
Proving Properties of Typed λ-Terms

Using Realizability, Covers, and Sheaves

Jean Gallier∗

Department of Computer and Information Science
University of Pennsylvania

200 South 33rd St.
Philadelphia, PA 19104, USA

e-mail: jean@saul.cis.upenn.edu

December 17, 2010

Abstract. The main purpose of this paper is to take apart the reducibility method in order to
understand how its pieces fit together, and in particular, to recast the conditions on candidates of
reducibility as sheaf conditions. There has been a feeling among experts on this subject that it
should be possible to present the reducibility method using more semantic means, and that a deeper
understanding would then be gained. This paper gives mathematical substance to this feeling, by
presenting a generalization of the reducibility method based on a semantic notion of realizability
which uses the notion of a cover algebra (as in abstract sheaf theory). A key technical ingredient is
the introduction a new class of semantic structures equipped with preorders, called pre-applicative
structures. These structures need not be extensional. In this framework, a general realizability the-
orem can be shown. Kleene’s recursive realizability and a variant of Kreisel’s modified realizability
both fit into this framework. We are then able to prove a meta-theorem which shows that if a
property of realizers satisfies some simple conditions, then it holds for the semantic interpretations
of all terms. Applying this theorem to the special case of the term model, yields a general theorem
for proving properties of typed λ-terms, in particular, strong normalization and confluence. This
approach clarifies the reducibility method by showing that the closure conditions on candidates of
reducibility can be viewed as sheaf conditions. The above approach is applied to the simply-typed
λ-calculus (with types →, ×, +, and ⊥), and to the second-order (polymorphic) λ-calculus (with
types → and ∀2), for which it yields a new theorem.

∗This research was partially supported by ONR Grant NOOO14-93-1-1217.

1

1 Introduction

Kleene, Kreisel, and others ([13], [16], [26]), introduced realizability , a certain kind of semantics
for intuitionistic logic. Realizability can be used to show that certain axioms are consistent with
certain intuitionistic theories of arithmetic, or to show that certain axioms are not derivable in
these theories (see Kleene [14], Troelstra [26], Troelstra and van Dalen [27], and Beeson [1]). Tait
[24], introduced reducibility (or computability), as a technique for proving strong normalization for
the simply-typed λ-calculus. Girard [7], introduced the method of the candidates of reducibility a
technique for proving strong normalization for the second-order typed λ-calculus (and Fω). Statman
[23] and Mitchell [20], observed that reducibility can be used to prove other properties besides strong
normalization, for example, confluence.

The above lead to some natural observations:

• There are some similarities between reducibility and realizability, but they remain somewhat
implicit.

• Proofs by reducibility use an interpretation of the types, but such interpretations are very
syntactical.

• Proofs by reducibility seem to involve the construction of certain kinds of models.

• Proofs by reducibility use various inductive invariants (due to Girard [6, 7], Tait [24, 25], Krivine,
[17]), but it is hard to see what they have in common.

These observations suggest the following two questions which are the primary concerns of this
paper:

1. What is the connection between realizability and reducibility?

2. Is is possible to give more “semantic” versions of proofs using reducibility?

This paper provides some answers to the above questions. But before explaining our results,
we would like to explain our motivations and our point of view a little more. Reducibility proofs
are seductive and thrilling, but also elusive. Following these proofs step-by-step, we see that they
“work” (when they are not wrong!), but I claim that most of us would still admit that they are not
sure why these proofs work! The situation is somewhat comparable to driving a Ferrari (I suppose):
the feeling of power is tremendous, but what exactly is under the hood? What kind of carburator,
what kind of valve mechanism, gives such power and flexibility?

For a number of years, I have tried to take apart the wonderful engine of the reducibility
method, look inside its carburator, etc. Mathematically, in order to make some progress, it is
often necessary to understand the various axioms that are used in a complex proof. It is often
necessary to understand which ingredients of a proof are incidental, and which are really crucial
to the proof. For example, in reducibility proofs, since the objective is usually to prove strong
normalization, conditions specific to strong normalization are usually intimately mixed with other
conditions on candidates. However, this is placing somewhat of a straight-jacket on the method of
reducibility, and this is also somewhat confusing. Indeed, we know that other properties besides
strong normalization can be shown, even some that cannot follow from strong normalization, for

2

instance, head-normalization, in the case of the pure λ-calculus (for several examples, see Krivine
[17]).

Similarly, properties of substitutions are usually needed in middle of reducibility proofs, and I
often wondered why. Another instance of a confusing overlap is that in approaches where reducibil-
ity is generalized to apply to a general property P, it is assumed that P satisfies the candidate
conditions. As we shall see, this is unnecessary.

This paper consists of the observations that we find worth reporting, resulting from our many
attempts to take the reducibility engine apart.

First, we found that it was necessary to step away from the syntax to have a clearer view.
Thus, we define an abstract notion of semantic realizability which uses the notion of a cover al-
gebra (covering families used in abstract sheaf theory). For this, we introduce a new class of
structures equipped with preorders, called pre-applicative structures. These structures need not be
extensional. Kleene’s recursive realizability and a variant of Kreisel’s modified realizability both
fit into this framework. In this setting, it turns out that the family (r[[σ]])σ∈T of sets of realizers
associated with the types, is a sheaf. Secondly, we consider abstract properties P of these sets of
realizers. The main theorem is the following: provided that the abstract property P satisfies some
fairly simple conditions (P1)-(P5), if a type σ is provable and M is a proof for σ, then the meaning
A[[M]]ρ of M is a realizer of σ that satisfies the property P. As a corollary, considering the term
model for the simply-typed λ-calculus (with types →, ×, +, and ⊥), we obtain simple proofs for
strong normalization and confluence. We also extend our method to system F.

We had previously disovered that it was possible to prove a general meta-theorem for the simply-
typed λ-calculus (Gallier [5]). However, this previous work is still purely syntactical, and in our
opinion, the present work goes much further in clarifying the nature of the candidate conditions,
and separating the semantic from the syntactic components of reducibility proofs.

In our opinion, the new light on the reducibility method is that the conditions on the candidates
of reducibility are not just a lucky strike (nevetherless, we still admire Girard, Tait, and other
creators of the reducibility method for their remarkable intuition). In fact, these conditions can
be viewed as sheaf conditions. I remember vividly when this idea occurred to me on December 8,
1992, while Jim Lipton was lecturing on cover conditions for sheaf models of intuitionistic logic.
For several weeks, Jim had been lecturing on realizability methods, and when he explained how
cover conditions unified all these approaches, I realized that the same idea could be applied to the
conditions on candidates of reducibility. From that point on, it was very natural to attempt to
define semantic realizability models of the reduction relation, and not of the convertibility relation
(which is probably what held people back). Indeed, these models are not models of λ-calculi in
the traditional sense, since they are not models of the convertibility relation, but instead models of
the reduction relation. This idea is actually not new, and has been explored by Girard [8], Jacobs,
Margaria, and Zacchi [12], and Plotkin [22]. However, our class of models is new, and the way we
use them certainly appears to be new, although the next paragraph may attenuate our claim. In
any case, our method has the advantage of dissociating the more semantic components of proofs
of reducibility from the purely syntactic components, which have to do with the λ-calculus under
consideration.

In a recent paper, Hyland and Ong [11] show how strong normalization proofs can be obtained
from the construction of a modified realizability topos. Very roughly, they show how a suitable

3

quotient of the strongly normalizing untyped terms can be made into a categorical (modified re-
alizability) interpretation of system F. There is no doubt that Hyland and Ong’s approach and
our approach are somewhat related, but the technical details are very different, and we are unable
to make a precise comparison at this point. What we can say is that our aim is not to provide
a new class of categorical models, but rather to provide a better axiomatization of the conditions
that make the proof go through. For this purpose, we believe that the notion of a cover algebra is
particularly well suited. Clearly, further work is needed to clarify the connection between Hyland
and Ong’s approach and ours.

In order to motivate our approach and to help the reader’s intuition, we first sketch our approach
for the simply-typed λ-calculus λ→.

Recall that the types and the terms of λ→ are given by the following grammar:

σ: : = b | (σ → σ)

M : : = c | x | (MM) | (λx:σ. M).

The type-checking rules are as usual (see section 2), and we let Λσ denote the set of λ-terms of
type σ.

It is important to observe that there are two classes of terms:

1. Those created by introduction rules, or I-terms, λx:σ. M ;

2. Those created by elimination rules, MN .

I-terms play a special role, because the only way to create a redex is to combine an I-term with
some other term. Terms that are not I-terms, are called simple, or neutral : x, c, MN .

Girard realized the importance of simple terms (see his (CR1-CR3)-conditions in Girard [7]).
However, Koletsos [15] realized the following crucial fact:

Fact: MN
∗−→β Q, where Q is an I-term, only if M itself reduces to an I-term.

Let P = (Pσ)σ∈T be a family of properties of the simply-typed λ-terms (that type-check). For
example, M ∈ Pσ holds iff M is strongly normalizing (SN), or M ∈ Pσ holds iff confluence holds
from M . In Gallier [5], we obtained the following theorem.

Theorem A. Let P be a family satisfying the conditions:

(P1) x ∈ Pσ, c ∈ Pσ, for every variable x and constant c of type σ.

(P2) If M ∈ Pσ and M −→β N , then N ∈ Pσ.

(P3) If M is simple, M ∈ Pσ→τ , N ∈ Pσ, and (λx:σ.M ′)N ∈ Pτ whenever M
+−→β λx:σ.M ′, then

MN ∈ Pτ .

(P4) If M ∈ Pτ , then λx:σ. M ∈ Pσ→τ .

(P5) If N ∈ Pσ and M [N/x] ∈ Pτ , then
(λx:σ. M)N ∈ Pτ .

4

Then, Pσ holds for all terms of type σ, i.e. Pσ = Λσ, for every σ ∈ T .

In particular, SN and confluence are easily shown to satisfy conditions (P1)-(P5), and as a
corollary, we obtain that SN and confluence hold for λ→.

The proof of Theorem A uses a version of reducibility in which the types are interpreted as
follows:

[[σ]] = Pσ, σ a base type,

[[σ → τ]] = {M | M ∈ Pσ→τ , and for all N,

if N ∈ [[σ]] then MN ∈ [[τ]]}.

The other crucial concept used in the proof is the notion of a P-candidate, inspired by the work
of Girard, Koletsos, and Mitchell.

A family S = (Sσ)σ∈T of nonempty sets of terms is a P-candidate iff it satisfies the following
conditions:

(S1) Sσ ⊆ Pσ.

(S2) If M ∈ Sσ and M −→β N , then N ∈ Sσ.

(S3) If M is simple, M ∈ Pσ, and λx: γ. M ′ ∈ Sσ whenever M
+−→β λx: γ. M ′, then M ∈ Sσ.

Condition (S3) can be rewritten as follows:

(S3) If M is simple, M ∈ Pσ, and Q ∈ Sσ whenever M
+−→β Q and Q is an I-term, then M ∈ Sσ.

The advantage of the above formulation is that it applies to more general calculi, as long as the
notion of an I-term is well-defined.

We now take the (somewhat wild) step of relating the previous concepts to covers (in the sense
of Grothendieck) and sheaves (see MacLane and Moerdijk [18]). We can think of the set

{N | M +−→β Q
∗−→β N, Q an I-term}

as a cover of M .1 Then, writing Covσ(C,M) for “the set C covers M”, condition (S3) can be
formulated as:

(S3) If Covσ(C,M), and C ⊆ Sσ, then M ∈ Sσ.

We can view S = (Sσ)σ∈T as a functor

S:LT op → Sets,

by letting S(M) = {σ | M ∈ Sσ}, where LT is basically the term model, with preorder N �M iff
M

∗−→β N . Indeed, (S2) says that S(M) ⊆ S(N) if N �M . Then, (S3) can be formulated as:

1When M is a simple term that is not stubborn, see section 12 for details.

5

(S3) If Covσ(C,M), and σ ∈ S(N) for every N ∈ C, then σ ∈ S(M).

For those familar with sheaves, this looks like a “sheaf condition”. Indeed, the covers arising
in reducibility proofs satisfy some conditions defined by Grothendieck in the sixties! These are the
conditions for Grothendieck topologies on sites (see MacLane and Moerdijk [18]).

In order to make all this clear, first, we need to define some appropriate semantic structures
that will be our sites. Normally, sites are categories. Thus, we will consider semantic structures
where the carriers are equipped with preorders. These preorders are a semantic version of reduction
(
∗−→β).

In order to understand what motivated the definition of the semantic structures used in this
paper, it is useful to review the usual definition of an applicative structure for the simply-typed λ-
calculus (for example, as presented in Gunter [10]). For simplicity, we are restricting our attention
to arrow types. Let T be the set of simple types built up from some base types using the constructor
→. Given a signature Σ of function symbols, where each symbol in Σ is assigned some type in T ,
an applicative structure A is defined as a triple

〈(Aσ)σ∈T , (appσ,τ)σ,τ∈T , Const〉,

where

1. (Aσ)σ∈T is a family of nonempty sets called carriers,

2. (appσ,τ)σ,τ∈T is a family of application operators, where each appσ,τ is a total function
appσ,τ :Aσ→τ ×Aσ → Aτ ;

3. and Const is a function assigning a member of Aσ to every symbol in Σ of type σ.

The meaning of simply-typed λ-terms is usually defined using the notion of an environment ,
or valuation. A valuation is a function ρ:X →

⋃
(Aσ)σ∈T , where X is the set of term variables.

Although when nonempty carriers are considered (which is the case right now), it is not really
necessary to consider judgements for interpreting λ-terms, since we are going to consider more
general applicative structures, we define the semantics of terms using judgements. Recall that a
judgement is an expression of the form Γ . M :σ, where Γ, called a context, is a set of variable
declarations of the form x1:σ1, . . . , xn:σn, where the xi are pairwise distinct and the σi are types,
M is a simply-typed λ-term, and σ is a type. There is a standard proof system that allows to type-
check terms. A term M type-checks with type σ in the context Γ (where Γ contains an assignment
of types to all the variables in M) iff the judgement Γ . M :σ is derivable in this proof system.
Given a context Γ, we say that a valuation ρ satisfies Γ iff ρ(x) ∈ Aσ for every x:σ ∈ Γ (in other
words, ρ respects the typing of the variables declared in Γ). Then given a context Γ and a valuation
ρ satisfying Γ, the meaning [[Γ . M :σ]]ρ of a judgement Γ . M :σ is defined by induction on the
derivation of Γ . M :σ, according to the following clauses:

1. [[Γ . x:σ]]ρ = ρ(x), if x is a variable;

2. [[Γ . c:σ]]ρ = Const(c), if c is a constant;

6

3. [[Γ . MN : τ]]ρ = appσ,τ ([[Γ . M : (σ → τ)]]ρ, [[Γ . N :σ]]ρ),

4. [[Γ.λx:σ.M : (σ → τ)]]ρ = f , where f is the unique element of Aσ→τ such that appσ,τ (f, a) =
[[Γ, x:σ .M : τ]]ρ[x: = a], for every a ∈ Aσ.

Note that in order for the element f ∈ Aσ→τ to be uniquely defined in the last clause, we
need to make certain additional assumptions. First, we assume that we are considering extensional
applicative structures, which means that for all f, g ∈ Aσ→τ , if app(f, a) = app(g, a) for all a ∈ Aσ,
then f = g. This condition garantees the uniqueness of f if it exists. The second condition is more
technical, and asserts that each Aσ contains enough elements so that there is an element f ∈ Aσ→τ
such that appσ,τ (f, a) = [[Γ, x:σ .M : τ]]ρ[x: = a], for every a ∈ Aσ.

Note that each operator appσ,τ :Aσ→τ×Aσ → Aτ induces a function funσ,τ :Aσ→τ → [Aσ ⇒ Aτ],
where [Aσ ⇒ Aτ] denotes the set of functions from Aσ to Aτ , defined such that

funσ,τ (f)(a) = appσ,τ (f, a),

for all f ∈ Aσ→τ , and all a ∈ Aσ. Then, extensionality is equivalent to the fact that each funσ,τ is
injective. Note that funσ,τ :Aσ→τ → [Aσ ⇒ Aτ] is the “curried” version of appσ,τ :Aσ→τ×Aσ → Aτ ,
and it exists because the category of sets is Cartesian-closed.

The clause defining [[Γ . λx:σ.M : (σ → τ)]]ρ suggests that a partial map abstσ,τ : [Aσ ⇒ Aτ] →
Aσ→τ , “abstracting” a function ϕ ∈ [Aσ ⇒ Aτ] into an element abstσ,τ (ϕ) ∈ Aσ→τ , can be defined.
For example, the function ϕ defined such that ϕ(a) = [[Γ, x:σ .M : τ]]ρ[x: = a] would be mapped to
[[Γ . λx:σ.M : (σ → τ)]]ρ. In order for the resulting structure to be a model of β-reduction, we just
have to require that funσ,τ and abstσ,τ satisfy the axiom

funσ,τ (abstσ,τ (ϕ)) = ϕ,

whenever ϕ ∈ [Aσ ⇒ Aτ] is in the domain of abstσ,τ . But now, observe that if pairs of operators
funσ,τ , abstσ,τ satisfying the above axiom are defined, the injectivity of funσ,τ is superfluous for
defining [[Γ . λx:σ. M : (σ → τ)]]ρ.

Thus, by defining a more general kind of applicative structure using the operators funσ,τ and
abstσ,τ , we can still give meanings to λ-terms, even when these structures are nonextensional. In
particular, our approach is an alternative to the method where one considers applicative structures
with meaning functions, as for example in Mitchell [20]. In particular, the term structure together
with the meaning function defined using substitution can be seen to be an applicative structure
according to our definition. In fact, this approach allows us to go further. We can assume that
each carrier Aσ is equipped with a preorder �σ, and rather than considering the equality

funσ,τ (abstσ,τ (ϕ)) = ϕ,

we can consider inequalities
funσ,τ (abstσ,τ (ϕ)) � ϕ.

This way, we can deal with intentional (nonapplicative) structures that model reduction rather
than conversion. We learned from Gordon Plotkin that models of β-reduction (or βη-reduction)
have been considered before, in particular by Girard [8], Jacobs, Margaria, and Zacchi [12], and

7

Plotkin [22]. However, except for Girard who studies qualitative domains for system F, the other
authors consider models of the untyped λ-calculus. A brief presentation of these models can be
found at the end of section 3.

Let us now briefly discuss how to generalize the above approach to the second-order (polymor-
phic) λ-calculus (with types→ and ∀2). For this, we generalize pre-applicative structures. We now
have a type algebra T , that we use to interpret the (syntactic) types. Then, the set of realizers
r[[σ]]µ associated with a type σ depends on a valuation µ that assigns a pair 〈s, S〉 to every type
variable, where s is an element of the type algebra T , and S is the s-component of some sheaf
S = (Ss)s∈T . In this setting, it turns out that the family (r[[σ]]µ)σ∈T of sets of realizers associated
with the types, is itself a sheaf. Actually, we consider abstract properties P of these sets of realiz-
ers. The main theorem is the following: provided that the abstract property P satisfies some fairly
simple conditions (P1)-(P5), if Γ . M :σ and ρ(y) ∈ r[[δ]]µ for every y: δ ∈ Γ, then the meaning
A[[Γ .M :σ]]ρ of Γ .M :σ is a realizer of σ that satisfies the property P. As an application, consid-
ering a suitable term model for the second-order λ-calculus, we obtain a new theorem for proving
properties of terms in λ→,∀

2
. As a corollary, we obtain simple proofs for strong normalization and

confluence. This approach sheds some new light on the reducibility method and the conditions on
the candidates of reducibility. These conditions can be viewed as sheaf conditions.

In order to understand what motivated our definition of second-order pre-applicative structures,
it is useful to review the definition of an applicative structure for the second-order (polymorphic)
λ-calculus. In order to deal with second-order types, first, we need to provide an interpretation
of the type variables. Thus, as in Breazu-Tannen and Coquand [2], we assume that we have an
algebra of types, which consists of a quadruple

〈T,→, [T ⇒ T],∀〉,

where T is a nonempty set of types, →:T × T → T is a binary operation on T , [T ⇒ T] is a
nonempty set of functions from T to T , and ∀ is a function ∀: [T ⇒ T]→ T . We hope that readers
will forgive us for denoting an algebra of types 〈T,→, [T ⇒ T], ∀〉 with the same symbol T .

