The proof for the soundness of the
axiom (η) showed that fun(A[[Γ . M :σ → τ ]]ρu) is the family of functions ϕ = (ϕw)wwu defined
such that,

ϕw(a) = A[[Γ, x:σ .Mx: τ ]]ρ[x: = a]w,

for every a ∈ A[[σ]]θ
w . Thus, letting ρ1 = ρ[x: = a], for any w w u, we have w `̀ (Γ, x:σ)[ρ1], and so

A[[Γ, x:σ .M1x: τ ]]ρ[x: = a]w � A[[Γ, x:σ .M2x: τ ]]ρ[x: = a]w,

which shows that

fun(A[[Γ . M1:σ → τ ]]ρu) � fun(A[[Γ . M2:σ → τ ]]ρu).

Since A is extensional, fun is isotone, and then

A[[Γ . M1:σ → τ ]]ρu � A[[Γ . M2:σ → τ ]]ρu,

which shows that A, u `̀ exβη (Γ . M1 �M2:σ → τ)[ρ], for every u ∈ W and every ρ, as desired.

The proofs for the other extensionality rules are similar.

Next, we turn to completeness results.

Lemma 7.2 For any set E of inequalities, the following properties hold: (1) There is a Kripke
pre-applicative β-structure A, such that for every inequality Γ . M � N :σ, E `β Γ . M � N :σ
iff A `̀ β Γ . M � N :σ; (2) There is a Kripke pre-applicative βη-structure A, such that for
every inequality Γ . M � N :σ, E `βη Γ . M � N :σ iff A `̀ βη Γ . M � N :σ; (3) There is an
extensional Kripke pre-applicative β-structure A, such that for every inequality Γ . M � N :σ,
E `exβη Γ . M � N :σ iff A `̀ exβη Γ . M � N :σ.

47



Proof . (1) We modify the construction of definition 4.4. Rather that defining AσΓ as the set of
all provable typing judgements Γ . M :σ, we define AσΓ as the set of equivalence classes [Γ . M :σ]
of the equivalence relation ≡E induced by the precongruence �E defined such that

Γ . M :σ �E Γ . N :σ iff E `β Γ . M � N :σ,

with Γ . M :σ ≡E Γ . N :σ iff Γ . M :σ �E Γ . N :σ and Γ . N :σ �E Γ . M :σ.

The congruence rules of definition 6.1 ensure that fun, abst, tfun, tabst, Π, 〈−,−〉, inl,
inr, and [−, −], are well-defined. Rule (addvar) is used to show that if [Γ . M :σ] ∈ AσΓ, when
Γ . M � N :σ ∈ E , then [∆ . M :σ] ∈ Aσ∆, for any ∆ such that Γ ⊆ ∆.

Recall that, according to definition 5.4, a valuation is a pair ρ = 〈θ, η〉, where θ is an infinite
type substitution, and η is a partial function η:X × W →

⋃
(Atw)t∈T, w∈W . Thus, recalling that

worlds are contexts, η∆(x) = [Γ .M :σ] for some judgement Γ .M :σ, when defined. Furthermore,

the condition for ρ to satisfy a context Γ at a world ∆ (since worlds are contexts), is η∆(x) ∈ Aθ(σ)
∆ ,

that is, η∆(x) = [∆ . Mx: θ(σ)], for some Mx, for every x:σ ∈ Γ. Thus, if ρ = 〈θ, η〉 satisfies
a context Γ at ∆, the valuation ρ defines a substitution ϕ such that ϕ(X) = θ(X) for every
X ∈

⋃
(FTV (τ))x:τ∈Γ, and ϕ(x) = Mx for every x ∈ dom(Γ) (where η∆(x) = [∆ . Mx: θ(σ)]), and

we have ∆ `̀ Γ[ϕ], as defined just before definition 4.4. Note that such a substitution ϕ depends on
the selection of representatives chosen from the classes [∆ .Mx: θ(σ)], but as we will see, this does
not matter. Then, the following property can be shown by induction on the derivation of typing
judgements.

Claim: For the pre-applicative structure A just defined, for every pair of contexts Γ and ∆, for
every valuation ρ = 〈θ, η〉, if ∆ `̀ Γ[ρ], then for every judgement Γ . M :σ, we have ∆ `̀ Γ[ϕ] and

A[[Γ . M :σ]]ρ∆ = [∆ . M [ϕ]:σ[ϕ]],

where ϕ is the substitution defined by the restriction of ρ∆ to Γ, as explained above.

One also verifies easily that if ϕ1 and ϕ2 are two substitutions constructed by selecting repre-
sentatives chosen from the classes [∆ . Mx: θ(σ)], as explained above, then

[∆ . M [ϕ1]:σ[ϕ1]] = [∆ . M [ϕ2]:σ[ϕ2]].

It remains to show that E `β Γ . M � N :σ iff A `̀ β Γ . M � N :σ.

To prove that A `̀ β Γ .M � N :σ implies E `β Γ .M � N :σ, we choose a particular valuation
ρ = 〈θ, η〉 as follows: θ is the identity, and η is defined such that, for every Γ and ∆ such that
Γ ⊆ ∆, for every x ∈ X ,

ηΓ(x) =

{
[∆ . x:σ] if x:σ ∈ Γ,
undefined otherwise.

Then, the substitution ϕ associated with ρ is the identity, and by the above claim, we have

A[[Γ . M :σ]]ρ∆ = [∆ . M :σ],

and
A[[Γ . N :σ]]ρ∆ = [∆ . N :σ].

48



If A `̀ β Γ . M � N :σ, since by definition of ρ, Γ `̀ Γ[ρ], we have

[∆ . M :σ] �E [∆ . N :σ],

and by the definition of �E , we have E `β Γ . M � N :σ.

Assume that E `β Γ .M � N :σ. Consider any ∆ and any ρ such that ∆ `̀ Γ[ρ]. Then, by the
claim, we have ∆ `̀ Γ[ϕ],

A[[Γ . M :σ]]ρ∆ = [∆ . M [ϕ]:σ[ϕ]],

and
A[[Γ . N :σ]]ρ∆ = [∆ . N [ϕ]:σ[ϕ]],

where ϕ is the substitution defined by the restriction of ρ∆ to Γ, as explained earlier. Since we
have ∆ `̀ Γ[ϕ], by the (substitution) rule, we get

E `β ∆ . M [ϕ] � N [ϕ]:σ[ϕ],

which, by the definition of �E , means that

[∆ . M [ϕ]:σ[ϕ]] �E [∆ . N [ϕ]:σ[ϕ]],

that is, A[[Γ . M :σ]]ρ∆ �E A[[Γ . N :σ]]ρ∆, which shows that A, ∆ `̀ β (Γ . M � N :σ)[ρ]. Since
this holds for all ∆ and ρ, we have A `̀ β Γ . M � N :σ.

(2) The proof is similar to that of (1), except that we define �E such that

Γ . M :σ �E Γ . N :σ iff E `βη Γ . M � N :σ.

The argument showing that the resulting Kripke pre-applicative structure is a βη-structure is
identical to the argument given just after definition 4.8.

(3) The proof is similar to that of (2), except that we define �E such that

Γ . M :σ �E Γ . N :σ iff E `exβη Γ . M � N :σ.

We also need to verify that the resulting Kripke pre-applicative structure is extensional, that is,
that the functions fun, tfun, Π, and 〈cinl, cinr〉, are isotone.

Assume that
funΓ([Γ . M1:σ → τ ]) �E funΓ([Γ . M2:σ → τ ]).

Since funΓ([Γ . M1:σ → τ ]) is the family of functions ([Γ . M1:σ → τ ]∆)Γ⊆∆, such that

[Γ . M1:σ → τ ]∆([∆ . N1:σ]) = [∆ . M1N1: τ ],

for every [∆ . N1:σ] ∈ Aσ∆, and similarly for funΓ([Γ . M2:σ → τ ]), letting ∆ = Γ, x:σ, where
x /∈ FV (M1) ∪ FV (M2), we have

[Γ . M1:σ → τ ]Γ,x:σ �E [Γ . M2:σ → τ ]Γ,x:σ,

and thus, in particular,
[Γ, x:σ .M1x: τ ] �E [Γ, x:σ .M2x: τ ].

49



This means that E `exβη Γ, x:σ . M1x � M2x: τ , and since x /∈ FV (M1) ∪ FV (M2), by the first
extensionality rule, we get E `exβη Γ .M1 �M2:σ → τ . Then, [Γ .M1:σ → τ ] �E [Γ .M2:σ → τ ],
showing that fun is isotone. The proofs for the other cases are similar.