Intuitively, given a valuation θ:V → T (where V is the set of type variables), a type σ ∈ T will
be interpreted as an element [[σ]]θ of T . Then, a second-order applicative structure is defined as a
tuple

〈T, (As)s∈T , (apps,t)s,t∈T , (tappΦ)Φ∈[T→T]〉,

where

1. T is an algebra of types;

2. (As)s∈T is a family of nonempty sets called carriers,

3. (apps,t)s,t∈T is a family of application operators, where each apps,t is a total function
apps,t:As→t ×As → At;

4. (tappΦ)Φ∈[T→T] is a family of type-application operators, where each tappΦ is a total function

tappΦ:A∀(Φ) × T →
∐

(AΦ(s))s∈T , such that tappΦ(f, t) ∈ AΦ(t), for every f ∈ A∀(Φ), and
every t ∈ T .

8

In order to define second-order applicative structures using operators like fun and abst, we
need to define the curried version tfunΦ of tappΦ:A∀(Φ) × T →

∐
(AΦ(s))s∈T . For this, we define

a kind of dependent product
∏

Φ(As)s∈T (see definition 14.2). Then, we have families of operators
tfunΦ:A∀(Φ) →

∏
Φ(As)s∈T , and tabstΦ:

∏
Φ(As)s∈T → A∀(Φ), for every Φ ∈ [T ⇒ T].

This paper is organized as follows. The syntax of the simply-typed λ-calculus λ→,×,+,⊥ is
reviewed in section 2. Pre-applicative structures for λ→ are defined in section 3, and some examples
are given. The crucial notions of P-cover algebras and of P-sheaves are defined for λ→ in section 4.
The notion of P-realizability is defined for λ→ in section 5. In section 6, it is shown how to interpret
terms in λ→ in pre-applicative structures. The realizability theorem for the typed λ-calculus λ→

is shown in section 7. Pre-applicative structures for the typed λ-calculus λ→,×,+,⊥ are defined in
section 8. The notions of P-cover algebras and P-realizability are extended to λ→,×,+,⊥ in section
9. In section 10, it is shown how to interpret terms in λ→,×,+,⊥ in pre-applicative structures. The
realizability theorem for the typed λ-calculus λ→,×,+,⊥ is shown in section 11. Section 12 contains
an application of the main theorem of section 11 to prove a general theorem about terms of the
system λ→,×,+,⊥. The syntax of the second-order λ-calculus λ→,∀

2
is reviewed in section 13. Pre-

applicative structures for λ→,∀
2

are defined in section 14. The notions of P-cover algebras and of
P-sheaves are defined for λ→,∀

2
in section 15. The notion of P-realizability for λ→,∀

2
is defined in

section 16. In section 17, it is shown how to interpret terms in λ→,∀
2

in pre-applicative structures,
and some examples are given. The realizability theorem for the second-order typed λ-calculus λ→,∀

2

is shown in section 18. Section 19 contains an application of the main theorem of section 18 to
prove a new general theorem for λ→,∀

2
(theorem 19.6). Section 20 contains the conclusion and

some suggestions for further research. Extensional and βη pre-applicative structures are defined in
section 21.

2 Syntax of the Typed λ-Calculus λ→,×,+,⊥

Let T denote the set of (simple) types, consisting of base types, including the special base type
⊥, and compound types (σ → τ), (σ × τ), and (σ + τ). The presentation will be simplified if we
adopt the definition of simply-typed λ-terms where all the variables are explicitly assigned types
once and for all. More precisely, we have a family X = (Xσ)σ∈T of variables, where each Xσ is a
countably infinite set of variables of type σ, and Xσ∩Xτ = ∅ whenever σ 6= τ . Using this definition,
there is no need to drag contexts along, and the most important feature of the proof, namely the
reducibility method, is easier to grasp.

Instead of using the construct case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N , it will be more
convenient and simpler to use a slightly more general construct [M, N], where M is of type σ → δ
and N is of type τ → δ, even when M and N are not λ-abstractions. This will be especially
advantageous for the semantic treatment to follow. Then, we can define the conditional construct
case P of inl(x:σ)⇒M | inr(y: τ)⇒ N , where P is of type σ+ τ , as [λx:σ.M, λy: τ.N]P . The
type-checking rules of the system are summarized in the following definition.

Definition 2.1 The terms of the typed λ-calculus λ→,×,+,⊥ are defined by the following rules.

x:σ, when x ∈ Xσ,

9

(we can also have c:σ, for a set of constants that have been preassigned types).

M :⊥
5σ(M):σ

(⊥-elim)

with σ 6=⊥,
M : τ

(λx:σ. M):σ → τ
(abstraction)

where x ∈ Xσ;
M :σ → τ N :σ

(MN): τ
(application)

M :σ N : τ

〈M, N〉:σ × τ
(pairing)

M :σ × τ
π1(M):σ

(projection)
M :σ × τ
π2(M): τ

(projection)

M :σ

inl(M):σ + τ
(injection)

M : τ

inr(M):σ + τ
(injection)

M : (σ → δ) N : (τ → δ)

[M, N]: (σ + τ)→ δ
(co-pairing)

The standard elimination rule for + is:

P :σ + τ M : δ N : δ

(case P of inl(x:σ)⇒M | inr(y: τ)⇒ N): δ
(by-cases)

where x ∈ Xσ and y ∈ Xτ .

We can design reduction rules so that the construct [λx:σ. M, λy: τ. N]P behaves just like
case P of inl(x:σ) ⇒ M | inr(y: τ) ⇒ N . For this, we design more atomic reduction rules for
[M, N]. These rules do not incorporate the β-reduction step implicit in the traditional reduction
rules.

Definition 2.2 The reduction rules of the system λ→,×,+,⊥ are listed below:

(λx:σ. M)N −→M [N/x],

π1(〈M, N〉) −→M,

π2(〈M, N〉) −→ N,

[M, N]inl(P) −→MP,

[M, N]inr(P) −→ NP,

5σ→τ (M)N −→ 5τ (M),

π1(5σ×τ (M)) −→ 5σ(M),

π2(5σ×τ (M)) −→ 5τ (M),

[M, N]5σ+τ (P) −→ 5δ(P).

10

The traditional rules for the case construct are

case inl(P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→M [P/x],

case inr(P) of inl(x:σ)⇒M | inr(y: τ)⇒ N −→ N [P/y].

The above reduction rules can be simulated by the [−, −]-rules of definition 2.2 and β-reduction
as follows:

[λx:σ. M, λy: τ. N]inl(P) −→ (λx:σ. M)P −→β M [P/x],

[λx:σ. M, λy: τ. N]inr(P) −→ (λy: τ. N)P −→β N [P/y].

The reduction relation defined by the rules of definition 2.2 is denoted as −→β (even though
there are reductions other than β-reduction). From now on, when we refer to a λ-term, we mean
a λ-term that type-checks. We let Λσ denote the set of λ-terms of type σ.

Given two preordered sets 〈Aσ, �σ〉 and 〈Aτ , �τ 〉, we let [Aσ ⇒ Aτ] be the set of monotonic
functions w.r.t. �σ and �τ , under the pointwise preorder induced by �τ defined such that, f � g
iff f(a) �τ g(a) for all a ∈ Aσ.

3 Pre-Applicative Structures for λ→

In this section, some new semantic structures called pre-applicative structures are defined. In order
to simplify the presentation, we restrict our attention to the type constructor →, and we do not
discuss extensional or βη pre-applicative structures. We also show that the term model can be
viewed as a pre-applicative β-structures.

Definition 3.1 A pre-applicative β-structure is a structure

A = 〈A, �, fun, abst〉,

where

A = (Aσ)σ∈T is a family of (nonempty) sets called carriers;

(�σ)σ∈T is a family of preorders, each �σ on Aσ;

abstσ,τ : [Aσ ⇒ Aτ] → Aσ→τ , a family of partial operators;

funσ,τ :Aσ→τ → [Aσ ⇒ Aτ], a family of (total) operators.

It is assumed that fun and abst are monotonic. Furthermore, the following condition is satisfied

(1) funσ,τ (abstσ,τ (ϕ)) � ϕ, whenever abstσ,τ (ϕ) is defined for ϕ ∈ [Aσ ⇒ Aτ];

The operators fun induce (total) operators

appσ,τ :Aσ→τ ×Aσ → Aτ , such that, for every f ∈ Aσ→τ and every a ∈ Aσ,

appσ,τ (f, a) = funσ,τ (f)(a).

Then, condition (1) can be written as

11

(1’) appσ,τ (abstσ,τ (ϕ), a) � ϕ(a), for all a ∈ Aσ, for ϕ ∈ [Aσ ⇒ Aτ], whenever abstσ,τ (ϕ) is
defined.

We say that a pre-applicative β-structure is an applicative β-structure iff in condition (1), � is
replaced by the identity relation =.

Intuitively, A is a set of realizers. We will omit superscripts whenever possible.

When A is an applicative β-structure, then, in definition 3.1, condition (1) amounts to

(1) funσ,τ ◦ abstσ,τ = id on the domain of definition of abst.

In this case, abst is injective and fun is surjective on the domain of definition of abst (and left
inverse to abst).

When we use a pre-applicative β-structure to interpret λ-terms, we assume that the domain of
abst is sufficiently large, but we have not elucidated this last condition yet. Given M ∈ Aσ→τ and
N ∈ Aσ, app(M,N) is also denoted as MN .

We can also define extensional pre-applicative structures and pre-applicative βη-structures, but
this will done later.

Let us give an (important) example of a pre-applicative β-structure.

Definition 3.2 Let Aσ = Λσ be the set of all typed λ-terms of type σ. We let app be the obvious
construct (app(M,N) = MN). Define N � M iff M

∗−→β N . Finally, we need to define abst.
For every (type-preserving) substitution ϕ, for every term M : τ and for every variable x of type σ,
consider the function ϕ[x:σ .M : τ] from Aσ to Aτ , defined such that,

ϕ[x:σ .M : τ](N) = M [ϕ[x: = N]],

for every N :σ. Given any such function ϕ[x:σ .M : τ], we let

abst(ϕ[x:σ .M : τ]) = (λx:σ. M)[ϕ].

The structure just defined is denoted as LT β.

Clearly, app(abst(ϕ[x:σ .M : τ]), N) � ϕ[x:σ .M : τ](N), since

app(abst(ϕ[x:σ .M : τ]), N) = ((λx:σ. M)[ϕ])N −→β M [ϕ[x: = N]].

Indeed, (λx:σ.M)[ϕ] is α-equivalent to (λy:σ.M [y/x])[ϕ] for any variable y such that y /∈ dom(ϕ)
and y /∈ ϕ(z) for every z ∈ dom(ϕ), and for such a y, (λy:σ.M [y/x])[ϕ] = (λy:σ.M [y/x][ϕ]). Then,
for this choice of y,

(λy:σ. M [y/x][ϕ])N −→β M [y/x][ϕ][N/y] = M [ϕ[x: = N]].

We learned from Gordon Plotkin that models of β-reduction (or βη-reduction) have been con-
sidered before, in particular by Girard [8], Jacobs, Margaria, and Zacchi [12], and Plotkin [22]. In
[8], definition 1.12, Girard defines a λ-structure as a triple D = 〈X,H,K〉 consisting of

12

(i) a qualitative domain X,

(ii) a stable function H from X to X ⇒ X, and

(iii) a stable function K from X ⇒ X to X,

where X ⇒ X is the set of all traces of stable functions from X to X. Girard then shows
that a λ-structure D models β-reduction if H ◦ K ⊂ IdX⇒X , and that D models η-reduction if
K ◦H ⊂ IdX (note that the partial order ⊂ corresponds to the opposite of our ordering �). Girard
also states that such structures have nice features, in particular because they can be approximated
by finite λ-structures.

The major difference with our approach is that the above models are intended for the untyped
λ-calculus, and that we do not have a construct such as X ⇒ X.

In [22], section 3, Plotkin introduces a notion of model of β-reduction that he calls an ordered
λ-interpretation. After Mitchell [20], Plotkin defines such a structure as a triple P = 〈P, ·, [[·]](·)〉,
where P is a partial order, · is a monotonic application operation ·:P × P → P , and [[·]](·) is a
meaning function, that maps terms and environments to P , and such that some obvious conditions
on [[]](·) hold. If the condition

[[λx. M]](ρ) · a � [[M]](ρ[x: = a]),

holds, we say that P is a model of β-reduction. Plotkin then proceeds to show that such models are
sound and complete with respect to Curry-style type inference systems (also know as systems for F -
deducibility), for various type disciplines. The main difference with our approach is that Plotkin’s
structures are models of the untyped λ-calculus, and that meaning functions are an intrinsic part
of their definition. In our definition, the meaning function is not part of the definition, but it is
uniquely defined. For our purposes, this is a much more suitable approach.

Jacobs, Margaria, and Zacchi [12] define models of β-reduction, β-expansion, and β-conversion,
quite similarly to Girard, but using cpo’s, with D ⇒ D the set of all Scott-continuous functions
from D to D. They proceed to show how to construct models of filters with polymorphic and
intersection types.

Other references to models of reduction can be found in Plotkin [22].

4 P-Cover Algebras and P-Sheaves
In this section, we introduce the bare minimum of concepts needed for understanding the notion
of a sheaf on a site. Usually, sites are defined as categories with a notion of a cover, also called
a Grothendieck topology (see MacLane and Moerdijk [18]). However, we are only dealing with
very special categories, namely preorders, and in such a case, the definition of a Grothendieck
topology can be simplified. For example, a sieve, rather than being a set of arrows, is just an ideal.
Thus, we will define all the necessary concepts in terms of preorders, referring the interested reader
to MacLane and Moerdijk [18] for a general treatment. Originally, the concept of a Grothendieck
topology was introduced in order to generalize the notion of an open cover, so that sheaves could be
defined on domains that are not necessarily topological spaces. Thus, the terminology “topology”

13

is not the most appropriate, since what is really been generalized is the notion of a cover, and not
the notion of a topology, and following Grayson [9], we prefer to use the term cover algebra. First,
we need some preliminary definitions before defining the crucial notion of a cover. From now on,
unless specified otherwise, it is assumed that we are dealing with pre-applicative β-structures (and
thus, we will omit the prefix β).

Definition 4.1 Given a pre-applicative structure A, for any M ∈ Aσ, a sieve on M is any subset
C ⊆ Aσ such that, N � M for every N ∈ C, and whenever N ∈ C and Q � N , then Q ∈ C.
In other words, a sieve on M is downwards closed and below M (it is an ideal below M). The
sieve {N | N � M} is called the maximal (or principal) sieve on M . A covering family on a
pre-applicative structure A is a family Cov of binary relations Covσ on 2A

σ × Aσ, relating subsets
of Aσ called covers, to elements of Aσ. Equivalently, Cov can be defined as a family of functions

Covσ:Aσ → 22A
σ

assigning to every element M ∈ Aσ a set Cov(M) of subsets of Aσ (the covers of
M). Given any M ∈ Aσ, the empty cover ∅ and the principal sieve {N | N � M} are the trivial
covers. We let triv(M) denote the set consisting of the two trivial covers of M . A cover which is
not trivial is called nontrivial .

In the rest of this paper, we will consider binary relations P ⊆ A×T , such that P(M,σ) implies
M ∈ Aσ, and for every σ ∈ T , there is some M ∈ Aσ s.t. P(M,σ). Equivalently, P can be viewed
as a family P = (Pσ)σ∈T , where each Pσ is a nonempty subset of Aσ. The intuition behind P is
that it is a property of realizers. In this section, we will only consider cover conditions for the arrow
type.

Definition 4.2 Let A be a pre-applicative structure and let P be a family P = (Pσ)σ∈T , where
each Pσ is a nonempty subset of Aσ. A P-cover algebra (or P-Grothendieck topology) on A is a
family Cov of binary relations Covσ on 2A

σ ×Aσ satisfying the following properties:

(0) Covσ(C,M) implies M ∈ Pσ (equivalently, P(M,σ)).

(1) If Cov(C,M), then C is a sieve on M (an ideal below M).

(2) If M ∈ Pσ, then Cov({N | N �M},M) (M ∈ Pσ is covered by the principal sieve on M).

(5) If Cov(M) = triv(M), then Cov(MN) = triv(MN), and if Cov(C,M) and Cov(D,MN)
with C and D nontrivial, then for every Q ∈ D, there is some M ′ ∈ C such that Q �M ′N .

A triple 〈A,P, Cov〉, where A is pre-applicative structure, P is a property on A, and Cov is a
P-Grothendieck topology, is called a P-site.

Condition (0) is needed to restrict attention to elements having the property P. Covers only
matter for these elements. Conditions (1)-(2) are two of the conditions for a set of sieves to be a
Grothendieck topology, in the case where the base category is a preorder 〈A,�〉. Conditions (3)
and (4) are missing, because they are only needed for the sum type + (or the existential type).
They are also conditions on a Grothendieck topology.2 Condition (5) is needed to take care of the

2Readers who are anxious to see the full set of conditions should take a look at definition 9.1.

14

extra structure. Note that it is not necessary to assume that covers are ideals (downwards closed),
but this is not harmful.

We need to come up with a semantic characterization of the simple terms, and also of the notion
of a stubborn element. This can be done as follows in terms of covers.

Definition 4.3 We say that M ∈ Aσ is simple iff Cov(C,M) for at least two distinct covers C. We
say that M ∈ Aσ is stubborn iff Cov(M) = triv(M) (thus every stubborn element is simple). We
say that a P-site 〈A,P, Cov〉 is scenic iff all elements of the form app(M,N) (or MN) are simple.

An an example, let us consider the pre-applicative structure LT β of definition 3.2. Recall that
an I-term is a term of the form λx:σ.M . A simple term (or neutral term) is a term that is not an
I-term. Thus, a simple term is either a variable x, a constant c, or an application MN . A term M

is stubborn iff it is simple and, either M is irreducible, or M ′ is a simple term whenever M
+−→β M

′

(equivalently, M ′ is not an I-term).

Let P be a (unary) property of typed λ-terms. We define a cover algebra Cov on the structure
LT β as follows.

(1) If M ∈ Pσ and M is an I-term, then

Cov(M) = {{N | M ∗−→β N}}.

(2) If M ∈ Pσ and M is a (simple and) stubborn term, then

Cov(M) = {∅, {N | M ∗−→β N}}.

(3) If M ∈ Pσ and M is a simple and non-stubborn term, then

Cov(M) = {{N | M ∗−→β N}, {N | M
+−→β Q

∗−→β N, for some I-term Q}}.

The conditions of definition 4.2 are easily verified. The above notion of a cover will be used in
section 12 to prove a general theorem about the simply typed λ-calculus.

From now on, we only consider scenic P-sites. In order for our realizability theorem to hold,
realizers will have to satisfy properties analogous to the properties (P1)-(P5) mentioned in the
introduction.

Definition 4.4 Let 〈A,P, Cov〉 be a P-site. Properties (P1)-(P3) are defined as follows:

(P1) P(M,σ), for some stubborn element M ∈ Aσ.

(P2) If P(M,σ) and M � N , then P(N, σ).

(P3) If Covσ→τ (C,M), P(N, σ), and P(M ′N, τ) whenever M ′ ∈ C, then P(MN, τ).

From now on, we only consider relations (families) P satisfying conditions (P1)-(P3) of definition
4.4. Condition (P1) says that each Pσ contains some stubborn element. Finally, we are ready for
the crucial notion of a sheaf property. This property is a crucial inductive invariant with respect
to the notion of realizability defined in section 5. Recall that T denotes the set of simples types
built up using the type constructor →.

15

Definition 4.5 Let 〈A,P, Cov〉 be a P-site. A function S:A → 2T has the sheaf property (or is a
P-sheaf) iff it satisfies the following conditions:

(S1) If σ ∈ S(M), then M ∈ Pσ.

(S2) If σ ∈ S(M) and M � N , then σ ∈ S(N).

(S3) If Covσ(C,M) and σ ∈ S(N) for every N ∈ C, then σ ∈ S(M).

A function S:A → 2T as in definition 4.5 can also be viewed as a family S = (Sσ)σ∈T , where
Sσ = {M ∈ A | σ ∈ S(M)}. Then, the sets Sσ are called P-candidates. The conditions of definition
4.5 are then stated as follows:

(S1) Sσ ⊆ Pσ.

(S2) If M ∈ Sσ and M � N , then N ∈ Sσ.

(S3) If Covσ(C,M), and C ⊆ Sσ, then M ∈ Sσ.