As a corollary of lemma 7.2 and lemma 7.1, we obtain the following soundness and completeness
theorem.

Theorem 7.3 For any set E of inequalities, the following properties hold: (1) E `̀ β Γ .M � N :σ
iff E `β Γ.M � N :σ; (2) E `̀ βη Γ.M � N :σ iff E `βη Γ.M � N :σ; and (3) E `̀ exβη Γ.M � N :σ
iff E `exβη Γ . M � N :σ.

Proof . (1) The direction (⇐) is just lemma 7.1. Conversely, E `̀ β Γ . M � N :σ means that
A `̀ β Γ . M � N :σ whenever A `̀ β E , for every Kripke β-structure A. By lemma 7.2, for any
E , there is some Kripke pre-applicative structure A such that for every inequality Γ . M � N :σ,
E `β Γ . M � N :σ iff A `̀ β Γ . M � N :σ. Then, in particular, we have A `̀ β Γ1 . M1 � N1:σ1

for every Γ1 . M1 � N1:σ1 ∈ E , which implies that A `̀ β E . Then, we have A `̀ β Γ . M � N :σ,
which implies that E `β Γ . M � N :σ, by the definition of A. Cases (2) and (3) are similar.

Another interesting corollary of lemma 7.2 which shows the correspondence between provability
and inhabitation, is the following lemma, which generalizes a result of Mitchell and Moggi [12].

Lemma 7.4 Given a signature Σ and a set E of inequalities over Σ, there is a Kripke pre-
applicative β-structure A such that A `̀ β E and the following property holds: Aσw is nonempty
for every w ∈ W iff the type σ, when viewed as a second-order proposition, is intuitionistically
provable from the types of constants in Σ. The same result holds for a βη-structure when A `̀ βη E,
and for an exβη-structure when A `̀ exβη E

The special case where we consider soundness and completeness with respect to Kripke struc-
tures where Asw 6= ∅ for all s ∈ T and all worlds w ∈ W, is of particular interest. First, observe
that the proof system of definition 6.1 is incomplete in this case. Consider the set of inequalities

E = {x:σ . T � f(x): τ, x:σ . f(x) � F : τ},

where f : (σ → τ), T, F : τ , and σ 6= τ . Clearly, we can prove x:σ . T � F : τ from E . However, in
Kripke structures with nonempty carriers, . T � F : τ is valid, whereas we have no way of proving
it. However, if we had a constant c:σ, then by the (substitution)-rule, we would be able to prove
. T � F : τ .

The above discussion suggests adding a new rule to the system of definition 6.1.

Definition 7.5 The rule (nonempty) is defined as follows.

Γ, x:σ .M1 �M2: τ

Γ . M1 �M2: τ
(nonempty)

provided that x /∈ FV (M1) ∪ FV (M2).

The notation E `β+ Γ.M � N :σ means that Γ.M � N :σ is provable from E using the axioms
and rules of the inequational β-theory of definition 6.1, plus the rule (nonempty), and similarly for

50



E `βη+ Γ . M � N :σ and E `exβη+ Γ . M � N :σ. The notation E `̀ β+ Γ . M � N :σ means
that E `̀ β Γ . M � N :σ in all Kripke pre-applicative β-structures with all carriers nonempty, and
similarly for E `̀ βη+ Γ . M � N :σ and E `̀ exβη+ Γ . M � N :σ.

It is easily verified that the rule (nonempty) is sound with respect to Kripke structures with
nonempty carriers. Completeness also holds. Unfortunately, lemma 7.2 does not immediately yield
this result, because some of the carriers of the Kripke structure used in the proof of that lemma
may be empty. There is an easy way around, which consists in adding new constants, as we now
explain.

Let us expand our signature Σ by adding new constants cσ such that Type(cσ) = σ, for every
closed type σ ∈ T . If the original signature is Σ, the new signature is denoted as Σc. Then we have
the following lemma.

Lemma 7.6 Given any set E of inequalities and any inequality Γ . M � N :σ over the original
signature Σ, if E `β Γ . M � N :σ using any terms over the expanded signature Σc, then there is
some ∆ such that dom(∆) ∩ dom(Γ) = ∅, and E `β Γ ∪∆ . M � N :σ, using only terms over the
original signature Σ. The same result holds for `βη and `exβη.

Proof . We proceed by induction on the structure of proofs. The only interesting cases are the
axioms and the (substitution) rule. The idea is the following: whenever a term N containing new
constants is used, we replace every new constant cσ in N by a new variable x, and we add x:σ to
the context. This way, every term N involving new constants is replaced by a term N ′ over the
original signature Σ. For example, if we are dealing with the axiom Γ .M [N/x] � (λx:σ. M)N : τ ,
letting Γ′ be the declaration of all the new variables needed to eliminate new constants from M and
N , we obtain the new axiom Γ∪Γ′ .M ′[N ′/x] � (λx:σ.M ′)N ′: τ . In the case of the (substitution)
rule,

Γ . M1 �M2:σ

∆ . M1[ϕ] �M2[ϕ]:σ[ϕ]
(substitution)

where ϕ is a substitution such that ∆ `̀ Γ[ϕ], let ∆′ be the set of declarations needed to convert
every term ϕ(x) to a term ϕ′(x) over the signature Σ, for every x ∈ dom(Γ). Then, it is immediate
that ∆ ∪∆′ `̀ Γ[ϕ′], and we have `β ∆ ∪∆′ . M1[ϕ′] �M2[ϕ′]:σ[ϕ′].

Since a proof is finite, and we have infinitely many variables, we can always use fresh variables
that do not clash with the variables occurring in the original proof.

We can now prove the following soundness and completeness theorem.

Theorem 7.7 For any set E of inequalities, the following properties hold: (1) E `̀ β+ Γ.M � N :σ
iff E `β+ Γ . M � N :σ; (2) E `̀ βη+ Γ . M � N :σ iff E `βη+ Γ . M � N :σ; and (3) E `̀ exβη+

Γ . M � N :σ iff E `exβη+ Γ . M � N :σ.

Proof . (1) We go back to the proof of lemma 7.2. Given the set E over the signature Σ, we define
the structure A, but this time, over the expanded signature Σc. Thus, AσΓ is the set of equivalence
classes [Γ.M :σ] of the equivalence relation ≡E induced by the precongruence �E , where the terms
M are over the expanded signature Σc. For every type σ, if FV T (σ) = {X1, . . . , Xm}, letting
σ̂ = ∀X1 . . . ∀Xm. σ be the closure of σ, there is a new constant cσ̂ such that Type(cσ̂) = σ̂, and so,

51



we have X1: ?, . . . ,Xm: ? . cσ̂X1 . . . Xm:σ, which shows that every carrier is nonempty. The rest of
the proof is unchanged. Thus, we have constructed a Kripke structure with nonempty carriers such
that, E `β Γ .M � N :σ using any terms over the expanded signature Σc iff A `̀ β+ Γ .M � N :σ.
Using the reasoning of theorem 7.3, if E `̀ β+ Γ . M � N :σ, then E `β Γ . M � N :σ, using any
terms over the expanded signature Σc.

Now, given any set E of inequalities and any inequality Γ.M � N :σ over the original signature
Σ, we observe that if E `β Γ . M � N :σ using any terms over the expanded signature Σc, then
E `β+ Γ . M � N :σ. Indeed, by lemma 7.6, we have E `β Γ ∪ ∆ . M � N :σ, using only terms
over the original signature Σ, for some ∆ such that dom(∆) ∩ dom(Γ) = ∅, and we eliminate all
variables in ∆ using the rule (nonempty). This shows the completeness part of (1). The soundness
part is trivial. The proof for (2) and (3) is similar.

We now consider equations.

8 Proving Equations

In this section, we adapt the results of section 7 to equations. Some simplifications take place.

Formally, an equation Γ . M
.
= N :σ is equivalent to the pair of inequalities Γ . M � N :σ and

Γ . N �M :σ, which amounts to adding the (symmetry) rule

Γ . M1 �M2:σ

Γ . M2 �M1:σ
(symmetry)

to the rules of the system of definition 6.1.

In view of lemma 6.2 and lemma 6.3, the (substitution) rule becomes redundant, and the βη-
theory is equivalent to the exβη-theory. Some of the other congruence rules also become redundant,
for example for π1, π2, inl, inr, 〈−, −〉 and [−, −]. For example, from `β Γ.λx:σ.λy: τ. 〈x, y〉 .=
λx:σ. λy: τ. 〈x, y〉:σ × τ , `β Γ . M1

.
= N1:σ, and `β Γ . M2

.
= N2: τ , we can show that `β

Γ.〈M1, N1〉
.
= 〈M2, N2〉:σ×τ , using (→-congruence) and (β). The resulting simplified equational

proof system is given next.