This second set of conditions is slightly more convenient for proving our results. Note that
according to the first definition, S can also be viewed as a mapping

S:A → Sets.

Then, (S2) means that M � N implies S(M) ⊆ S(N). Thus, S is in fact a functor

S:Aop → Sets,

viewing Aop equipped with the preorder �, the opposite of the preorder �, as a category. It turns
out that the conditions of definition 4.5 mean that this functor is a sheaf for the Grothendieck
topology of definition 4.2.

Note that condition (S3) is trivial when C is the principal cover on M , since in this case, M
belongs to C. Thus, condition (S3) is only interesting when M is simple, and from now on, this
is what we will assume when using condition (S3). Also, since Covσ(C,M) implies that P(M,σ),
any P satisfying conditions (P1)-(P3) trivially satisfies the sheaf property. Finally, note that (S3)
and (P1) imply that Sσ is nonempty and contains all stubborn elements in Pσ (because stubborn
elements have the empty cover).

By (P3), if M ∈ Pσ→τ is stubborn and N ∈ Pσ is any element, then MN ∈ Pτ . Furthermore,
MN is also stubborn. This follows from property (5) of a cover. Thus, if M ∈ Pσ→τ is stubborn
and N ∈ Pσ is any element, then MN ∈ Pτ is stubborn.

We conclude this section by showing explicitly that definition 4.5 is indeed a sheaf condition (for
a general and complete treatment, see MacLane and Moerdijk [18]). A pre-applicative structure
A can be viewed as a category whose objects are the elements of A, and whose arrows are defined
such that there is a single arrow denoted a → b from a to b iff a � b. Then, Aop is the category
with the same objects as A but with the reverse arrows (i.e., there is an arrow from a to b in Aop
iff a � b).

Let F :Aop → Sets be a functor. Thus, F assigns a set F (a) to every element a ∈ A, and a
function F (b → a):F (b) → F (a) to every pair a, b ∈ A such that a � b (with the usual functorial

16

conditions). For the sake of brevity, let us denote F (b → a):F (b) → F (a) as F ba :F (b) → F (a).
Given any a ∈ A, for any x ∈ F (a) and any b ∈ A such that b � a, F ab (x) is a member of the set
F (b) that we will also denote as x|b. We can think of x|b as the restriction of x ∈ F (a) to F (b).

Definition 4.6 Given a site 〈A,P, Cov〉 and a functor F :Aop → Sets, for any a ∈ A and any
cover C of a (a set C such that Cov(C, a)), a family {xc | xc ∈ F (c), c ∈ C} is a matching family
for C iff for every c ∈ C,

xc|d = xd for every d � c.

An amalgamation of a matching family {xc | xc ∈ F (c), c ∈ C} is an element x ∈ F (a) such that

x|c = xc for every c ∈ C.

The functor F is a sheaf iff for every a ∈ A, every cover C of a (a set C such that Cov(C, a)), and
every family {xc | xc ∈ F (c), c ∈ C}, if {xc | xc ∈ F (c), c ∈ C} is a matching family for C, then
it has a unique amalgamation x ∈ F (a). The functor F is a P-sheaf iff it is a sheaf, and for every
a ∈ A, F (a) ⊆ T and σ ∈ F (a) implies that a ∈ Pσ.

Since a cover is a sieve, d � c for c ∈ C implies that d ∈ C, and so xd is a well defined element
(of F (d)). If in A, any two elements have a greatest lower bound, it can easily be shown that
{xc | xc ∈ F (c), c ∈ C} is a matching family for C iff for all c, d ∈ C, then

xc|c ∧ d = xd|c ∧ d.

If the functor F is a sheaf and has the property that the maps F ba :F (b) → F (a) (with a � b)
are inclusion maps, then for any matching family {xc | xc ∈ F (c), c ∈ C}, if x is its amalgamation,
x|c = xc implies that x = xc for all c ∈ C. Thus, in this case, a matching family consists of a single
element x such that x ∈ F (c) for all c ∈ C. Then, the property of being a sheaf is equivalent to
the following condition: For every a ∈ A, for every cover C of a,

if x ∈ F (c) for every c ∈ C, then x ∈ F (a).

Now, the functor S:Aop → Sets defined earlier is such that M � N implies S(M) ⊆ S(N). Thus,
it is indeed technically true that definition 4.5 means that the functor S is a P-sheaf with respect
to the Grothendieck topology defined by Cov.

5 P-Realizability for the Arrow Type

In this section, we define a semantic notion of realizability. This notion is such that realizers
are elements of some pre-applicative structure. In the special case when only the arrow type is
considered, the definition of realizability does not refer to covers. However, cover conditions are
needed for proving lemma 5.2, which basically shows that the notion of a P-sheaf is an invariant
w.r.t. realizability. The notion of P-realizability is defined as follows.

Definition 5.1 Let 〈A,P, Cov〉 be a P-site. The sets r[[σ]] of realizers of σ are defined as follows:

r[[σ]] = Pσ, σ a base type,

r[[σ → τ]] = {M | M ∈ Pσ→τ , and for all N , if N ∈ r[[σ]] then MN ∈ r[[τ]]}.

17

Note that instead of defining the family of sets r[[σ]], we could have defined a binary relation
r such that M r σ iff M ∈ r[[σ]]. This is the more standard way of defining realizability. Another
important point worth noting is that in the definition of r[[σ → τ]], we are considering only those
M such that M ∈ Pσ→τ . One might be concerned that this will cause difficulties in proving lemma
5.2, but conditions (P1-P3) have been designed to overcome this problem.

Lemma 5.2 Given a scenic P-site 〈A,P, Cov〉, if P satisfies conditions (P1)-(P3), then (r[[σ]])σ∈T
has the sheaf property, and each r[[σ]] contains all stubborn elements in Pσ.

Proof . We proceed by induction on types. If σ is a base type, r[[σ]] = Pσ, and obviously, every
stubborn element in Pσ is in r[[σ]]. Since r[[σ]] = Pσ, (S1) is trivial, (S2) follows from (P2), and (S3)
is also trivial.3

We now consider the induction step.

(S1). By the definition of r[[σ → τ]], (S1) is trivial.

(S2). Let M ∈ r[[σ → τ]], and assume that M � M ′. Since M ∈ Pσ→τ by (S1), we have
M ′ ∈ Pσ→τ by (P2). For any N ∈ r[[σ]], since M ∈ r[[σ → τ]], we have MN ∈ r[[τ]], and since
M �M ′, by monotonicity of app, we have MN �M ′N . Then, applying the induction hypothesis
at type τ , (S2) holds for r[[τ]], and thus M ′N ∈ r[[τ]]. Thus, we have shown that M ′ ∈ Pσ→τ and
that if N ∈ r[[σ]], then M ′N ∈ r[[τ]]. By the definition of r[[σ → τ]], this shows that M ′ ∈ r[[σ → τ]],
and (S2) holds at type σ → τ .

(S3). Assume that Covσ→τ (C,M), and that M ′ ∈ r[[σ → τ]] for every M ′ ∈ C, where M is
simple. Recall that by condition (0) of definition 4.2, Covσ→τ (C,M) implies that M ∈ Pσ→τ . We
prove that for every N , if N ∈ r[[σ]], then MN ∈ r[[τ]]. First, we prove that MN ∈ Pτ , and for this
we use (P3).

First, assume that M ∈ Pσ→τ is stubborn, and let N be in r[[σ]]. By (S1), N ∈ Pσ. By the
induction hypothesis, all stubborn elements in Pτ are in r[[τ]]. Since we have shown that MN ∈ Pτ
is stubborn whenever M ∈ Pσ→τ is stubborn and N ∈ Pτ , we have M ∈ r[[σ → τ]].

Now, consider M ∈ Pσ→τ non stubborn. If M ′ ∈ C, then by assumption, M ′ ∈ r[[σ → τ]], and
for any N ∈ r[[σ]], we have M ′N ∈ r[[τ]]. Since by (S1), N ∈ Pσ and M ′N ∈ Pτ , by (P3), we have
MN ∈ Pτ . Now, there are two cases.

If τ is a base type, then r[[τ]] = Pτ and MN ∈ r[[τ]].

If τ is not a base type, then MN is simple (since the site is scenic). Thus, we prove that
MN ∈ r[[τ]] using (S3) (which by induction, holds at type τ). Assume that Covτ (D,MN) for any
cover D of MN . If MN is stubborn, then by the induction hypothesis, we have MN ∈ r[[τ]].
Otherwise, since Covσ→τ (C,M) and C and D are nontrivial, for every Q ∈ D, by condition (5) of
definition 4.2, there is some M ′ ∈ C such that Q � M ′N . Since by assumption, M ′ ∈ r[[σ → τ]]
whenever M ′ ∈ C, and N ∈ r[[σ]], we conclude that M ′N ∈ r[[τ]]. By the induction hypothesis
applied at type τ , by (S2), we have Q ∈ r[[τ]], and by (S3), we have MN ∈ r[[τ]].

Since M ∈ Pσ→τ and MN ∈ r[[τ]] whenever N ∈ r[[σ]], we conclude that M ∈ r[[σ → τ]].

We now need to relate λ-terms and realizers.

3In fact, if r[[σ]] = Pσ, (S3) holds trivially even at nonbase types. This remark is useful if we allow type variables.

18

6 Interpreting terms in λ→ in Pre-Applicative Structures

We show how terms in λ→ are interpreted in pre-applicative structures. For this, we define a
meaning function.

Definition 6.1 Given a pre-applicative structure A, a valuation, or environment , is any function
ρ:X → A, such that ρ(x) ∈ Aσ if x:σ. A meaning function for A is a partial function A[[−]](−)
from pairs of (α-equivalence classes of) terms and valuations to A, such that A[[M]]ρ is defined
whenever M :σ, in which case A[[M]]ρ ∈ Aσ. In addition, a meaning function satisfies the following
conditions:

A[[x]]ρ = ρ(x)

A[[MN]]ρ = app(A[[M]]ρ, A[[N]]ρ)

A[[λx:σ. M]]ρ = abst(f),

where f is the function defined such that, f(a) = A[[M]]ρ[x: = a], for every a ∈ Aσ.

It is routine to show that the following property holds:

A[[M]]ρ1 = A[[M]]ρ2, whenever ρ1(x) = ρ2(x) for every x ∈ FV (M) (independence)

If we consider the pre-applicative structure A = LT β defined just after definition 3.1, then a
valuation ρ is a substitution with an infinite domain. Using an induction on the structure of terms,
it is easily verified that LT β[[M]]ρ = M [ϕ], where ϕ is the substitution defined by the restriction
of ρ to FV (M).

7 The Realizability Theorem For λ→

In this section, we prove the realizability lemma (lemma 7.6) for λ→, and its main corollary,
theorem 7.7. First, we need some conditions relating the behavior of a meaning function and
covering conditions. We will also need semantic conditions analogous to the conditions (P4)-(P5)
of the introduction.

Definition 7.1 We say that a site 〈A,P, Cov〉 is well-behaved iff the following condition holds:

(1) For any a ∈ Aσ, any ϕ ∈ [Aσ ⇒ Aτ], if abst(ϕ) exists, Covτ (C, app(abst(ϕ), a)), and C is a
nontrivial cover, then c � ϕ(a) for every c ∈ C.

In view of definition 6.1, definition 7.1 implies the following condition.

Definition 7.2 Given a meaning function A[[−]](−) on the pre-applicative structure A, condition
(1) is defined as follows:

(1) For any a ∈ Aσ, if Covτ (C, app(A[[λx:σ. M]]ρ, a)) and C is a nontrivial cover, then c �
A[[M]]ρ[x: = a] for every c ∈ C.

For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to (P1)-(P3).

19

Definition 7.3 Given a well-behaved site 〈A,P, Cov〉, properties (P4) and (P5) are defined as
follows:

(P4) For every a ∈ Aσ, if ϕ(a) ∈ Pτ , where ϕ ∈ [Aσ ⇒ Aτ] and abst(ϕ) exists, then abst(ϕ) ∈
Pσ→τ .

(P5) If a ∈ Pσ and ϕ(a) ∈ Pτ , where ϕ ∈ [Aσ ⇒ Aτ] and abst(ϕ) exists, then app(abst(ϕ), a) ∈
Pτ .

In view of definition 6.1, definition 7.3 implies the following conditions.

Definition 7.4 Given a meaning function A[[−]](−) on the pre-applicative structure A, conditions
(P4) and (P5) are:

(P4) If A[[M]]ρ ∈ Pτ , then A[[λx:σ. M]]ρ ∈ Pσ→τ .

(P5) If a ∈ Pσ and A[[M]]ρ[x: = a] ∈ Pτ , then app(A[[λx:σ. M]]ρ, a) ∈ Pτ .

Lemma 7.5 Given a well-behaved scenic site 〈A,P, Cov〉 and a family P satisfying conditions
(P1)-(P5), for every ρ such that ρ(y) ∈ r[[γ]] for every y: γ ∈ FV (M), if for every a, (a ∈ r[[σ]]
implies A[[M]]ρ[x: = a] ∈ r[[τ]]), then A[[λx:σ. M]]ρ ∈ r[[σ → τ]].

Proof . We prove that A[[λx:σ. M]]ρ ∈ Pσ→τ and that for every every a, if a ∈ r[[σ]], then
app(A[[λx:σ. M]]ρ, a) ∈ r[[τ]]. We will need the fact that the sets of the form r[[σ]] have the prop-
erties (S1)-(S3), but this follows from lemma 5.2, since (P1)-(P3) hold. First, we prove that
A[[λx:σ. M]]ρ ∈ Pσ→τ .

Since ρ(x) ∈ r[[γ]] for every x: γ ∈ FV (M), letting a = ρ(x), by the assumption of lemma 7.5,
A[[M]]ρ ∈ r[[τ]]. Then, by (S1), and by (P4), we have A[[λx:σ. M]]ρ ∈ Pσ→τ .

Next, we prove that for every every a, if a ∈ r[[σ]], then app(A[[λx:σ. M]]ρ, a) ∈ r[[τ]]. Let us
assume that a ∈ r[[σ]]. Then, by the assumption of lemma 7.5, A[[M]]ρ[x: = a] ∈ r[[τ]]. Thus, by
(S1), we have a ∈ Pσ and A[[M]]ρ[x: = a] ∈ Pτ . By (P5), we have app(A[[λx:σ.M]]ρ, a) ∈ Pτ . Now,
there are two cases.

If τ is a base type, then r[[τ]] = Pτ . Since we just showed that app(A[[λx:σ. M]]ρ, a) ∈ Pτ , we
have app(A[[λx:σ. M]]ρ, a) ∈ r[[τ]].

If τ is not a base type, then app(A[[λx:σ. M]]ρ, a) is simple (since the site is scenic). Thus,
we prove that app(A[[λx:σ. M]]ρ, a) ∈ r[[τ]] using (S3). The case where app(A[[λx:σ. M]]ρ, a) is
stubborn is trivial.

Otherwise, assume that Covτ (C, app(A[[λx:σ. M]]ρ, a)), where C is a nontrivial cover. By
condition (1) of definition 7.2, c � A[[M]]ρ[x: = a] for every c ∈ C, and since by assumption,
A[[M]]ρ[x: = a] ∈ r[[τ]], by (S2), we have c ∈ r[[τ]]. Since c ∈ r[[τ]] whenever c ∈ C, by (S3), we have
app(A[[λx:σ. M]]ρ, a) ∈ r[[τ]].

We now prove the main realizability lemma for λ→.

Lemma 7.6 Given a well-behaved scenic site 〈A,P, Cov〉, if P is a family satisfying conditions
(P1)-(P5), then for every term M of type σ, for every valuation ρ such that ρ(y) ∈ r[[γ]] for every
y: γ ∈ FV (M), we have A[[M]]ρ ∈ r[[σ]].

20

Proof . We proceed by induction on the structure of M .

If M is a variable, then A[[x]]ρ = ρ(x) ∈ r[[σ]] by the assumption on ρ.

If M = M1N1, where M1 has type σ → τ and N1 has type σ, by the induction hypothesis,

A[[M1]]ρ ∈ r[[σ → τ]] and A[[N1]]ρ ∈ r[[σ]].

By the definition of r[[σ → τ]], we get app(A[[M1]]ρ,A[[N1]]ρ) ∈ r[[τ]], i.e., A[[(M1N1)]]ρ ∈ r[[τ]], by
definition 6.1.

If M = λx:σ. M1, consider any a ∈ r[[σ]] and any valuation ρ such that ρ(y) ∈ r[[γ]] for
every y: γ ∈ FV (M1) − {x}. Note that by (S3) and (P1), r[[σ]] is indeed nonempty. Thus, the
valuation ρ[x: = a] has the property that ρ(y) ∈ r[[γ]] for every y: γ ∈ FV (M1). By the induction
hypothesis applied to M1 and ρ[x: = a], we have A[[M1]]ρ[x: = a] ∈ r[[τ]]. Consequently, by lemma
7.5, A[[λx:σ. M1]]ρ ∈ r[[σ → τ]].

If M is a closed term of type σ, the independence condition of definition 6.1 implies that A[[M]]ρ
is independent of ρ, and thus we denote it as A[[M]]. We get the following important theorem for
λ→.

Theorem 7.7 Given a well-behaved scenic site 〈A,P, Cov〉, if P is a family satisfying conditions
(P1)-(P5), then for every closed term M of type σ, we have A[[M]] ∈ Pσ. (in other words, the
realizer A[[M]] satisfies the unary predicate defined by P, i.e, every provable type is realizable).

Proof . Apply lemma 7.6 to the closed term M of type σ and to any arbitrary valuation ρ.

8 Pre-Applicative Structures for λ→,×,+,⊥

In this section, the pre-applicative structures of section 3 are generalized to the types →,×,+,⊥.
There are various kinds of pre-applicative structures: pre-applicative β-structures, pre-applicative
βη-structures, extensional pre-applicative β-structures, and the corresponding so-called applicative
versions. For simplicity, in this section, we only present pre-applicative structures. The definition
of the other structures is given in an appendix (see section 21). We also show that the term model
can be viewed as a pre-applicative β-structures, and that the HRO models of Kreisel and Troelstra
[16, 26] can be viewed as an applicative β-structure.

Definition 8.1 A pre-applicative β-structure is a structure

A = 〈A, fun, abst, Π, 〈−,−〉, inl, inr, [−, −], ,5〉

where

A = (Aσ)σ∈T is a family of (nonempty) sets called carriers;

(�σ)σ∈T is a family of preorders, each �σ on Aσ;

abstσ,τ : [Aσ ⇒ Aτ] → Aσ→τ , a family of partial operators;

funσ,τ :Aσ→τ → [Aσ ⇒ Aτ], a family of (total) operators;

〈−,−〉σ,τ :Aσ ×Aτ → Aσ×τ , a family of partial pairing operators;

21

Πσ,τ :Aσ×τ → Aσ ×Aτ , a family of (total) projection operators;

[−, −]σ,τ,δ:Aσ→δ ×Aτ→δ → A(σ+τ)→δ, a family of partial copairing operators;

inlσ,τ :Aσ → Aσ+τ , a family of (total) operators;

inrσ,τ :Aτ → Aσ+τ , a family of (total) operators;

5σ:A⊥ → Aσ, is a family of (total) functions.

We define cinl:A(σ+τ)→δ → [Aσ ⇒ Aδ], cinr:A(σ+τ)→δ → [Aτ ⇒ Aδ] , and
cinf:A(σ+τ)→δ → [A⊥ ⇒ Aδ] as follows: For every h ∈ A(σ+τ)→δ,

cinl(h)(a) = fun(h)(inl(a)),

for every a ∈ Aσ,
cinr(h)(b) = fun(h)(inr(b)),

for every b ∈ Aτ , and
cinf(h)(c) = fun(h)(5σ+τ (c)),

for every c ∈ A⊥.

It is assumed that fun, abst, Π, 〈−,−〉, inl, inr, and [−, −], and 5, are monotonic. Further-
more, the following conditions are satisfied

(1) funσ,τ (abstσ,τ (ϕ)) � ϕ, whenever abstσ,τ (ϕ) is defined, for ϕ ∈ [Aσ ⇒ Aτ], and
funσ,τ (5σ→τ (c)) � λa ∈ Aσ. 5τ (c), for c ∈ A⊥;

(2) Πσ,τ (〈a, b〉) � (a, b), for all a ∈ Aσ, b ∈ Aτ , whenever 〈a, b〉 is defined, and Πσ,τ (5σ×τ (c)) �
(5σ(c), 5τ (c)), for every c ∈ A⊥;

(3) cinl([f, g]) � fun(f), cinr([f, g]) � fun(g), and cinf([f, g]) � 5δ, whenever [f, g] is
defined,

The operators fun induce (total) operators

funσ,τ :Aσ→τ → [Aσ ⇒ Aτ], such that, for every f ∈ Aσ→τ and every a ∈ Aσ,

appσ,τ (f, a) = funσ,τ (f)(a).