Definition 8.1 The axioms and inference rules of the equational β-theory of λ→,×,+,∀
2

are defined
below.

Axioms:
Γ . M

.
= M :σ (reflexivity)

Γ . M [N/x]
.
= (λx:σ. M)N : τ (β)

Γ . M [τ/X]
.
= (λX. M)τ :σ[τ/X] (type-β)

Γ . M
.
= π1(〈M, N〉):σ (π1)

Γ . N
.
= π2(〈M, N〉): τ (π2)

Γ . MP
.
= [M, N ]inl(P ): δ (inl)

Γ . NP
.
= [M, N ]inr(P ): δ (inr)

52



Inference Rules:
Γ . M1

.
= M2:σ

∆ . M1
.
= M2:σ

(addvar)

where Γ ⊆ ∆
Γ . M1

.
= M2:σ

Γ . M2
.
= M1:σ

(symmetry)

Γ . M1
.
= M2:σ Γ . M2

.
= M3:σ

Γ . M1
.
= M3:σ

(transitivity)

Γ . M1
.
= M2: (σ → τ) Γ . N1

.
= N2:σ

Γ . (M1N1)
.
= (M2N2): τ

(→-congruence)

Γ, x:σ .M1
.
= M2: τ

Γ . λx:σ. M1
.
= λx:σ. M2: (σ → τ)

(ξ)

Γ . M1
.
= M2:∀X. σ

Γ . (M1τ)
.
= (M2τ):σ[τ/X]

(∀-congruence)

Γ, X: ? . M1
.
= M2:σ

Γ . λX. M1
.
= λX. M2: ∀X. σ

(type-ξ)

The notation `β Γ . M
.
= N :σ means that the equation Γ . M

.
= N :σ is provable from the

above axioms and inference rules.

The equational extensional βη-theory of the system λ→,×,+,∀
2

is obtained by adding the following
η-like rules to the axioms and inference rules of the β-theory:

Γ . M
.
= λx:σ. (Mx): (σ → τ) (η)

where x /∈ FV (M);
Γ . M

.
= λX. (MX):∀X. σ (type-η)

where X /∈ FTV (M);
Γ . M

.
= 〈π1(M), π2(M)〉:σ × τ (pair)

Γ . M
.
= [λx:σ. (Minl(x)), λy: τ. (Minr(y))]: (σ + τ)→ δ (copair)

The notation `βη Γ .M
.
= N :σ means that the equation Γ .M

.
= N :σ is provable from all the

axioms and the inference rules of the βη-theory, including the η-like rules.

Definition 6.4 can be restated for equations rather than inequalities, using the proof system of
definition 8.1. Similarly, definition 6.5 can be restated for equations, but (1) has to be redefined in
terms of =, instead of �:

(1) For every equation Γ .M
.
= N :σ, we say that Γ .M

.
= N :σ holds at u and ρ in A, denoted

as A, u `̀ β (Γ . M
.
= N :σ)[ρ], iff whenever u `̀ Γ[ρ], then

A[[Γ . M :σ]]ρu = A[[Γ . N :σ]]ρu.

We have the following soundness and completeness theorem.

53



Theorem 8.2 For any set E of equations, the following properties hold: (1) E `̀ β Γ . M
.
= N :σ

iff E `β Γ . M
.
= N :σ; (2) E `̀ βη Γ . M

.
= N :σ iff E `βη Γ . M

.
= N :σ.

Proof . (1) We consider the set E ′ of inequalities obtained from E by adding the converse of
every axiom and the converse of every equation in E . It easily verified that E `β Γ . M

.
= N :σ iff

E ′ `β Γ . M � N :σ and E ′ `β Γ . N � M :σ. Then, we apply theorem 7.7. The proof for (2) is
similar.

The equational version of rule (nonempty) is shown below:

Γ, x:σ .M1
.
= M2: τ

Γ . M1
.
= M2: τ

(nonempty)

provided that x /∈ FV (M1) ∪ FV (M2). Then, we also have the following equational version of
theorem 7.7.

Theorem 8.3 For any set E of equations, the following properties hold: (1) E `̀ β+ Γ . M
.
= N :σ

iff E `β+ Γ . M
.
= N :σ; (2) E `̀ βη+ Γ . M

.
= N :σ iff E `βη+ Γ . M

.
= N :σ.