Then, condition (1) can be written as

(1’) appσ,τ (abstσ,τ (ϕ), a) � ϕ(a), for all a ∈ Aσ, and appσ,τ (5σ→τ (c), a) � 5τ (c), for every
a ∈ Aσ and every c ∈ A⊥, and condition (3) can be rewritten as

(3’) cinl([f, g])(a) � app(f, a), for all a ∈ Aσ, cinr([f, g])(b) � app(g, b), for all b ∈ Aτ ,
and cinf([f, g])(c) � 5δ(c), for all c ∈ A⊥, whenever [f, g] is defined, for f ∈ Aσ→δ and
g ∈ Aτ→δ.

Finally, N � inl(M1) implies that N = inl(N1) for some N1 �M1, N � inr(M1) implies that
N = inr(N1) for some N1 �M1, and N � 5σ(M1) implies that N = 5σ(N1) for some N1 �M1.

We say that a pre-applicative β-structure is an applicative β-structure iff in conditions (1)-(3),
� is replaced by the identity relation =.

22

We will omit superscripts whenever possible. We can think of the elements of A⊥ as error
elements, and copies of these error elements exist at all types (given by the functions 5σ).

The projection operators Π induce projections πσ,τ1 :Aσ×τ → Aσ and πσ,τ2 :Aσ×τ → Aτ , such
that for every a ∈ Aσ×τ , if Πσ,τ (a) = (a1, a2), then

πσ,τ1 (a) = a1 and πσ,τ2 (a) = a2.

When A is an applicative β-structure, then, in definition 8.1, conditions (1)-(3) amounts to

(1) funσ,τ ◦ abstσ,τ = id on the domain of abst, and funσ,τ ◦ 5σ→τ = λa ∈ Aσ.5τ ;

(2) Πσ,τ ◦ 〈−, −〉σ,τ = id on the domain of 〈−, −〉, and Πσ,τ ◦ 5σ×τ = 〈5σ, 5τ 〉;

(3) 〈cinl, cinr〉 ◦ [−, −] = funσ,δ × funτ,δ on the domain of definition of [−, −], and
cinf◦ [−, −] = λf ∈ Aσ→δ.λg ∈ Aτ→δ.5δ, where λf ∈ Aσ→δ.λg ∈ Aτ→δ.5δ denotes the constant
function from Aσ→δ ×Aτ→δ to [A⊥ ⇒ Aδ], whose value is 5δ for all f ∈ Aσ→δ and g ∈ Aτ→δ.

In view of (1), from (3), we get

〈cinl, cinr〉 ◦ ([−, −] ◦ (abstσ,δ × abstτ,δ)) = id on the domain of definition of [−, −] ◦
(abstσ,δ × abstτ,δ).

However, we have no left inverse to 5δ, and we don’t have an analogous identity for cinf.

When we use a pre-applicative β-structure to interpret λ-terms, we assume that 〈−,−〉 and
[−, −] are total, and that the domain of abst is sufficiently large, but we have not elucidated this
last condition yet. Given M ∈ Aσ→τ and N ∈ Aσ, app(M,N) is also denoted as MN .

Let us give an (important) example of a pre-applicative β-structure.

Definition 8.2 Let Aσ = Λσ be the set of all typed λ-terms of type σ. We let app, π1, π2, 〈−,−〉,
inl, inr, [−, −], 5, be the obvious constructs (for example, app(M,N) = MN). Define N � M
iff M

∗−→β N . The operator abst is defined as in definition 3.2. The structure just defined is
denoted as LT β.

Another interesting example is provided by an adaptation of the so-called HRO-models (hered-
itarily recursive operations), due to Kreisel and Troelstra [16, 26]. These models are based on
the Kleene partial applicative structure provided by acceptable Gödel numberings of the partial
recursive functions. Assume that we have such a Gödel numbering, and denote the partial recursive
function of index e as ϕe. Recall that such a numbering induces a partial operation · : N×N→ N
(where N denotes the set of natural numbers) defined as follows: m · n = ϕm(n), whenever it is
defined. A partial recusive function ϕe is recursive iff ϕe(n) is defined for all n ∈ N. We also assume
that we have a given pairing function p: N ×N → N, with projection functions j1: N → N and
j2: N → N, such that p(j1(m), j2(m)) = m for all m ∈ N, j1(p(m,n)) = m, and j2(p(m,n)) = n,
for all m,n ∈ N. In the rest of this section, we ignore the type ⊥.

Definition 8.3 We define an applicative structure as follows. Each Aσ is a set of pairs of the form
〈n, σ〉, where n ∈ N, and we denote the subset {n | 〈n, σ〉 ∈ Aσ} of N as dom(Aσ).

Let Aσ = {〈n, σ〉 | n ∈ N}, for every base type σ,

Aσ→τ = {〈e, σ → τ〉 | ϕe is total on dom(Aσ)},

23

Aσ×τ = {〈n, σ × τ〉 | 〈j1(n), σ〉 ∈ Aσ and 〈j2(n), τ〉 ∈ Aτ},

and
Aσ+τ = {〈p(0, n), σ + τ〉 | 〈n, σ〉 ∈ Aσ} ∪ {〈p(1, n), σ + τ〉 | 〈n, τ〉 ∈ Aτ}.

The preorder on each Aσ is the identity relation.

We let app(〈m, σ → τ〉, 〈n, σ〉) = 〈ϕm(n), τ〉, which is well-defined, by definition of Aσ→τ . Π
and 〈−, −〉 have an obvious definition in terms of p, j1, and j2. We let inl(〈n, σ〉) = 〈p(0, n), σ+τ〉,
inr(〈n, τ〉) = 〈p(1, n), σ + τ〉, and [〈m, σ → δ〉, 〈n, τ → δ〉] is defined as follows. Let ψ be the
function defined such that ψ(p(0, s)) = ϕm(s) for all s ∈ N, and ψ(p(1, t)) = ϕn(t) for all t ∈ N.
Since ϕm and ϕn are partial recursive functions, ψ is a partial recursive function, and we let

[〈m, σ → δ〉, 〈n, τ → δ〉] = 〈e, (σ + τ)→ δ〉,

where e is some designated index for ψ (some index e such that ϕe = ψ).

Note that fun:Aσ→τ → [Aσ ⇒ Aτ] is the function defined such that fun(〈e, σ → τ〉)(〈n, σ〉) =
〈ϕe(n), τ〉. We still need to define abst.

For every m ∈ N, for every e ∈ N, index of a total recursive function of m + 1 arguments, for
every finite sequence ρ = 〈ρ1, . . . , ρm〉 of natural numbers, let e[ρ] denote the function in [Aσ ⇒ Aτ]
defined such that

e[ρ](〈n, σ〉) = 〈ϕe(ρ1, . . . , ρm, n), τ〉,

provided that ϕe(ρ1, . . . , ρm, n) ∈ dom(Aτ), for all n ∈ dom(Aσ). Then, by the s-m-n-theorem,

ϕe(ρ1, . . . , ρm, n) = ϕs(e,m,ρ1,...,ρm)(n),

for all n ∈ N, and we let abst(e[ρ]) = 〈s(e,m, ρ1, . . . , ρm), σ → τ〉. The above applicative structure
is denoted as HRO.

By an easy induction on types, we can show that Aσ is nonempty for every type σ. Indeed,
each Aσ→τ is nonempty, since constant functions are total recursive, and the other cases are trivial.
In the definition of [〈m, σ → δ〉, 〈n, τ → δ〉], since ϕm is total on dom(Aσ→δ) and ϕn is total on
dom(Aτ→δ), the function ψ is total on dom(A(σ+τ)→δ), and thus, [〈m, σ → δ〉, 〈n, τ → δ〉] is well
defined. We still need to check that fun(abst(e[ρ])) = e[ρ] for every e[ρ] ∈ [Aσ ⇒ Aτ]. For such a
function e[ρ],

fun(abst(ϕ))(〈n, σ〉) = 〈ϕs(e,m,ρ1,...,ρm)(n), τ〉 = 〈ϕe(ρ1, . . . , ρm, n), τ〉,

by the s-m-n-theorem, and thus, fun(abst(e[ρ])) = e[ρ]. The other conditions of definition 8.1 are
easily verified. These structures are not extensional.

9 P-Realizability for the Arrow, Product, Sum, and ⊥ Types

In this section, we extend the semantic notion of realizability defined in section 5 to the calculus
λ→,×,+,⊥. This time, the definition of realizability for the sum type requires the notion of a cover.
First, it is necessary to extend definition 4.2 to take care of product and sum types.

24

Definition 9.1 Let A be a pre-applicative structure and let P be a family P = (Pσ)σ∈T , where
each Pσ is a nonempty subset of Aσ. A P-cover algebra (or P-Grothendieck topology) on A is a
family Cov of binary relations Covσ on 2A

σ ×Aσ satisfying the following properties:

(0) Covσ(C,M) implies M ∈ Pσ (equivalently, P(M,σ)).

(1) If Cov(C,M), then C is a sieve on M (an ideal below M).

(2) If M ∈ Pσ, then Cov({N | N �M},M) (M ∈ Pσ is covered by the principal sieve on M).

(3) (stability) If Cov(C,M) and N �M , then Cov({Q | Q ∈ C, Q � N}, N).

(4) (transitivity) If Cov(C,M), D is a sieve on M , and Cov({Q | Q ∈ D, Q � N}, N) for every
N ∈ C, then Cov(D,M).

(5) If Cov(M) = triv(M), then Cov(MN) = triv(MN), and if Cov(C,M) and Cov(D,MN)
with C and D nontrivial, then for every Q ∈ D, there is some M ′ ∈ C such that Q �M ′N .

(6) If Cov(M) = triv(M), then Cov(π1(M)) = triv(π1(M)), Cov(π2(M)) = triv(π2(M)), and
if Cov(C,M) and Cov(D,π1(M)) (resp. Cov(D,π2(M))) with C and D nontrivial, then for
every Q ∈ D, there is some M ′ ∈ C such that Q � π1(M ′) (resp. Q � π2(M ′)).

A triple 〈A,P, Cov〉, where A is pre-applicative structure, P is a property on A, and Cov is a
P-Grothendieck topology, is called a P-site.

It is also necessary to extend definition 4.3 to take care of product types.

Definition 9.2 We say that M ∈ Aσ is simple iff Cov(C,M) for at least two distinct covers C.
We say that M ∈ Aσ is stubborn iff Cov(M) = triv(M) (thus every stubborn element is simple).
We say that a P-site 〈A,P, Cov〉 is scenic iff all elements of the form app(M,N) (or MN), π1(M),
and π2(M) are simple.

Definition 4.4 is extended as follows.

Definition 9.3 Let 〈A,P, Cov〉 be a P-site. Properties (P1)-(P3) are defined as follows:

(P1) P(M,σ), for some stubborn element M ∈ Aσ.

(P2) If P(M,σ) and M � N , then P(N, σ).

(P3)
(1) If Covσ→τ (C,M), P(N, σ), and P(M ′N, τ) whenever M ′ ∈ C, then P(MN, τ).
(2) If Covσ×τ (C,M), and P(π1(M ′), σ) and P(π2(M ′), τ) whenever M ′ ∈ C, then P(π1(M), σ)

and P(π2(M), τ).

From now on, we only consider relations (families) P satisfying the conditions of definition 9.3.

Note that (P3) still implies that if M ∈ Pσ→τ is stubborn and N ∈ Pσ is any element, then
MN ∈ Pτ is stubborn. It also implies that if M ∈ Pσ×τ is stubborn, then π1(M) ∈ Pσ is stubborn
and π2(M) ∈ Pτ is stubborn. This is a consequence of property (6) of definition 9.1.

Definition 4.5 remains unchanged. However, for the reader’s convenience, it is repeated. Recall
that T denotes the set of simple types built up from the type constructors →, ×, and +.

25

Definition 9.4 Let 〈A,P, Cov〉 be a P-site. A function S:A → 2T has the sheaf property (or is a
P-sheaf) iff it satisfies the following conditions:

(S1) If σ ∈ S(M), then M ∈ Pσ.

(S2) If σ ∈ S(M) and M � N , then σ ∈ S(N).

(S3) If Covσ(C,M) and σ ∈ S(N) for every N ∈ C, then σ ∈ S(M).

A function S:A → 2T as in definition 9.4 can also be viewed as a family S = (Sσ)σ∈T , where
Sσ = {M ∈ A | σ ∈ S(M)}. Then, the sets Sσ are called P-candidates. The conditions of definition
9.4 are then stated as follows:

(S1) Sσ ⊆ Pσ.

(S2) If M ∈ Sσ and M � N , then N ∈ Sσ.

(S3) If Covσ(C,M), and C ⊆ Sσ, then M ∈ Sσ.

We now generalize the definition of realizers to take into accounts the types ×, +, and ⊥. We
define P-realizability as follows.

Definition 9.5 Let 〈A,P, Cov〉 be a P-site. The sets r[[σ]] of realizers of σ are defined as follows:

r[[σ]] = Pσ, σ a base type,

r[[σ → τ]] = {M | M ∈ Pσ→τ , and for all N , if N ∈ r[[σ]] then MN ∈ r[[τ]]},
r[[σ × τ]] = {M | M ∈ Pσ×τ , π1(M) ∈ r[[σ]], and π2(M) ∈ r[[τ]]},
r[[σ + τ]] = {M | Covσ+τ ({inl(M1) | M1 ∈ r[[σ]] and M � inl(M1)} ∪

{inr(M2) | M2 ∈ r[[τ]] and M � inr(M2)} ∪
{5σ+τ (M3) | M3 ∈ P⊥ and M � 5σ+τ (M3)},M)}.

We now prove a generalization of lemma 5.2.

Lemma 9.6 Given a scenic P-site 〈A,P, Cov〉, if P satisfies conditions (P1)-(P3), then the family
(r[[σ]])σ∈T has the sheaf property, and each r[[σ]] contains all stubborn elements in Pσ.

Proof . We proceed by induction on types. The base case is as in lemma 5.2. The induction
step has more cases since we also need to deal with ×, +, and ⊥.

(S1). This is trivial by the definitions of r[[σ → τ]], r[[σ × τ]], and r[[σ + τ]],

(S2). There are three cases depending on the type.

1. Arrow type σ → τ . The proof is as in lemma 5.2.

2. Product type σ × τ . Assume that M � M ′ for M ∈ r[[σ × τ]]. We need to prove that
M ′ ∈ Pσ×τ , π1(M ′) ∈ r[[σ]], and π2(M ′) ∈ r[[τ]]. Since M ∈ r[[σ × τ]], by (S1), M ∈ Pσ×τ , and
by (P2) M ′ ∈ Pσ×τ . Since M ∈ r[[σ × τ]], we have π1(M) ∈ r[[σ]] and π2(M) ∈ r[[τ]]. But by
monotonicity, π1(M) � π1(M ′) and π2(M) � π2(M ′), and by the induction hypothesis, by (S2),
we get π1(M ′) ∈ r[[σ]] and π2(M ′) ∈ r[[τ]].

26

3. Sum type σ + τ . Assume that M �M ′ for M ∈ r[[σ + τ]]. Since M ∈ r[[σ + τ]], we have

Covσ+τ ({inl(M1) | M1 ∈ r[[σ]] and M � inl(M1)} ∪
{inr(M2) | M2 ∈ r[[τ]] and M � inr(M2)} ∪
{5σ+τ (M3) | M3 ∈ P⊥ and M � 5σ+τ (M3)},M)}.

Consider the cover D of M :

D = {inl(M1) | M1 ∈ r[[σ]] and M � inl(M1)} ∪
{inr(M2) | M2 ∈ r[[τ]] and M � inr(M2)} ∪
{5σ+τ (M3) | M3 ∈ P⊥ and M � 5σ+τ (M3)}.

By property (3) of definition 9.1, for any M ′ ∈ D, the set {Q | Q ∈ D, Q �M ′} is a cover of M ′.
Now, if M ′ �M , by property (1) of definition 9.1, M ′ ∈ D, and it is clear that

{Q | Q ∈ D, Q �M ′} = {inl(M1) | M1 ∈ r[[σ]] and M ′ � inl(M1)} ∪
{inr(M2) | M2 ∈ r[[τ]] and M ′ � inr(M2)} ∪
{5σ+τ (M3) | M3 ∈ P⊥ and M ′ � 5σ+τ (M3)}.

Then, we have

Covσ+τ ({inl(M1) | M1 ∈ r[[σ]] and M ′ � inl(M1)} ∪
{inr(M2) | M2 ∈ r[[τ]] and M ′ � inr(M2)} ∪
{5σ+τ (M3) | M3 ∈ P⊥ and M ′ � 5σ+τ (M3)},M ′)}.

showing that M ′ ∈ r[[σ + τ]].

(S3). Let M be simple. There are three cases depending on the type of M .

1. Arrow type σ → τ . The proof is as in lemma 5.2.

2. Product type σ × τ . Assume that Covσ×τ (C,M) and that M ′ ∈ r[[σ × τ]] whenever M ′ ∈ C,
where M is simple. By property (0) of definition 9.1, we have M ∈ Pσ×τ . We need to show that
π1(M) ∈ r[[σ]] and π2(M) ∈ r[[τ]].

If M ∈ Pσ×τ is stubborn, we have shown that π1(M) ∈ Pσ is stubborn and that π2(M) ∈ Pτ is
stubborn. By the induction hypothesis, all stubborn elements in Pσ are in r[[σ]] and all stubborn
elements in Pτ are in r[[τ]]. Thus, when M is stubborn, π1(M) ∈ r[[σ]] and π2(M) ∈ r[[τ]].

Next, assume that M is not stubborn. Since M ′ ∈ r[[σ × τ]] whenever M ′ ∈ C, we have
π1(M ′) ∈ r[[σ]] and π2(M ′) ∈ r[[τ]]. By (S1), we have π1(M ′) ∈ Pσ, π2(M ′) ∈ Pτ , and by (P3)(2),
we get π1(M) ∈ Pσ and π2(M) ∈ Pτ . If σ is a base type, then r[[σ]] = Pσ and π1(M) ∈ r[[σ]].
Similarly, if τ is a base type, then r[[τ]] = Pτ and π2(M) ∈ r[[τ]].

Let us now consider the case where σ is not a base type, the case where τ is not a base type
being similar. Then, π1(M) ∈ Pσ and π1(M) is simple (since the site is scenic). We use (S3) to
prove that π1(M) ∈ r[[σ]]. Assume that Covσ(D,π1(M)) for any cover D of π1(M). The case where
π1(M) is stubborn follows from the induction hypothesis. Otherwise, since Covσ×τ (C,M) and C
and D are nontrivial, by property (6) of definition 9.1, for every Q ∈ D, there is some M ′ ∈ C such

27

that Q � π1(M ′). By the assumption, M ′ ∈ r[[σ× τ]]. This implies that π1(M ′) ∈ r[[σ]], and by the
induction hypothesis and (S2), we have Q ∈ r[[σ]]. By (S3), we conclude that π1(M) ∈ r[[σ]].

3. Sum type σ + τ . Assume that Covσ+τ (C,M) and that N ∈ r[[σ + τ]] for every N ∈ C. Let

D = {inl(M1) | M1 ∈ r[[σ]] and M � inl(M1)} ∪
{inr(M2) | M2 ∈ r[[τ]] and M � inr(M2)} ∪
{5σ+τ (M3) | M3 ∈ P⊥ and M � 5σ+τ (M3)}.

Using the properties of �, it is clear that D is a sieve on M . We need to prove that Covσ+τ (D,M),
since this is equivalent to M ∈ r[[σ+τ]]. Let N ∈ C, and consider the set {Q | Q ∈ D, Q � N}. We
prove that Cov({Q | Q ∈ D, Q � N}, N). However, since N ∈ C and by assumption, N ∈ r[[σ+ τ]]
for every N ∈ C, we have

Covσ+τ ({inl(M1) | M1 ∈ r[[σ]] and N � inl(M1)} ∪
{inr(M2) | M2 ∈ r[[τ]] and N � inr(M2)} ∪
{5σ+τ (M3) | M3 ∈ P⊥ and N � 5σ+τ (M3)}, N)}.

Since N �M , it is clear that

{Q | Q ∈ D, Q � N} = {inl(M1) | M1 ∈ r[[σ]] and N � inl(M1)} ∪
{inr(M2) | M2 ∈ r[[τ]] and N � inr(M2)} ∪
{5σ+τ (M3) | M3 ∈ P⊥ and N � 5σ+τ (M3)}.

Then, by property (4) of definition 9.1, we have Covσ+τ (D,M), that is, M ∈ r[[σ + τ]].

We also need to extend definition 6.1 to give an interpretation to the new terms.

10 Interpreting λ-Terms in λ→,×,+,⊥

We extend definition 6.1 to take care of ×, +, and ⊥.

Definition 10.1 Given a pre-applicative structure A, a valuation, or environment , is any function
ρ:X → A, such that ρ(x) ∈ Aσ if x:σ. A meaning function for A is a partial function A[[−]](−)
from pairs of (α-equivalence classes of) terms and valuations to A, such that A[[M]]ρ is defined
whenever M :σ, in which case A[[M]]ρ ∈ Aσ. In addition, a meaning function satisfies the following
conditions:

A[[x]]ρ = ρ(x)

A[[MN]]ρ = app(A[[M]]ρ, A[[N]]ρ)

A[[λx:σ. M]]ρ = abst(f),

where f is the function defined such that,
f(a) = A[[M]]ρ[x: = a], for every a ∈ Aσ

A[[π1(M)]]ρ = π1(A[[M]]ρ)

A[[π2(M)]]ρ = π2(A[[M]]ρ)

28

A[[〈M1, M2〉]]ρ = 〈A[[M1]]ρ, A[[M2]]ρ〉

A[[inl(M)]]ρ = inl(A[[M]]ρ)

A[[inr(M)]]ρ = inr(A[[M]]ρ)

A[[[M, N]]]ρ = [A[[M]]ρ, A[[N]]ρ]

A[[5σ(M)]]ρ = 5σ(A[[M]]ρ).

It is routine to show that the following property holds:

A[[M]]ρ1 = A[[M]]ρ2, whenever ρ1(x) = ρ2(x) for every x ∈ FV (M) (independence)

If we consider the pre-applicative structure A = LT β, then a valuation ρ is a substitution
with an infinite domain. Using an induction on the structure of terms, it is easily verified that
LT β[[M]]ρ = M [ϕ], where ϕ is the substitution defined by the restriction of ρ to FV (M).

As far as realizability is concerned, if M :σ, then LT β[[M]]ρ is a typed λ-term realizing σ.
Definition 9.5 is then a variant of Kreisel’s modified realizability.

It is also interesting to see what happens if we try to interpret terms in the applicative structure
HRO of definition 8.3. A valuation is a function ρ such that ρ(x) = 〈k, σ〉 for every x:σ, where
k ∈ N. Thus, given a term M such that FV (M) = {x1:σ1, . . . , xm:σm}, a valuation ρ defines a
finite sequence 〈ρ1, . . . , ρm〉 of natural numbers, where ρi = ρ(xi). It is easily shown by induction
on the structure of M :σ that HRO[[M]]ρ = 〈ϕe(ρ1, . . . , ρm), σ〉, where e is the index a total
recursive function ϕe in the arguments 〈ρ1, . . . , ρm〉. Thus, every typed λ-terms can be interpreted
in HRO, and HRO[[M]]ρ is given by a function recursive in the restriction of ρ to FV (M). As
far as realizability is concerned, if M :σ, then HRO[[M]]ρ ∈ r[[σ]] yields a realizer for σ which is
given by a recursive function of ρ. In this case, definition 9.5 is equivalent to Kleene’s recursive
realizability (for →, ×, and +).

11 The Realizability Theorem For λ→,×,+,⊥

In this section, we generalize the realizability lemma (lemma 7.6) and its main corollary (theorem
7.7) to the calculus λ→,×,+,⊥. In order to do so, we need to add conditions to definition 7.1 to take
care of ×, +, and ⊥.

Definition 11.1 We say that a site 〈A,P, Cov〉 is well-behaved iff the following conditions hold:

(1) For any a ∈ Aσ, any ϕ ∈ [Aσ ⇒ Aτ], if abst(ϕ) exists, Covτ (C, app(abst(ϕ), a)), and C is a
nontrivial cover, then c � ϕ(a) for every c ∈ C;
For any a ∈ A⊥, any b ∈ Aσ, if Covτ (C, app(5σ→τ (a), b)) and C is a nontrivial cover, then
c � 5τ (a) for every c ∈ C;

(2) If Covσ(C, π1(〈a1, a2〉)) and C is a nontrivial cover, then c � a1 for every c ∈ C.
If Covτ (C, π2(〈a1, a2〉)) and C is a nontrivial cover, then c � a2 for every c ∈ C.
If Covσ(C, π1(5σ×τ (a))) and C is a nontrivial cover, then c � 5σ(a) for every c ∈ C.
If Covτ (C, π2(5σ×τ (a))) and C is a nontrivial cover, then c � 5τ (a) for every c ∈ C.

29

(3) If Cov(p) = triv(p), then Cov(app([f, g], p)) = triv(app([f, g], p)), and if Covσ+τ (C, p),
Covδ(D, app([f, g], p)), and C and D are nontrivial, then for every d ∈ D, either there
is some inl(p1) ∈ C such that d � app(f, p1), or there is some inr(p2) ∈ C such that
d � app(g, p2), or there is some 5σ+τ (p3) ∈ C such that d � 5δ(p3), where f ∈ Aσ→δ and
g ∈ Aτ→δ.

In view of definition 10.1, definition 11.1 implies the following conditions.

Definition 11.2 Given a meaning function A[[−]](−) on the pre-applicative structure A, condition
(1)-(3) are defined as follows:

(1) For any a ∈ Aσ, if Covτ (C, app(A[[λx:σ. M]]ρ, a)) and C is a nontrivial cover, then c �
A[[M]]ρ[x: = a] for every c ∈ C.
For any b ∈ Aσ, if Covτ (C, app(A[[5σ→τ (M)]]ρ, b)) and C is a nontrivial cover, then c �
A[[5τ (M)]]ρ for every c ∈ C;

(2) If Covσ(C, π1(A[[〈M1, M2〉]]ρ)) and C is a nontrivial cover, then c � A[[M1]]ρ for every c ∈ C.
If Covτ (C, π2(A[[〈M1, M2〉]]ρ)) and C is a nontrivial cover, then c � A[[M2]]ρ for every c ∈ C.
If Covσ(C, π1(A[[5σ×τ (M)]]ρ)) and C is a nontrivial cover, then c � A[[5σ(M)]]ρ for every
c ∈ C.
If Covτ (C, π2(A[[5σ×τ (M)]]ρ)) and C is a nontrivial cover, then c � A[[5τ (M)]]ρ for every
c ∈ C.

(3) If Cov(p) = triv(p), then Cov(app(A[[[M, N]]]ρ, p)) = triv(app(A[[[M, N]]]ρ, p)), and if
Covσ+τ (C, p), Covδ(D, app(A[[[M, N]]]ρ, p)), and C and D are nontrivial, then for every
d ∈ D, either there is some inl(p1) ∈ C such that d � app(A[[M]]ρ, p1), or there is some
inr(p2) ∈ C such that d � app(A[[N]]ρ, p2), or there is some 5σ+τ (p3) ∈ C such that
d � 5δ(p3).

We also need to add conditions to definition 7.4 to take care of ×, +, and ⊥.

Definition 11.3 Given a well-behaved site 〈A,P, Cov〉, properties (P4) and (P5) are defined as
follows:

(P4)
(1) For every a ∈ Aσ, if ϕ(a) ∈ Pτ , where ϕ ∈ [Aσ ⇒ Aτ] and abst(ϕ) exists, then abst(ϕ) ∈

Pσ→τ .
(2) If a1 ∈ Pσ and a2 ∈ Pτ , then 〈a1, a2〉 ∈ Pσ×τ .
(3) If a ∈ Pσ, then inl(a) ∈ Pσ+τ , and if a ∈ Pτ , then inr(a) ∈ Pσ+τ .
(4) If a1 ∈ Pσ→δ and a2 ∈ Pσ→τ , then [a1, a2] ∈ P(σ+τ)→δ.
(5) If a ∈ P⊥, then 5σ(a) ∈ Pσ.

(P5)
(1) If a ∈ Pσ and ϕ(a) ∈ Pτ , where ϕ ∈ [Aσ ⇒ Aτ] and abst(ϕ) exists, then app(abst(ϕ), a) ∈

Pτ .
(2) If a1 ∈ Pσ and a2 ∈ Pτ , then π1(〈a1, a2〉) ∈ Pσ and π2(〈a1, a2〉) ∈ Pτ .

30

(3) If Covσ+τ (C, p), f ∈ Pσ→δ, g ∈ Pτ→δ, app(f, p1) ∈ Pδ whenever inl(p1) ∈ C, app(g, p2) ∈ Pδ
whenever inr(p2) ∈ C, and p3 ∈ P⊥ whenever 5σ+τ (p3) ∈ C, then app([f, g], p) ∈ Pδ.

(4) If a ∈ P⊥ and b ∈ Pσ, then app(5σ→τ (a), b) ∈ Pτ .
If a ∈ P⊥, then π1(5σ×τ (a)) ∈ Pσ and π2(5σ×τ (a)) ∈ Pτ .

It is easy to verify that app([f, g], p) ∈ Pδ is stubborn if p ∈ Pσ+τ is stubborn, f ∈ Pσ→δ, and
g ∈ Pτ→δ. This follows from condition (3) of definition 11.1.

In view of definition 10.1, definition 11.3 implies the following conditions.

Definition 11.4 Given a meaning functionA[[−]](−) on the pre-applicative structureA, conditions
(P4)-(P5) are defined as follows:

(P4)
(1) If A[[M]]ρ ∈ Pτ , then A[[λx:σ. M]]ρ ∈ Pσ→τ .
(2) If A[[M]]ρ ∈ Pσ and A[[N]]ρ ∈ Pτ , then A[[〈M, N〉]]ρ ∈ Pσ×τ .
(3) If A[[M]]ρ ∈ Pσ, then inl(A[[M]]ρ) ∈ Pσ+τ , and if A[[M]]ρ ∈ Pτ , then inr(A[[M]]ρ) ∈ Pσ+τ .
(4) If A[[M]]ρ ∈ Pσ→δ and A[[N]]ρ ∈ Pτ→δ, then A[[[M, N]]]ρ ∈ P(σ+τ)→δ.
(5) If A[[M]]ρ ∈ P⊥, then A[[5σ(M)]]ρ ∈ Pσ.

(P5)
(1) If a ∈ Pσ and A[[M]]ρ[x: = a] ∈ Pτ , then app(A[[λx:σ. M]]ρ, a) ∈ Pτ .
(2) If A[[M]]ρ ∈ Pσ and A[[N]]ρ ∈ Pτ , then π1(A[[〈M, N〉]]ρ) ∈ Pσ and π2(A[[〈M, N〉]]ρ) ∈ Pτ .
(3) If Covσ+τ (C, p), A[[M]]ρ ∈ Pσ→δ, A[[N]]ρ ∈ Pτ→δ, app(A[[M]]ρ, p1) ∈ Pδ whenever inl(p1) ∈

C, and app(A[[N]]ρ, p2) ∈ Pδ whenever inr(p2) ∈ C, and p3 ∈ P⊥ whenever 5σ+τ (p3) ∈ C,
then app(A[[[M, N]]]ρ, p) ∈ Pδ.

(4) If A[[M]]ρ ∈ P⊥ and b ∈ Pσ, then app(A[[5σ→τ (M)]]ρ, b) ∈ Pτ .
If A[[M]]ρ ∈ P⊥, then π1(A[[5σ×τ (M)]]ρ) ∈ Pσ and π2(A[[5σ×τ (M)]]ρ) ∈ Pτ .

We have the following generalization of lemma 7.5.

Lemma 11.5 Given a well-behaved scenic site 〈A,P, Cov〉, and a family P satisfying conditions
(P1)-(P5), for every ρ, the following properties hold: (1) If ρ(y) ∈ r[[γ]] for every y: γ ∈ FV (M),
and for every a, (a ∈ r[[σ]] implies A[[M]]ρ[x: = a] ∈ r[[τ]]), then A[[λx:σ. M]]ρ ∈ r[[σ → τ]]. (2) If
A[[M]]ρ ∈ r[[σ]] and A[[N]]ρ ∈ r[[τ]], then A[[〈M, N〉]]ρ ∈ r[[σ × τ]]; (3) If A[[M]]ρ ∈ r[[σ → δ]], and
A[[N]]ρ ∈ r[[τ → δ]], then A[[[M, N]]]ρ ∈ r[[(σ+ τ)→ δ]]. (4) If a ∈ P⊥, then 5σ(a) ∈ r[[σ]] for every
σ.

Proof . It is similar to the proof of lemma 7.5, except that we need to prove more clauses. By
lemma 9.6, we know that the sets of the form r[[σ]] have the properties (S1)-(S3).

(1) This has already been proved in lemma 7.5.

(2) We need to show thatA[[〈M, N〉]]ρ ∈ Pσ×τ , π1(A[[〈M, N〉]]ρ) ∈ r[[σ]], and π2(A[[〈M, N〉]]ρ) ∈
r[[τ]]. Since A[[M]]ρ ∈ r[[σ]] and A[[N]]ρ ∈ r[[τ]], by (S1), A[[M]]ρ ∈ Pσ and A[[N]]ρ ∈ Pτ . By
(P4)(2), we get A[[〈M, N〉]]ρ ∈ Pσ×τ . By (P5)(2), we also have π1(A[[〈M, N〉]]ρ) ∈ Pσ and

31

π2(A[[〈M, N〉]]ρ) ∈ Pτ . If σ is a base type then r[[σ]] = Pσ and π1(A[[〈M, N〉]]ρ) ∈ r[[σ]]. Similarly,
if τ is a base type then r[[τ]] = Pτ and π2(A[[〈M, N〉]]ρ) ∈ r[[τ]].

If both σ and τ are nonbase types, π1(A[[〈M, N〉]]ρ) ∈ Pσ and π2(A[[〈M, N〉]]ρ) ∈ Pτ are simple
(since the site is scenic). We prove that π1(A[[〈M, N〉]]ρ) ∈ r[[σ]] and π2(A[[〈M, N〉]]ρ) ∈ r[[τ]] using
(S3). We consider the case of π1(A[[〈M, N〉]]ρ), the case of π2(A[[〈M, N〉]]ρ) being similar. The case
where π1(A[[〈M, N〉]]ρ) is stubborn is trivial. Otherwise, assume that Covσ(C, π1(A[[〈M, N〉]]ρ)),
where C is a nontrivial cover. We need to prove that c ∈ r[[σ]] whenever c ∈ C. By condition (2)
of definition 11.2, c � A[[M]]ρ for every c ∈ C. Since A[[M]]ρ ∈ r[[σ]] and c � A[[M]]ρ, by (S2), we
have c ∈ r[[σ]].

(3) We need to prove that A[[[M, N]]]ρ ∈ P(σ+τ)→δ, and that app(A[[[M, N]]]ρ, p) ∈ r[[δ]],
for every p ∈ r[[σ + τ]]. Since A[[M]]ρ ∈ r[[σ → δ]] and A[[N]]ρ ∈ r[[τ → δ]], by (S2), we have
A[[M]]ρ ∈ Pσ→δ and A[[N]]ρ ∈ Pτ→δ, and by (P4)(4), we get A[[[M, N]]]ρ ∈ P(σ+τ)→δ.

Next, we prove that app(A[[[M, N]]]ρ, p) ∈ Pδ. Assume that the hypothesis of (3) holds. By
assumption, p ∈ r[[σ+ τ]], A[[M]]ρ ∈ r[[σ → δ]], and A[[N]]ρ ∈ r[[τ → δ]]. By (S1), we have p ∈ Pσ+τ ,
A[[M]]ρ ∈ Pσ→δ, andA[[N]]ρ ∈ Pτ→δ. If p is stubborn, we have shown that app(A[[[M, N]]]ρ, p) ∈ Pδ
is stubborn, and thus app(A[[[M, N]]]ρ, p) ∈ r[[δ]] by (S3).

Otherwise, since p ∈ r[[σ + τ]], the cover C given by

C = {inl(p1) | p1 ∈ r[[σ]] and p � inl(p1)} ∪
{inr(p2) | p2 ∈ r[[τ]] and p � inr(p2)} ∪
{5σ+τ (p3) | p3 ∈ P⊥ and p � 5σ+τ (p3)}

is a nontrivial cover, and Covσ+τ (C, p). Then, since by the assumptions of the lemma, A[[M]]ρ ∈
r[[σ → δ]] and A[[N]]ρ ∈ r[[τ → δ]], we have app(A[[M]]ρ, p1) ∈ r[[δ]] whenever inl(p1) ∈ C,
app(A[[N]]ρ, p2) ∈ r[[δ]] whenever inr(p2) ∈ C, and p3 ∈ P⊥ whenever 5σ+τ (p3) ∈ C, since
p1 ∈ r[[σ]], p2 ∈ r[[τ]], and p3 ∈ P⊥, by definition of C. Now (using S1), the conditions of (P5)(3)
are met for C, and we have app(A[[[M, N]]]ρ, p) ∈ Pδ. If δ is a base type, then r[[δ]] = Pδ, and
app(A[[[M, N]]]ρ, p) ∈ r[[δ]].

If δ is not a base type, then app(A[[[M, N]]]ρ, p) is simple (since the site is scenic). We use
(S3) to prove that app(A[[[M, N]]]ρ, p) ∈ r[[δ]]. The case where app(A[[[M, N]]]ρ, p) is stubborn is
trivial.

Otherwise, assume that Covδ(D, app(A[[[M, N]]]ρ, p)), where D is a nontrivial cover. Since
p ∈ r[[σ + τ]], the cover C given by

C = {inl(p1) | p1 ∈ r[[σ]] and p � inl(p1)} ∪
{inr(p2) | p2 ∈ r[[τ]] and p � inr(p2)} ∪
{5σ+τ (p3) | p3 ∈ P⊥ and p � 5σ+τ (p3)}

is a nontrivial cover, and Covσ+τ (C, p). Since C and D are nontrivial, by condition (3) of definition
11.2, for every d ∈ D, either there is some inl(p1) ∈ C such that d � app(A[[M]]ρ, p1), or there
is some inr(p2) ∈ C such that d � app(A[[N]]ρ, p2), or there is some 5σ+τ (p3) ∈ C such that
d � 5δ(p3).

32

In the first two cases, since by definition of C, p1 ∈ r[[σ]] and p2 ∈ r[[τ]], and by assumption,
A[[M]]ρ ∈ r[[σ → δ]] and A[[N]]ρ ∈ r[[τ → δ]], we have app(A[[M]]ρ, p1) ∈ r[[δ]] and app(A[[N]]ρ, p2) ∈
r[[δ]], and by (S2), we get d ∈ r[[δ]]. In the third case, by definition of C, we have p3 ∈ P⊥, and by
(4) (of this lemma, to be proved next), we have 5δ(p3) ∈ r[[δ]]. Then, by (S2), in all cases we get
d ∈ r[[δ]]. Finally, by (S3), we have app(A[[[M, N]]]ρ, p) ∈ r[[δ]].

(4) We proceed by induction on σ. When σ is a base type, since 5σ(M) ∈ Pσ by (P4)(5) and
since r[[σ]] = Pσ, we have 5σ(M) ∈ r[[σ]].

1. Arrow type σ → τ . We prove that app(5σ→τ (a), b) ∈ r[[τ]] for every b ∈ r[[σ]]. Since a ∈ P⊥
and by (S1) b ∈ Pσ, by (P5)(4), we have app(5σ→τ (a), b) ∈ Pτ . If τ is a base type, r[[τ]] = Pτ and
app(5σ→τ (a), b) ∈ r[[τ]]. Otherwise, app(5σ→τ (a), b) ∈ Pτ is a simple term and we use (S3). The
case where app(5σ→τ (a), b) is stubborn is trivial. Otherwise, assume that Covτ (C, app(5σ→τ (a), b))
for some nontrivial cover C. Then, by condition (1) of definition 11.1, c � 5τ (a) for every c ∈ C;
By the induction hypothesis, 5τ (a) ∈ r[[τ]], and by (S2), we have c ∈ r[[τ]]. Thus, by (S3), we have
app(5σ→τ (a), b) ∈ r[[τ]].