Proof . Immediate from theorem 7.7, in view of the proof of theorem 8.2.

9 Conclusion and Suggestions for Further Research

A new class of Kripke structures for the second-order λ-calculus was defined, and the soundness
and completeness of some proof systems for proving inequalities (rewrite rules) or equations was
investigated. The Kripke structures considered in this paper form a more general class of structures
than the applicative structures introduced by Mitchell and Moggi, since they are equipped with
preorders that correspond to an abstract form of reduction, and they are not necessarily extensional.
This approach allows us to consider models of sets of rewrite rules, as well as sets of equations. We
obtained soundness and completeness theorems that generalize some results of Mitchell and Moggi
to the second-order λ-calculus, and to sets of inequalities (rewrite rules).

Since this paper is already quite long, we have not considered Kripke second-order logical
relations and their applications, which have been considered by Mitchell and Moggi [12] in the
first-order case. We are confident that some of the basic results will go through, for example the
construction of quotient structures, but the well-known problem of finding useful ways of construct-
ing second-order logical relations remains. We also believe that it would be worth investigating
whether Breazu-Tannen and Coquand’s extensional collapse construction ([1]) can be adapated to
our class of Kripke structures. It would also be interesting to see if the definition of HRO2 and
HEO2 models can be recast in our formalism (Girard [3]). We believe that this is possible. Finally,
it would be interesting to see if the structures of this paper can be extended to richer type theories,
such as generalized type systems (in particular, the theory of constructions).

Acknowledgment : I would like to thank Philippe de Groote and Jim Lipton for some very helpful
comments.

54



References

[1] V. Breazu-Tannen and T. Coquand. Extensional models for polymorphism. Theoretical Com-
puter Science, 59:85–114, 1988.

[2] H. Friedman. Equality between functionals. In R. Parikh, editor, Logic Colloquium, volume
453 of Lecture Notes in Math., pages 22–37. Springer-Verlag, 1975.

[3] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université de Paris VII, June 1972. Thèse de Doctorat d’Etat.

[4] Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer
Science, 45(2):159–192, 1986.

[5] J. Goguen and J. Meseguer. Completeness of many-sorted equational logic. SIGPLAN Notices,
417:9–17, 1982.

[6] C. A. Gunter. Semantics of Programming Languages. Foundations of Computing. MIT Press,
1992.

[7] L. Henkin. Completeness in the theory of types. J. Symbolic Logic, 15(2):81–91, 1950.

[8] B. Jacobs, I. Margaria, and M. Zacchi. Filter models with polymorphic types. Theoretical
Computer Science, 95(1):143–158, 1992.

[9] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic. Springer Verlag, New York,
1992.

[10] A.R. Meyer, J.C. Mitchell, E. Moggi, and R. Statman. Empty types in polymorphic lambda
calculus. In Proc. 14th ACM Symp. on Principles of Programming Languages, pages 253–262.
ACM, 1987.

[11] J. C. Mitchell. A type-inference approach to reduction properties and semantics of polymorphic
expressions. In ACM Conference on LISP and Functional Programming, pages 308–319. ACM,
1986. Reprinted in Logical Foundations of Functional Programming, G. Huet, Ed., Addison
Wesley, 1990, 195-212.

[12] J.C. Mitchell and E Moggi. Kripke-style models for typed lambda calculus. Annals of Pure
and Applied Logic, 51:99–124, 1991.

[13] A.M. Pitts. Polymorphism is set theoretic constructively. In D. H. Pitt, editor, Category
Theory and Computer Science, LNCS, Vol. 283, pages 12–39. Springer-Verlag, 1987.

[14] G.D. Plotkin. Lambda definability in the full type hierarchy. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism,
pages 363–373, London, 1980. Academic Press.

[15] G.D. Plotkin. A semantics for static type inference. Theoretical Computer Science, 1993. To
appear.

55



[16] R.A.G. Seely. Categorical semantics for higher-order polymorphic lambda calculus. J. Symbolic
Logic, 52:969–989, 1987.

[17] R. Statman. Completeness, invariance, and λ-definability. J. Symbolic Logic, 47(1):17–26,
1982.

[18] R. Statman. Equality between functionals, revisited. In Harrington, Morley, Scedrov, and
Simpson, editors, Harvey Friedman’s Research on the Foundations of Mathematics, pages 331–
338. North-Holland, 1985.

56