2. Product type σ × τ . We prove that π1(5σ×τ (a)) ∈ r[[σ]] and π2(5σ×τ (a)) ∈ r[[τ]]. Since
a ∈ P⊥, by (P5)(4), we have π1(5σ×τ (a)) ∈ Pσ and π2(5σ×τ (a)) ∈ Pτ . If σ is a base type,
then r[[σ]] = Pσ and π1(5σ×τ (a)) ∈ r[[σ]]. Similarly, if τ is a base type, then r[[τ]] = Pτ and
π2(5σ×τ (a)) ∈ r[[τ]].

If σ is not a base type, then π1(5σ×τ (a)) ∈ Pσ is a simple term and we use (S3). The case
where π1(5σ×τ (a)) is stubborn is trivial. Otherwise, assume that Covσ(C, π1(5σ×τ (a))) where
C is a nontrivial cover. Then, by condition (2) of definition 11.1, c � 5σ(a) for every c ∈ C.
Since by the induction hypothesis, 5σ(a) ∈ r[[σ]], by (S2), we have c ∈ r[[σ]]. By (S3), we have
π1(5σ×τ (a)) ∈ r[[σ]]. A similar argument applies to π2(5σ×τ (a)).

3. Sum type σ+ τ . By (P4)(5), since a ∈ P⊥, we have 5σ+τ (a) ∈ Pσ+τ . Let D be the following
set:

D = {inl(p1) | p1 ∈ r[[σ]] and 5σ+τ (a) � inl(p1)} ∪
{inr(p2) | p2 ∈ r[[τ]] and 5σ+τ (a) � inr(p2)} ∪
{5σ+τ (p3) | p3 ∈ P⊥ and 5σ+τ (a) � 5σ+τ (p3)}.

By the properties of �, it is easy to verify that D is indeed a sieve. We need to prove that
Covσ+τ (D,5σ+τ (a)), since this is equivalent to 5σ+τ (a) ∈ r[[σ + τ]]. Now, since q � 5σ+τ (a)
implies that q = 5σ+τ (a1) for some a1 � a, and since a ∈ P⊥, by (P2) we have a1 ∈ P⊥. Thus, it
is is clear that D = {q | q � 5σ+τ (a)}, which is a principal sieve. However, since 5σ+τ (a) ∈ Pσ+τ ,
by property (2) of definition 9.1, 5σ+τ (a) ∈ Pσ+τ is covered by the principal sieve D, and thus
Covσ+τ (D,5σ+τ (a)). Therefore, we have 5σ+τ (a) ∈ r[[σ + τ]].

Finally, we now prove the main realizability lemma for λ→,×,+,⊥.

Lemma 11.6 Given a well-behaved scenic site 〈A,P, Cov〉, if P is a family satisfying conditions
(P1)-(P5), then for every term M of type σ, for every valuation ρ such that ρ(y) ∈ r[[γ]] for every
y: γ ∈ FV (M), we have A[[M]]ρ ∈ r[[σ]].

Proof . We proceed by induction on the structure of M . Some of the cases have already been
covered in the proof of lemma 7.6, but we also need to handle the new terms.

33

If M = 〈M1, N1〉, where M1 has type σ and N1 has type τ , then by the induction hypothesis,
A[[M1]]ρ ∈ r[[σ]] and A[[N1]]ρ ∈ r[[τ]]. By lemma 11.5, we have A[[〈M1, N1〉]]ρ ∈ r[[σ × τ]].

If M = π1(M1) where M1 has type σ×τ , then by the induction hypothesis, A[[M1]]ρ ∈ r[[σ×τ]].
By the definition of r[[σ × τ]], this implies that π1(A[[M1]]ρ) ∈ r[[σ]], that is, A[[π1(M1)]]ρ ∈ r[[σ]], by
definition 10.1. Similarly, we get A[[π2(M1)]]ρ ∈ r[[σ]].

If M = inl(M1) where M has type σ + τ , then by the induction hypothesis, A[[M1]]ρ ∈ r[[σ]].
By (P4)(3), we have inl(A[[M1]]ρ) ∈ Pσ+τ . Consider the cover D of inl(A[[M1]]ρ):

D = {inl(p1) | p1 ∈ r[[σ]] and inl(A[[M1]]ρ) � inl(p1)} ∪
{inr(p2) | p2 ∈ r[[τ]] and inl(A[[M1]]ρ) � inr(p2)} ∪
{5σ+τ (p3) | p3 ∈ P⊥ and inl(A[[M1]]ρ) � 5σ+τ (p3)}.

We need to show that Covσ+τ (D, inl(A[[M1]]ρ)). We claim that

D = {p | inl(A[[M1]]ρ) � p}.

By the properties of �, p � inl(A[[M1]]ρ) implies that p = inl(p1) and p1 � A[[M1]]ρ. Since
A[[M1]]ρ ∈ r[[σ]], and by (S2), p1 ∈ r[[σ]] whenever p1 � A[[M1]]ρ, we do have

D = {p | inl(A[[M1]]ρ) � p}.

However, by property (2) of definition 9.1, since inl(A[[M1]]ρ) ∈ Pσ+τ and D is a principal cover,
Covσ+τ (D, inl(A[[M1]]ρ)) holds. Since by definition 10.1, A[[inl(M1)]]ρ = inl(A[[M1]]ρ), we have
A[[inl(M1)]]ρ ∈ r[[σ + τ]]. The case where M = inr(M1) is similar.

If M = [M1, N1] is of type (σ + τ) → δ, by the induction hypothesis applied to M1, N1, we
have A[[M1]]ρ ∈ r[[σ → δ]], and A[[N1]]ρ ∈ r[[τ → δ]]. Thus, by lemma 11.5, we have A[[[M1, N1]]]ρ ∈
r[[(σ + τ)→ δ]].

If M = 5σ(M1), then by the induction hypothesis, A[[M1]]ρ ∈ r[[⊥]] = P⊥. By lemma 11.5
(4), we have 5σ(A[[M1]]ρ) ∈ r[[σ]]. Since by definition 10.1, A[[5σ(M1)]]ρ = 5σ(A[[M1]]ρ), we have
A[[5σ(M1)]]ρ ∈ r[[σ]].

Theorem 7.7 is generalized to the calculus λ→,×,+,⊥ as follows.

Theorem 11.7 Given a well-behaved scenic site 〈A,P, Cov〉, if P is a family satisfying conditions
(P1)-(P5), then for every closed term M of type σ, we have A[[M]] ∈ Pσ. (in other words, the
realizer A[[M]] satisfies the unary predicate defined by P, i.e, every provable type is realizable).

Proof . Apply lemma 11.6 to the closed term M of type σ and to any arbitrary valuation ρ.

12 Applications to the System λ→,×,+,⊥

This section shows that theorem 11.7 can be used to prove a general theorem about terms of the
system λ→,×,+,⊥. As a corollary, it can be shown that all terms of λ→,×,+,⊥ are strongly normalizing
and confluent.

In order to apply theorem 11.7, we define a notion of cover for the site A whose underlying
pre-applicative structure is the structure LT β of definition 8.2.

34

Definition 12.1 An I-term is a term of the form either λx:σ. M , 〈M, N〉, inl(M), inr(M),
[M, N], or 5σ(M). A simple term (or neutral term) is a term that is not an I-term. Thus, a
simple term is either a variable x, a constant c, an application MN , a projection π1(M) or π2(M).
A term M is stubborn iff it is simple and, either M is irreducible, or M ′ is a simple term whenever

M
+−→β M

′ (equivalently, M ′ is not an I-term).

We define a cover algebra on the structure LT β as follows. Let P be a (unary) property of
typed λ-terms.

Definition 12.2 The cover algebra Cov is defined as follows:

(1) If M ∈ Pσ and M is an I-term, then

Cov(M) = {{N | M ∗−→β N}}.

(2) If M ∈ Pσ and M is a (simple and) stubborn term, then

Cov(M) = {∅, {N | M ∗−→β N}}.

(3) If M ∈ Pσ and M is a simple and non-stubborn term, then

Cov(M) = {{N | M ∗−→β N}, {N | M
+−→β Q

∗−→β N, for some I-term Q}}.

Recall from definition 9.2 that M is simple iff it has at least two distinct covers. Thus, definition
12.2 implies that a term is simple in the sense of definition 12.1 iff it is simple in the sense of definition
9.2. Similarly a term is stubborn in the sense of definition 12.1 iff it is stubborn in the sense of
definition 9.2. Also, definition 12.1 implies that LT β is scenic.

Properties (P1-P3) are listed below.

Definition 12.3 Properties (P1)-(P3) are defined as follows:

(P1) x ∈ Pσ, c ∈ Pσ, for every variable x and constant c of type σ.

(P2) If M ∈ Pσ and M −→β N , then N ∈ Pσ.

(P3) If M is simple, then:

(1) If M ∈ Pσ→τ , N ∈ Pσ, (λx:σ.M ′)N ∈ Pτ whenever M
+−→β λx:σ.M ′, and 5σ→τ (M ′)N ∈

Pτ whenever M
+−→β 5σ→τ (M ′), then MN ∈ Pτ .

(2) If M ∈ Pσ×τ , π1(〈M ′, N ′〉) ∈ Pσ and π2(〈M ′, N ′〉) ∈ Pτ whenever M
+−→β 〈M ′, N ′〉,

and π1(5σ×τ (M ′)) ∈ Pσ and π2(5σ×τ (M ′)) ∈ Pτ whenever M
+−→β 5σ×τ (M ′), then

π1(M) ∈ Pσ and π2(M) ∈ Pτ .

A careful reader will notice that conditions (P3) of definition 12.3 are not simply a reformulation
of condition (P3) of definition 9.3. This is because according to definition 12.2, a non-stubborn

term M is covered by the nontrivial cover {N | M +−→β Q
∗−→β N}, where Q is some I-term,

but the conditions of definition 12.3 only involve reductions to I-terms. However, due to condition

35

(P2) and the fact that a nontrivial cover is determined by the I-terms in it, the two definitions are
indeed equivalent.

If M ∈ Pσ→τ is a stubborn term and N ∈ Pσ is any term, then MN ∈ Pτ by (P3). Furthermore,
MN is also stubborn since it is a simple term and since it can only reduce to an I-term if M itself
reduces to a an I-term. Thus, if M ∈ Pσ→τ is a stubborn term and N ∈ Pσ is any term, then MN
is a stubborn term in Pτ . We can show in a similar fashion that (P3) implies that if M ∈ Pσ×τ is
a stubborn term, then π1(M) is a stubborn term in Pσ and π2(M) is a stubborn term in Pτ .

Properties (P4-P5) are listed below.

Definition 12.4 Properties (P4) and (P5) are defined as follows:

(P4)
(1) If M ∈ Pτ , then λx:σ. M ∈ Pσ→τ .
(2) If M ∈ Pσ and N ∈ Pτ , then 〈M, N〉 ∈ Pσ×τ .
(3) If M ∈ Pσ, then inl(M) ∈ Pσ+τ , and if M ∈ Pτ , then inr(M) ∈ Pσ+τ .
(4) If M ∈ Pσ→δ and N ∈ Pτ→δ, then [M, N] ∈ P(σ+τ)→δ.
(5) If M ∈ P⊥, then 5σ(M) ∈ Pσ.

(P5)
(1) If N ∈ Pσ and M [N/x] ∈ Pτ , then (λx:σ. M)N ∈ Pτ .
(2) If M ∈ Pσ and N ∈ Pτ , then π1(〈M, N〉) ∈ Pσ and π2(〈M, N〉) ∈ Pτ .
(3) If P ∈ Pσ+τ , M ∈ Pσ→δ, N ∈ Pτ→δ, MP1 ∈ Pδ whenever P

∗−→β inl(P1), NP2 ∈ Pδ
whenever P

∗−→β inr(P2), and P1 ∈ P⊥ whenever P
∗−→β 5σ+τ (P1), then [M, N]P ∈ Pδ.

(4) If M1 ∈ P⊥ and N ∈ Pσ, then 5σ→τ (M1)N ∈ Pτ . If M1 ∈ P⊥, then π1(5σ×τ (M1)) ∈ Pσ
and π2(5σ×τ (M1)) ∈ Pτ .

Again, a careful reader will notice that conditions (P5) of definition 12.4 are not simply a
reformulation of conditions (P5) of definition 11.4. However, because of (P2) and the fact that a
nontrivial cover is determined by the I-terms in it, the two sets of conditions are equivalent.

It is easy to verify that [M, N]P ∈ Pδ is a stubborn term in Pδ, if P ∈ Pσ+τ is stubborn,
M ∈ Pσ→δ, and N ∈ Pτ→δ. Indeed, [M, N]P ∈ Pδ can only reduce to an I-term if P does. We
now show that the conditions of definition 9.1 and the conditions of definition 11.2 hold.

Lemma 12.5 Definition 12.2 defines a cover algebra, and the site 〈LT β,P, Cov〉 is scenic and
well-behaved.

Proof . Conditions (0)-(4) of definition 9.1 are easily verified. Let us verify conditions (5) and
(6).

(5) If Cov(M) = triv(M), then Cov(MN) = triv(MN), and if Cov(C,M) and Cov(D,MN)
with C and D nontrivial, then for every Q ∈ D, there is some M ′ ∈ C such that Q �M ′N .

The first part says that if M is stubborn, then MN is stubborn, which has already been
verified. If the covers C and D are nontrivial, then by definition 12.1, M and MN must be simple
and non-stubborn terms. In this case, Q ∈ D means that

MN
+−→β P

∗−→β Q,

36

where P is an I-term. This can happen only if M
+−→β M

′, where M ′ itself an I-term. In this case,
there is some reduction

MN
+−→β M

′N
∗−→β P

∗−→β Q,

where M ′ is an I-term. Since M is simple and non-stubborn, definition 12.1 implies that M ′ ∈ C.

(6) If Cov(M) = triv(M), then Cov(π1(M)) = triv(π1(M)), Cov(π2(M)) = triv(π2(M)), and
if Cov(C,M) and Cov(D,π1(M)) (resp. Cov(D,π2(M))) with C and D nontrivial, then for
every Q ∈ D, there is some M ′ ∈ C such that Q � π1(M ′) (resp. Q � π2(M ′)).

The first part says that if M is stubborn, then π1(M) and π2(M) are stubborn, which has
already been verified. If the covers C and D are nontrivial, then by definition 12.1, M , π1(M), and
π1(M), must be simple and non-stubborn terms. In this case, Q ∈ D means that

π1(M)
+−→β P

∗−→β Q,

where P is an I-term. This can happen only if M
+−→β M

′, where M ′ itself an I-term. In this case,
there is some reduction

π1(M)
+−→β π1(M ′)

∗−→β P
∗−→β Q,

where M ′ is an I-term. Since M is simple and non-stubborn, definition 12.1 implies that M ′ ∈ C.
The same argument applies to π2(M).

Let us now verify the conditions of definition 11.2. First, recall that for the structure LT β, for
every valuation ρ (an infinite substitution) LT β[[M]]ρ = M [ϕ], where ϕ is the substitution defined
by the restriction of ρ to FV (M). Also app(M,N) = MN , and recall that Aσ is the set of terms
of type σ.

(1) For any a ∈ Aσ, if Covτ (C, app(LT β[[λx:σ. M]]ρ, a)) and C is a nontrivial cover, then c �
LT β[[M]]ρ[x: = a] for every c ∈ C.
For any b ∈ Aσ, if Covτ (C, app(LT β[[5σ→τ (M)]]ρ, b)) and C is a nontrivial cover, then c �
LT β[[5τ (M)]]ρ for every c ∈ C;

We have app(LT β[[λx:σ.M]]ρ, a) = ((λx:σ.M)[ϕ])a, where ϕ is the substitution defined by the
restriction of ρ to FV (M)− {x}. By definition 12.1, since C is nontrivial, c ∈ C means that

((λx:σ. M)[ϕ])a
+−→β Q

∗−→β c,

for some I-term Q. This can only happen if there is a reduction

((λx:σ. M)[ϕ])a −→β (M [ϕ])[a/x]
∗−→β c.

However, we have (M [ϕ])[a/x] = M [ϕ[x: = a]] (using a suitable renaming of x). By the definition
of LT β[[M]]ρ, we have LT β[[M]]ρ[x: = a] = M [ϕ[x: = a]], and this part of the proof is complete.
The proof for 5σ→τ (M) is completely analogous.

37

(2) If Covσ(C, π1(LT β[[〈M1, M2〉]]ρ)) and C is a nontrivial cover, then c � LT β[[M1]]ρ for every
c ∈ C.
If Covτ (C, π2(LT β[[〈M1, M2〉]]ρ)) and C is a nontrivial cover, then c � LT β[[M2]]ρ for every
c ∈ C.
If Covσ(C, π1(LT β[[5σ×τ (M)]]ρ)) and C is a nontrivial cover, then c � LT β[[5σ(M)]]ρ for
every c ∈ C.
If Covτ (C, π2(LT β[[5σ×τ (M)]]ρ)) and C is a nontrivial cover, then c � LT β[[5τ (M)]]ρ for
every c ∈ C.

We have LT β[[〈M1, M2〉]]ρ = 〈M1, M2〉[ϕ], where ϕ is the substitution defined by the restriction
of ρ to FV (M1) ∪ FV (M2). By definition 12.1, since C is nontrivial, c ∈ C means that

π1(〈M1, M2〉[ϕ])
+−→β Q

∗−→β c,

for some I-term Q. This can only happen if there is a reduction

π1(〈M1, M2〉[ϕ]) −→β M1[ϕ]
∗−→β c.

Since LT β[[M1]]ρ = M1[ϕ], this part of the proof is complete. The other cases are entirely analogous.

(3) If Cov(P) = triv(P), then Cov(app(LT β[[[M, N]]]ρ, P)) = triv(app(LT β[[[M, N]]]ρ, P)),
and if Covσ+τ (C,P), Covδ(D, app(LT β[[[M, N]]]ρ, P)), and C and D are nontrivial, then for
every d ∈ D, either there is some inl(P1) ∈ C such that d � app(LT β[[M]]ρ, P1), or there
is some inr(P2) ∈ C such that d � app(LT β[[N]]ρ, P2), or there is some 5σ+τ (P3) ∈ C such
that d � 5δ(P3).

The first part says that [M [ϕ], N [ϕ]]P is stubborn if P is stubborn, which has already been
shown (where ϕ is the substitution defined by the restriction of ρ to FV (M) ∪ FV (N)). By
definition 12.1, since D is nontrivial, d ∈ D means that

[M [ϕ], N [ϕ]]P
∗−→β Q

∗−→β d,

where Q is an I-term. This can happen only if either

P
∗−→β inl(P1), and

[M [ϕ], N [ϕ]]inl(P1) −→β M [ϕ]P1
∗−→β d,

or P
∗−→β inr(P2), and

[M [ϕ], N [ϕ]]inr(P2) −→β N [ϕ]P2
∗−→β d,

or P
∗−→β 5σ+τ (P3), and

[M [ϕ], N [ϕ]]5σ+τ (P3) −→β 5δ(P3)
∗−→β d.

38

In each case, since C is nontrivial, by definition 12.1, we have inl(P1) ∈ C, inl(P2) ∈ C, and
5σ+τ (P3) ∈ C.

Thus, the site 〈LT β,P, Cov〉, is scenic and well-behaved. Consequently, we can apply theorem
11.7, and get a general theorem for proving properties of terms of the system λ→,×,+,⊥. In fact,
for the structure LT β, for a property P satisfying conditions (P1)-(P5), by (P1) and (P3), every
variable x of type σ is stubborn (for every σ). Thus, we can apply lemma 11.6 with the valuation
ρ such that ρ(x) = x for every variable x, since by lemma 9.6, r[[σ]] contains every stubborn term.
Consequently, we have the following theorem (compare with theorem A of the introduction).

Theorem 12.6 If P is a family of λ-terms satisfying conditions (P1)-(P5), then Pσ = Λσ for
every type σ (in other words, every term satisfies the unary predicate defined by P).

Proof . By lemma 12.5, the site 〈LT β,P, Cov〉 is scenic and well-behaved. By the discussion
just before stating theorem 12.6, the identity valuation ρ such that ρ(x) = x for every variable x,
is such that ρ(x) ∈ r[[σ]] for every x:σ. Thus, we can apply lemma 11.6 to any term M of type σ
and to ρ, and we have LT β[[M]]ρ ∈ r[[σ]]. However, in the present case, LT β[[M]]ρ = M . Thus,
M ∈ r[[σ]], and since r[[σ]] ⊆ Pσ, we have M ∈ Pσ, as claimed.

As a corollary, strong normalization and confluence can be shown, see Gallier [5] for such a
treatment.

We now consider the generalization of the previous treatment to the second-order typed λ-
calculus λ→,∀

2

13 Syntax of the Second-Order Typed λ-Calculus λ→,∀
2

In this section, we review quickly the syntax of the second-order typed λ-calculus λ→,∀
2
. This

includes a definition of the second-order types under consideration, of raw terms, or the type-
checking rules for judgements, and of the reduction rules. For more details, the reader should
consult Breazu-Tannen and Coquand [2]. For simplicity, we only consider the types → and ∀2, but
the types ×, +, and ⊥, can also be handled, as in section 2.

Let T denote the set of second-order types. This set comprises type variables X, type constants
k, and compound types (σ → τ), and ∀X. σ. It is assumed that we have a set TC of type
constants (also called base types of kind ?). We have a countably infinite set V of type variables
(denoted as upper case letters X,Y, Z), and a countably infinite set X of term variables (denoted
as lower case letters x, y, z). We denote the set of free type variables occurring in a type σ as
FTV (σ). We use the notation ? for the kind of types. Since we are only considering second-order
quantification over predicate symbols (of kind ?) of arity 0, this is superfluous. However, it will
occasionally be useful to consider contexts Γ in which type variables are explicitly present, since this
makes the type-checking rules more uniform in the case of λ-abstraction and typed λ-abstraction.
Thus, officially, a context Γ is a set {x1:σ1, . . . , xn:σn}, where x1, . . . , xn are term variables, and
σ1, . . . , σn are types. We let dom(Γ) = {x1, . . . , xn}. As usual, we assume that the variables xj
are pairwise distinct. We also assume that x /∈ dom(Γ) in a context Γ, x:σ. Informally, we will
also consider contexts {X1: ?, . . . , Xm: ?, x1:σ1, . . . , xn:σn}, where X1, . . . , Xm are type variables,
and x1, . . . , xn are term variables, with the two sets {X1, . . . , Xm} and {x1, . . . , xn} disjoint, the

39

variables Xi pairwise distinct, and the variables xj pairwise distinct. We assume that X /∈ dom(Γ)
in a context Γ, X: ?. For the sake of brevity, rather than writing typed λ-abstraction as λX: ?. M ,
it will be written as λX. M .

It is assumed that we have a set Const of constants, together with a function Type: Const → T ,
such that every constant c is assigned a closed type Type(c) in T . The set TC of type constants,
together with the set Const of constants, and the function Type, constitute a signature Σ. Let us
review the definition of raw terms.

Definition 13.1 The set of raw terms is defined inductively as follows: every variable x ∈ X is a
raw term, every constant c ∈ Const is a raw terms, and if M,N are raw terms and σ, τ are types,
then (MN), (Mτ), λx:σ. M , and λX. M , are raw terms.

We let FV (M) denote the set of free term-variables in M . Raw terms may contain free variables
and may not type-check (for example, (xx)). In order to define which raw terms type-check, we
consider expressions of the form Γ .M :σ, called judgements, where Γ is a context in which all the
free term variables in M are declared. A term M type-checks with type σ in the context Γ iff the
judgement Γ . M :σ is provable using axioms and rules summarized in the following definition.

Definition 13.2 The judgements of the polymorphic typed λ-calculus λ→,∀
2

are defined by the
following rules.

Γ . x:σ, when x:σ ∈ Γ,

Γ . c: Type(c), when c is a constant,

Γ, x:σ .M : τ

Γ . (λx:σ. M): (σ → τ)
(abstraction)

Γ . M : (σ → τ) Γ . N :σ

Γ . (MN): τ
(application)

Γ, X: ? . M :σ

Γ . (λX. M):∀X. σ
(∀-intro)

provided that X /∈
⋃
x:τ∈Γ FTV (τ);

Γ . M : ∀X. σ
Γ . (Mτ):σ[τ/X]

(∀-elim)

The reason why we do not officially consider that a context contains type variables, is that
in the rule (∀-elim), the type τ could contain type variables not declared in Γ, and it would be
necessary to have a weakening rule to add new type variables to a context (or some other mechanism
to add new type variables to a context). As long as we do not deal with dependent types, this
technical annoyance is most simply circumvented by assuming that type variables are not included
in contexts.

Definition 13.3 The reduction rules of the system λ→,∀
2

are listed below:

(λx:σ. M)N −→M [N/x],

(λX. M)τ −→M [τ/X].

40

The reduction relation defined by the rules of definition 13.3 is denoted as −→β. From now on,
when we refer to a λ-term, we mean a λ-term that type-checks. We let Λ〈σ, Γ〉 denote the set of
judgements of the form Γ . M :σ.

14 Pre-Applicative Structures for λ→,∀
2

In this section, the definition of a pre-applicative structure (given in section 3) is generalized to
λ→,∀

2
. For simplicity, only pre-applicative β-structures are defined. Pre-applicative βη-structures

and extensional pre-applicative β-structures are defined in an appendix (see section 21). The types
×, +, and ⊥, can easily be handled as in section 8, but for simplicity, we only deal with the
types → and ∀2. Since we are dealing with type variables, in order to interpret the types, we
first need to define the notion of an algebra of (polymorphic) types. We also need to define the
notion of a dependent product (see definition 14.2) in order to “curry” the map tappΦ:A∀(Φ)×T →∐

(AΦ(s))s∈T .

Definition 14.1 An algebra of (polymorphic) types is a tuple

〈T,→, [T ⇒ T],∀〉,

where T is a nonempty set of types, →:T × T → T is a binary operation on T , [T ⇒ T] is a
nonempty set of functions from T to T , and ∀ is a function ∀: [T ⇒ T]→ T .

We hope that readers will forgive us for denoting an algebra of types 〈T,→, [T ⇒ T], ∀〉 with
the same symbol T . Intuitively, given a valuation θ:V → T , a type σ ∈ T will be interpreted as an
element [[σ]]θ of T .

Given an indexed family of sets (Ai)i∈I , we let
∏

(Ai)i∈I be the product of the family (Ai)i∈I ,
and

∐
(Ai)i∈I be the coproduct (or disjoint sum) of the family (Ai)i∈I . The disjoint sum

∐
(Ai)i∈I

is the set
⋃
{〈a, i〉 | a ∈ Ai}i∈I . If the sets Ai are preorders, then

∏
(Ai)i∈I is a preorder under the

product preorder, where (ai)i∈I � (bi)i∈I iff ai �i bi for all i ∈ I, and
∐

(Ai)i∈I is a preorder under
the (disjoint) sum preorder, where 〈a, i〉 � 〈b, j〉 iff i = j and a �i b.

Before defining a pre-applicative structure, we need to define the notion of a dependent product.

Definition 14.2 Given an algebra of types T , and a T -indexed family of preorders 〈As, �s〉, for ev-
ery function Φ ∈ [T ⇒ T], the dependent product

∏
Φ(As)s∈T is the cartesian product

∏
(AΦ(t))t∈T ,

which is also described explicitly as the set of functions in (
∐

(AΦ(s))s∈T)
T

defined as follows:∏
Φ

(As)s∈T = {f :T →
∐

(AΦ(s))s∈T | f(t) ∈ AΦ(t), for all t ∈ T}.

The set
∏

Φ(As)s∈T is given the preorder �Φ defined such that, f �Φ g iff f(t) �Φ(t) g(t), for every
t ∈ T .

Given two preordered sets 〈As, �s〉 and 〈At, �t〉, we let [As ⇒ At] be the set of monotonic
functions w.r.t. �s and �t, under the pointwise preorder induced by �t defined such that, f � g
iff f(a) �t g(a) for all a ∈ As.

We are now ready to define the semantic structures used in this paper.

41

Definition 14.3 Given an algebra of types T , a pre-applicative β-structure is a structure

A = 〈A, �, fun, abst, tfun, tabst〉,

where

A = (As)s∈T is a family of sets (possibly empty) called carriers;

(�s)s∈T is a family of preorders, each �s on As;

absts,t: [As ⇒ At] → As→t, a family of partial operators;

funs,t:As→t → [As ⇒ At], a family of (total) operators;

tabstΦ:
∏

Φ(As)s∈T → A∀(Φ), a family of partial operators, for every Φ ∈ [T ⇒ T];

tfuns,t:A∀(Φ) →
∏

Φ(As)s∈T , a family of (total) operators, for every Φ ∈ [T ⇒ T].

It is assumed that fun, abst, tfun, and tabst, are monotonic. Furthermore, the following
conditions are satisfied

(1) For all s, t ∈ T , if As 6= ∅ and At 6= ∅, then As→t 6= ∅, and funs,t(absts,t(ϕ)) � ϕ, whenever
absts,t(ϕ) is defined for ϕ ∈ [As ⇒ At];

(2) If AΦ(t) 6= ∅ for every t ∈ T , then A∀(Φ) 6= ∅, and tfunΦ(tabstΦ(ϕ)) � ϕ, whenever
tabstΦ(ϕ) is defined for ϕ ∈

∏
Φ(As)s∈T .

The operators fun induce (total) operators

apps,t:As→t ×As → At, such that, for every f ∈ As→t and every a ∈ As,

apps,t(f, a) = funs,t(f)(a).

Then, condition (1) can be written as

(1’) apps,t(absts,t(ϕ), a) � ϕ(a), for every a ∈ As, for ϕ ∈ [As ⇒ At], whenever absts,t(ϕ) is
defined.

The operators tfun induce (total) operators

tappΦ:A∀(Φ) × T →
∐

(AΦ(s))s∈T , such that, for every t ∈ T ,

tappΦ(f, t) = tfunΦ(f)(t).

Then, condition (2) can be written as

(2’) tappΦ(tabstΦ(ϕ), s) � ϕ(s), for every s ∈ T , whenever tabstΦ(ϕ) is defined, for ϕ ∈∏
Φ(As)s∈T .

We say that a pre-applicative β-structure is an applicative β-structure iff in conditions (1)-(2),
� is replaced by the identity relation =.

We will omit superscripts whenever possible. Intuitively, A is a set of realizers. It is shown in
section 17 how the term model can be viewed as a pre-applicative β-structure (see definition 17.5).

When A is an applicative β-structure, then, in definition 14.3, conditions (1)-(2) amounts to

(1) funs,t ◦ absts,t = id on the domain of definition of abst;

42

(2) tfunΦ ◦ tabstΦ = id on the domain of definition of tabst.

In this case, abst is injective and fun is surjective on the domain of definition of abst (and
left inverse to abst), tabst is injective and tfun is surjective on the domain of definition of tabst
(and left inverse to tabst).

When we use a pre-applicative β-structure to interpret λ-terms, we assume that the domains
of abst and tabst are sufficiently large, but we have not elucidated this last condition yet. Given
M ∈ As→t and N ∈ As, app(M,N) is also denoted as MN , and tapp(M, t) as Mt.

15 P-Cover Algebras and P-Sheaves for λ→,∀
2

In this section, we basically repeat the definitions for covers and sheaves given in section 9, except
that we are dealing with a more general notion of pre-applicative structure (since we also have an
algebra of types T). As in section 9, we define all the necessary concepts in terms of preorders,
referring the interested reader to MacLane and Moerdijk [18] for a general treatment. First, we
need some preliminary definitions before defining the crucial notion of a cover. From now on, unless
specified otherwise, it is assumed that we are dealing with pre-applicative β-structures (and thus,
we will omit the prefix β).

Definition 15.1 Given an algebra of types T and a pre-applicative structure A, for any M ∈ As,
a sieve on M is any subset C ⊆ As such that, N � M for every N ∈ C, and whenever N ∈ C
and Q � N , then Q ∈ C. In other words, a sieve on M is downwards closed and below M (it is
an ideal below M). The sieve {N | N � M} is called the maximal (or principal) sieve on M . A
covering family on a pre-applicative structure A is a family Cov of binary relations Covs on 2A

s×As,
relating subsets of As called covers, to elements of As. Equivalently, Cov can be defined as a family

of functions Covs:A
s → 22A

s

assigning to every element M ∈ As a set Cov(M) of subsets of As (the
covers of M). Given any M ∈ As, the empty cover ∅ and the principal sieve {N | N �M} are the
trivial covers. We let triv(M) denote the set consisting of the two trivial covers of M . A cover
which is not trivial is called nontrivial .

In the rest of this paper, we will consider binary relations P ⊆ A×T , such that P(M, s) implies
M ∈ As, and for every s ∈ T , if As 6= ∅, then there is some M ∈ As s.t. P(M, s). Equivalently, P
can be viewed as a family P = (Ps)s∈T , where each Ps is a nonempty subset of As (unless As = ∅).
The intuition behind P is that it is a property of realizers. For simplicity, we define the covering
conditions only for the types → and ∀2 (but the types ×, + and ⊥, can also be handled. This
treatment can be readily adapted from sections 9, 10, and 11).

Definition 15.2 Given an algebra of types T , let A be a pre-applicative structure and let P be a
family P = (Ps)s∈T , where each Ps is a nonempty subset of As (unless As = ∅). A P-cover algebra
(or P-Grothendieck topology) on A is a family Cov of binary relations Covs on 2A

s × As satisfying
the following properties:

(0) Covs(C,M) implies M ∈ Ps (equivalently, P(M, s)).

(1) If Cov(C,M), then C is a sieve on M (an ideal below M).

43

(2) If M ∈ Ps, then Cov({N | N �M},M) (M ∈ Ps is covered by the principal sieve on M).

(5) If Cov(M) = triv(M), then Cov(MN) = triv(MN), and if Cov(C,M) and Cov(D,MN)
with C and D nontrivial, then for every Q ∈ D, there is some M ′ ∈ C such that Q �M ′N .

(6) If Cov(M) = triv(M), then Cov(Ms) = triv(Ms), where s ∈ T , and if Cov(C,M) and
Cov(D,Ms) with C and D nontrivial, then for every Q ∈ D, there is some M ′ ∈ C such that
Q �M ′s.

A triple 〈A,P, Cov〉, where A is pre-applicative structure, P is a property on A, and Cov is a
P-Grothendieck topology, is called a P-site.

Condition (0) is needed to restrict attention to elements having the property P. Covers
only matter for these elements. Conditions (1)-(2) are the conditions for a set of sieves to be
a Grothendieck topology, in the case where the base category is a preorder 〈A,�〉. Conditions
(5)-(6) are needed to take care of the extra structure.

Conditions (3) and (4) have been omitted, since they are only needed for the treatment of the
sum type + (or the existential type). Also, it is not necessary to assume that covers are ideals
(downwards closed), but this is not harmful.

Definition 15.3 We say that M ∈ As is simple iff Cov(C,M) for at least two distinct covers C.
We say that M ∈ As is stubborn iff Cov(M) = {∅, {Q | Q � M}} (thus every stubborn element is
simple). We say that a P-site 〈A,P, Cov〉 is scenic iff all elements of the form app(M,N) (or MN),
or tapp(M, s) (or Ms), are simple.

From now on, we only consider scenic P-sites. In order for our realizability theorem to hold,
realizers will have to satisfy properties analogous to the properties (P1)-(P3).

Definition 15.4 Given an algebra of types T , let 〈A,P, Cov〉 be a P-site. Properties (P1)-(P3)
are defined as follows:

(P1) P(M, s), for some stubborn element M ∈ As.
(P2) If P(M, s) and M � N , then P(N, s).

(P3a) If Covs→t(C,M), P(N, s), and P(M ′N, t) whenever M ′ ∈ C, then P(MN, t).

(P3b) If Cov∀(Φ)(C,M), s ∈ T , and P(M ′s,Φ(s)) whenever M ′ ∈ C, then P(Ms,Φ(s)).

From now on, we only consider relations (families) P satisfying conditions (P1)-(P3) of definition
15.4. The sheaf property is defined as in section 9, except that a more general notion of pre-
applicative structure is involved.

Definition 15.5 Given an algebra of types T , let 〈A,P, Cov〉 be a P-site. A function S:A → 2T

has the sheaf property (or is a P-sheaf) iff it satisfies the following conditions:

(S1) If s ∈ S(M), then M ∈ Ps.
(S2) If s ∈ S(M) and M � N , then s ∈ S(N).

(S3) If Covs(C,M) and s ∈ S(N) for every N ∈ C, then s ∈ S(M).

44

A function S:A → 2T as in definition 15.5 can also be viewed as a family S = (Ss)s∈T , where
Ss = {M ∈ A | s ∈ S(M)}. Then, the sets Ss are called P-candidates. The conditions of definition
15.5 are then stated as follows:

(S1) Ss ⊆ Ps.

(S2) If M ∈ Ss and M � N , then N ∈ Ss.

(S3) If Covs(C,M), and C ⊆ Ss, then M ∈ Ss.

This second set of conditions is slightly more convenient for proving our results.

Note that (S3) and (P1) imply that Ss is nonempty and contains all stubborn elements in Ps
(unless As = ∅). By (P3a), if M ∈ Ps→t is stubborn and N ∈ Ps is any element, then MN ∈ Pt.
Furthermore, MN is also stubborn. This follows from property (5) of a cover. Thus, if M ∈ Ps→t is
stubborn and N ∈ Ps is any element, then MN ∈ Pt is stubborn. Similarly, by (P3b) and property
(6) of a cover, if M ∈ P∀(Φ) is stubborn and s ∈ T , then Ms ∈ PΦ(s) is stubborn.

Definition 15.6 Given an algebra of types T and a P-site 〈A,P, Cov〉, we let Sheaf(A, P) denote
the sets of all P-sheaves on 〈A,P, Cov〉, and

Sheaf(A, P)s = {Ss | Ss ∈ S, for some sheaf S = (Ss)s∈T ∈ Sheaf(A, P)}.

Since P itself is a P-sheaf, the set Sheaf(A, P) is nonempty. The fact that definition 15.5 is
indeed a sheaf condition is shown exactly as in section 4 (except that a functor F is a P-sheaf iff
it is a sheaf, and for every a ∈ A, F (a) ⊆ T and s ∈ F (a) implies that a ∈ Ps).

16 P-Realizability For λ→,∀
2

In this section, we define a semantic notion of realizability. This notion is such that realizers are
elements of some pre-applicative structure. Since types can contain type variables, we first need to
define an interpretation of the types. In order to define the set of realizers of a second-order type
∀X. σ, we need to define sheaf-valuations (see definition 16.4).

Definition 16.1 Given an algebra of polymorphic types T , it is assumed that we have a function
TI: TC → T assigning an element TI(k) ∈ T to every type constant k ∈ TC . A type valuation is
a function θ:V → T . Given a type valuation θ, every type σ ∈ T is interpreted as an element [[σ]]θ
of T as follows:

[[X]]θ = θ(X), where X is a type variable,

[[k]]θ = TI(k), where k is a type constant,

[[σ → τ]]θ = [[σ]]θ → [[τ]]θ,

[[∀X. σ]]θ = ∀(Λt ∈ T. [[σ]]θ[X: = t]).

In the above definition, Λt ∈ T. [[σ]]θ[X: = t] denotes the function Φ from T to T such that
Φ(t) = [[σ]]θ[X: = t] for every t ∈ T . We say that T is a type interpretation iff Φ ∈ [T → T] for
every type σ and every valuation θ.

45

In other words, T is a type interpretation iff [[σ]]θ is well-defined for every valuation θ. The
following lemmas will be needed later.

Lemma 16.2 For every type σ ∈ T , and every pair of type valuations θ1 and θ2, if θ1(X) = θ2(X),
for all X ∈ FTV (σ), then [[σ]]θ1 = [[σ]]θ2.

Proof . A straightforward induction on σ.

Lemma 16.3 Given a type interpretation T , for all σ, τ ∈ T , for every type valuation θ, we have

[[σ[τ/X]]]θ = [[σ]]θ[X: = [[τ]]θ].

Proof . The proof is by induction on σ. The case where σ = X is trivial, since then X[τ/X] = τ ,
and

[[X]]θ[X: = [[τ]]θ] = θ[X: = [[τ]]θ](X) = [[τ]]θ.

The induction steps are straightforward, and we only treat the case where σ = ∀Y. σ1. In this case,

[[(∀Y. σ1)[τ/X]]]θ = ∀(Λt ∈ T. [[σ1[τ/X]]]θ[Y : = t]),

(where the bound variable Y is renamed in a suitable fashion if necessary), and where Λt ∈
T. [[σ1[τ/X]]]θ[Y : = t] denotes the function Φ from T to T such that Φ(t) = [[σ1[τ/X]]]θ[Y : = t]
for every t ∈ T . By the induction hypothesis, we have

Φ(t) = [[σ1[τ/X]]]θ[Y : = t] = [[σ1]]θ[X: = [[τ]]θ, Y : = t].

Then, since
[[∀Y. σ1]]θ[X: = [[τ]]θ] = ∀(Λt ∈ T. [[σ1]]θ[X: = [[τ]]θ, Y : = t]),

we have
[[(∀Y. σ1)[τ/X]]]θ = [[∀Y. σ1]]θ[X: = [[τ]]θ].

The next definition can be viewed as a semantic version of Girard’s “candidats de réductibilité”
(see Girard [7], Gallier [4]).

Definition 16.4 Given a type interpretation T and a pre-applicative structure A, a sheaf-valuation
is a pair µ = 〈θ, η〉, where θ:V → T is a type valuation, and η:V →

⋃
Sheaf(A, P) is a function

called a candidate assignment , such that:

η(X) = Sθ(X), where Sθ(X) ∈ Sheaf(A, P)θ(X), for some P-sheaf S = (Ss)s∈T ∈ Sheaf(A, P),
for every X ∈ V.

Given µ = 〈θ, η〉, for any s ∈ T and any S ∈ Sheaf(A, P)s, for some s-component S = Ss
of some P-sheaf S = (Ss)s∈T ∈ Sheaf(A, P), we let µ[X: = 〈s, S〉] = 〈θ[X: = s], η[X: = S]〉 be
the sheaf-valuation, such that, θ[X: = s](Y) = θ(Y) for every Y 6= X and θ[X: = s](X) = s, and
η[X: = S](Y) = η(Y) for all Y 6= X, and η[X: = S](X) = S.

The notion of P-realizability is defined as follows.

46

Definition 16.5 Given an algebra of types T , let 〈A,P, Cov〉 be a P-site. For every sheaf-valuation
µ = 〈θ, η〉, the family (r[[σ]]µ)σ∈T , where for every σ ∈ T , r[[σ]]µ is the set of realizers of σ, is
defined as follows:

r[[k]]µ = P[[k]]θ, k a constant type,

r[[X]]µ = η(X), X a type variable,

r[[σ → τ]]µ = {M | M ∈ P[[σ→τ]]θ, and for all N , if N ∈ r[[σ]]µ then MN ∈ r[[τ]]µ},
r[[∀X. σ]]µ = {M | M ∈ P[[∀X. σ]]θ, and for every s ∈ T , every S ∈ Sheaf(A, P)s,

Ms ∈ r[[σ]]µ[X: = 〈s, S〉]}.

The following lemmas will be needed later.

Lemma 16.6 For every type σ ∈ T , every pair of sheaf-valuations µ1 = 〈θ1, η1〉 and µ2 = 〈θ2, η2〉,
if θ1(X) = θ2(X) and η1(X) = η2(X), for all X ∈ FTV (σ), then r[[σ]]µ1 = r[[σ]]µ2.

Proof . A straightforward induction on σ (and using lemma 16.2).

Lemma 16.7 Given a type interpretation T and a P-site 〈A,P, Cov〉, for all σ, τ ∈ T , for every
sheaf-valuation µ = 〈θ, η〉, we have

r[[σ[τ/X]]]µ = r[[σ]]µ[X: = 〈[[τ]]θ, r[[τ]]µ〉].

Proof . The proof is by induction on σ. We only consider the case where where σ = ∀Y. σ1, the
other cases being straightforward. By definition 16.5, we have

r[[(∀Y. σ1)[τ/X]]]µ = {M | M ∈ P[[(∀Y. σ1)[X/τ]]]θ, and for every s ∈ T , every S ∈ Sheaf(A, P)s,

Ms ∈ r[[σ1[τ/X]]]µ[Y : = 〈s, S〉]}.

By lemma 16.3, we have
[[(∀Y. σ1)[τ/X]]]θ = [[∀Y. σ1]]θ[X: = [[τ]]θ],

and by the induction hypothesis, we have

r[[σ1[τ/X]]]µ[Y : = 〈s, S〉] = r[[σ1]]µ[Y : = 〈s, S〉, X: = 〈[[τ]]θ, r[[τ]]µ〉].

However, by definition,

r[[∀Y. σ1]]µ[X: = 〈[[τ]]θ, r[[τ]]µ〉] = {M | M ∈ P[[∀Y. σ1]]θ[X:=[[τ]]θ], and for every s ∈ T ,
every S ∈ Sheaf(A, P)s,

Ms ∈ r[[σ1]]µ[X: = 〈[[τ]]θ, r[[τ]]µ〉, Y : = 〈s, S〉]},

and so, we have
r[[(∀Y. σ1)[τ/X]]]µ = r[[∀Y. σ1]]µ[X: = 〈[[τ]]θ, r[[τ]]µ〉].

The following lemma shows that the notion of a P-sheaf is an inductive invariant. In Gallier
[4], this is the lemma we call “ Girard’s trick”.4

4Of course, this is unfair. Girard has many tricks!

47

Lemma 16.8 Given a scenic P-site 〈A,P, Cov〉, for every sheaf valuation µ, if P satisfies con-
ditions (P1)-(P3), then the family (r[[σ]]µ)σ∈T is a P-sheaf, and if A[[σ]]θ 6= ∅, then each r[[σ]]µ
contains all stubborn elements in P[[σ]]θ.

Proof . We proceed by induction on types. If σ is a base type, r[[σ]]µ = P[[σ]]θ, and obviously,
every stubborn element in P[[σ]]θ is in r[[σ]]µ. Since r[[σ]]µ = P[[σ]]θ, (S1) is trivial, (S2) follows
from (P2), and (S3) is also trivial. If σ = X is a type variable, then r[[σ]]µ = η(X), and since
η(X) = Sθ(X), where Sθ(X) ∈ Sheaf(A, P)θ(X), (S1), (S2), and (S3) hold. The fact that every
stubborn element in Pθ(X) is in Sθ(X) follows from (P1) and (S3), as we already noted earlier.

We now consider the induction step.

(S1).

(1) Type σ → τ . By the definition of r[[σ → τ]]µ, (S1) is trivial.

(2) Type ∀X. σ. By the definition of r[[∀X. σ]]µ, (S1) is trivial.

(S2).

(1) Type σ → τ .

Let M ∈ r[[σ → τ]]µ, and assume that M � M ′. Since M ∈ P[[σ→τ]]θ by (S1), we have
M ′ ∈ P[[σ→τ]]θ by (P2). For any N ∈ r[[σ]]µ, since M ∈ r[[σ → τ]]µ, we have MN ∈ r[[τ]]µ, and since
M �M ′, by monotonicity of app, we have MN �M ′N . Then, applying the induction hypothesis
at type τ , (S2) holds for r[[τ]]µ, and thus M ′N ∈ r[[τ]]µ. Thus, we have shown that M ′ ∈ P[[σ→τ]]θ

and that if N ∈ r[[σ]]µ, then M ′N ∈ r[[τ]]µ. By the definition of r[[σ → τ]]µ, this shows that
M ′ ∈ r[[σ → τ]]µ, and (S2) holds at type σ → τ .

(2) Type ∀X. σ.

Let M ∈ r[[∀X. σ]]µ, and assume that M � M ′. Since M ∈ P[[∀X. σ]]θ, by (S1), we have
M ′ ∈ P[[∀X. σ]]θ. For every s ∈ T and every S ∈ Sheaf(A, P)s, since M ∈ r[[∀X. σ]]µ, we have
Ms ∈ r[[σ]]µ[X: = 〈s, S〉], and since M �M ′, by monotonicity of tapp, we have Ms �M ′s. Then,
applying the induction hypothesis to σ and µ[X: = 〈s, S〉], (S2) holds for r[[σ]]µ[X: = 〈s, S〉], and
thus M ′s ∈ r[[σ]]µ[X: = 〈s, S〉]. By the definition of r[[∀X. σ]]µ, this show that M ′ ∈ r[[∀X. σ]]µ.

(S3).

(1) Type σ → τ .

Assume that Cov[[σ→τ]]θ(C,M), and that M ′ ∈ r[[σ → τ]]µ for every M ′ ∈ C, where M is simple.
Recall that by condition (0) of definition 15.2, Cov[[σ→τ]]θ(C,M) implies that M ∈ P[[σ→τ]]θ. We
prove that for every N , if N ∈ r[[σ]]µ, then MN ∈ r[[τ]]µ. First, we prove that MN ∈ P[[τ]]θ, and
for this we use (P3).

First, assume that M ∈ P[[σ→τ]]θ is stubborn, and let N be in r[[σ]]µ. By (S1), N ∈ P[[σ]]θ. By the
induction hypothesis, all stubborn elements in P[[τ]]θ are in r[[τ]]µ. Since we showed that MN ∈ P[[τ]]θ

is stubborn whenever M ∈ P[[σ→τ]]θ is stubborn and N ∈ P[[τ]]θ, we have M ∈ r[[σ → τ]]µ.

Now, consider M ∈ P[[σ→τ]]θ non stubborn. If M ′ ∈ C, then by assumption, M ′ ∈ r[[σ → τ]]µ,
and for any N ∈ r[[σ]]µ, we have M ′N ∈ r[[τ]]µ. Since by (S1), N ∈ P[[σ]]θ and M ′N ∈ P[[τ]]θ, by
(P3a), we have MN ∈ P[[τ]]θ. Now, there are two cases.

48

If τ is a base type, then r[[τ]]µ = P[[τ]]θ and MN ∈ r[[τ]]µ.

If τ is not a base type, then MN is simple (since the site is scenic). Thus, we prove that
MN ∈ r[[τ]]µ using (S3) (which by induction, holds at type τ). Assume that Cov[[τ]]θ(D,MN) for
any cover D of MN . If MN is stubborn, then by the induction hypothesis, we have MN ∈ r[[τ]]µ.
Otherwise, since Cov[[σ→τ]]θ(C,M) and C and D are nontrivial, for every Q ∈ D, by condition (5) of
definition 15.2, there is some M ′ ∈ C such that Q �M ′N . Since by assumption, M ′ ∈ r[[σ → τ]]µ
whenever M ′ ∈ C, and N ∈ r[[σ]]µ, we conclude that M ′N ∈ r[[τ]]µ. By the induction hypothesis
applied at type τ , by (S2), we have Q ∈ r[[τ]]µ, and by (S3), we have MN ∈ r[[τ]]µ.

Since M ∈ P[[σ→τ]]θ and MN ∈ r[[τ]]µ whenever N ∈ r[[σ]]µ, we conclude that M ∈ r[[σ → τ]]µ.

(2) Type ∀X. σ.

Assume that Cov[[∀X. σ]]θ(C,M), and that M ′ ∈ r[[∀X.σ]]µ for every M ′ ∈ C, where M is simple.
Recall that by condition (0) of definition 15.2, Cov[[∀X. σ]]θ(C,M) implies that M ∈ P[[∀X. σ]]θ. We
prove that for every s ∈ T and every S ∈ Sheaf(A, P)s, we have Ms ∈ r[[σ]]µ[X: = 〈s, S〉]. First,
we prove that Ms ∈ P[[σ]]θ[X:=s], and for this, we use (P3).

First, assume that M ∈ P[[∀X. σ]]θ is stubborn, and let s ∈ T . By the induction hypothesis,
all stubborn elements in P[[σ]]θ[X:=s] are in r[[σ]]µ[X: = 〈s, S〉]. Recall that we have shown that
Ms ∈ PΦ(s) is stubborn whenever M ∈ P∀(Φ) is stubborn. Considering the function Φ such that
Φ(s) = [[σ]]θ[X: = s] for every s ∈ T , since we know that [[∀X. σ]]θ = ∀(Φ), then Ms ∈ P[[σ]]θ[X:=s] is
stubborn whenever M ∈ P[[∀X. σ]]θ is stubborn, and we have M ∈ r[[∀X. σ]]µ.

Now, consider M ∈ P[[∀X. σ]]θ non stubborn. If M ′ ∈ C, then by assumption, M ′ ∈ r[[∀X. σ]]µ,
and for every s ∈ T and every S ∈ Sheaf(A, P)s, we have M ′s ∈ r[[σ]]µ[X: = 〈s, S〉]. Since by
(S1), M ′s ∈ P[[σ]]θ[X:=s], by (P3b), we have Ms ∈ P[[σ]]θ[X:=s], where (P3b) is applied to the function
Φ such that Φ(s) = [[σ]]θ[X: = s] for every s ∈ T . For such a Φ, we have [[∀X. σ]]θ = ∀(Φ). Now,
there are two cases.

If σ is a base type, then r[[σ]]µ[X: = 〈s, S〉] = P[[σ]]θ[X:=s], and Ms ∈ r[[σ]]µ[X: = 〈s, S〉].

If σ is not a base type, then Ms is simple (since the site is scenic). Thus, we prove that Ms ∈
r[[σ]]µ[X: = 〈s, S〉] using (S3) (which by induction, holds for σ). Assume that Cov[[σ]]θ[X:=s](D,Ms)
for any cover D of Ms. If Ms is stubborn, then by the induction hypothesis, we have Ms ∈
r[[σ]]µ[X: = 〈s, S〉]. Otherwise, since Cov[[∀X. σ]]θ(C,M) and C and D are nontrivial, for every
Q ∈ D, by condition (6) of definition 15.2, there is some M ′ ∈ C such that Q � M ′s. Since by
assumption, M ′ ∈ r[[∀X. σ]]µ whenever M ′ ∈ C, we conclude that M ′s ∈ r[[σ]]µ[X: = 〈s, S〉]. By
the induction hypothesis applied at type σ, by (S2), we have Q ∈ r[[σ]]µ[X: = 〈s, S〉], and by (S3),
we have Ms ∈ r[[σ]]µ[X: = 〈s, S〉].

We will now need to relate λ-terms and realizers.

17 Interpreting λ→,∀
2

in Pre-Applicative Structures

We show how judgements Γ.M :σ are interpreted in pre-applicative structures. For this, we define
valuations.

49

Definition 17.1 Given a type interpretation T , given a pre-applicative structure A, a valuation
is a pair ρ = 〈θ, ε〉, where θ:V → T is a type valuation, and ε:X →

⋃
(At)t∈T is a partial function

called an environment .

Given ρ = 〈θ, ε〉, for any s ∈ T and a ∈ As we let ρ[X: = s, x: = a] = 〈θ[X: = s], ε[x: = a]〉
be the valuation, such that, θ[X: = s](Y) = θ(Y) for every Y 6= X and θ[X: = s](X) = s, and
ε[x: = a](y) = ε(y) for all y 6= x, and ε[x: = a](x) = a.

Given a context Γ, we say that ρ satisfies Γ, written as ρ |= Γ (where ρ = 〈θ, ε〉) iff

ε(x) ∈ A[[σ]]θ for every x:σ ∈ Γ.

Note that if ρ satisfies a context Γ, this implies that A[[σ]]θ 6= ∅ for every x:σ ∈ Γ. Also,
conditions (1)-(2) of definition 14.3 imply that the following conditions hold:

For all types σ, τ ∈ T , if A[[σ]]θ 6= ∅ and A[[τ]]θ 6= ∅, then A[[σ→τ]]θ 6= ∅, and if A[[σ[τ/X]]]θ 6= ∅ for
every τ ∈ T , then A[[∀X. σ]]θ 6= ∅.

We are now ready to interpret λ-terms.

Definition 17.2 Given a type interpretation T and a pre-applicative structure A, let AI: Const →
A be a function assigning an element AI(c) of ATI(Type(c)) to every constant c ∈ Const . For every
valuation ρ = 〈θ, ε〉, and every context Γ, if ρ |= Γ, we define the interpretation (or meaning)
A[[Γ . M :σ]]ρ of a judgement Γ . M :σ inductively as follows:

A[[Γ . x:σ]]ρ = ε(x)

A[[Γ . c: Type(c)]]ρ = AI(c)

A[[Γ . MN : τ]]ρ = app[[σ]]θ, [[τ]]θ(A[[Γ . M : (σ → τ)]]ρ, A[[Γ . M :σ]]ρ)

A[[Γ . λx:σ. M : (σ → τ)]]ρ = abst[[σ]]θ, [[τ]]θ(ϕ),

where ϕ is the function defined such that,
ϕ(a) = A[[Γ, x:σ .M : τ]]ρ[x: = a], for every a ∈ A[[σ]]θ

A[[Γ . Mτ :σ[τ/X]]]ρ = tappΦ(A[[Γ . M :∀X. σ]]ρ, [[τ]]θ),

where Φ is the function such that Φ(s) = [[σ]]θ[X: = s] for every s ∈ T

A[[Γ . λX. M : ∀X. σ]]ρ = tabstΦ(ϕ),

where ϕ is the function defined such that,
ϕ(s) = A[[Γ, X: ? . M :σ]]ρ[X: = s], for every s ∈ T , and where Φ is the function such that
Φ(s) = [[σ]]θ[X: = s] for every s ∈ T .

We are assuming that the domains of abst and tabst are sufficiently large for the above defini-
tions to be well-defined for all ρ, and Γ . M :σ. In this case, we say that A is a pre-interpretation.

The following lemma will be needed later.

50

Lemma 17.3 For every pair of contexts Γ1 and Γ2, for every pair of valuations ρ1 = 〈θ1, ε1〉 and
ρ2 = 〈θ2, ε2〉, for every pair of judgements Γ1 . M :σ and Γ2 . M :σ, if ρ1 |= Γ1 and ρ2 |= Γ2,
Γ1(x) = Γ2(x), for all x ∈ FV (M), θ1(X) = θ2(X), for all X ∈

⋃
(FTV (τ))x:τ∈Γ ∪ FTV (M), and

ε1(x) = ε2(x), for all x ∈ FV (M), then

A[[Γ1 . M :σ]]ρ1 = A[[Γ2 . M :σ]]ρ2.

Proof . A straightforward induction on typing derivations (and using lemma 16.2).

Let us give an (important) example of a pre-applicative structure. First, we review the notion
of a substitution.

Definition 17.4 A substitution ϕ is a function ϕ:V ∪ X → T ∪ Terms, such that ϕ(X) ∈ T
if X ∈ V, ϕ(x) ∈ Terms if x ∈ X , and ϕ(x) 6= x only for finitely many variables. We let
dom(ϕ) = {x ∈ V ∪X | ϕ(x) 6= x}. We say that ϕ is a type-substitution if dom(ϕ) ⊆ V. Given two
contexts Γ and ∆, we say that ϕ satisfies Γ at ∆, denoted as ∆ `̀ Γ[ϕ], iff ∆ . ϕ(x):σ[ϕ], for every
x:σ ∈ Γ.

The following definition shows how the term model can be viewed as a pre-applicative β-
structure.

Definition 17.5 The algebra of second-order types T is defined as follows:

T = {〈σ, Γ〉 | σ ∈ T , Γ a context} ∪ {error}.

The operation → is defined as follows:

a→ b = 〈σ → τ, Γ〉 iff a = 〈σ, Γ〉, b = 〈τ, ∆〉, and Γ = ∆, otherwise error.

We let Aerror = ∅, and A〈σ, Γ〉 be the set of all provable typing judgements of the form Γ.M :σ.
We denote A〈σ, Γ〉 as AσΓ. For [T ⇒ T], we take the set of all functions Φ such that 〈τ, Γ〉 7→
〈σ[τ/X], Γ〉, where σ, τ ∈ T are any types, and X is any fixed variable that does not occur in Γ
(and with error 7→ error). Then, ∀(Φ) = 〈∀X. σ, Γ〉.5

A type valuation is a function θ:V → T , such that θ(X) = 〈σX , ΓX〉 or θ(X) = error for
every X ∈ V, and such that the function X 7→ σX defines an (infinite) type substitution that we
denote as [θ]. Then, for any type σ ∈ T , by the definition of the operation→, either [[σ]]θ = error,
or [[σ]]θ = 〈σ[θ], ∆〉 for some context ∆. A valuation ρ = 〈θ, ε〉 consists of a type valuation θ
and of a partial function ε:X →

⋃
(As)s∈T . As noted just after definition 17.1, the conditions on θ

require that there is some single ∆ such that, θ(X) = 〈σX , ∆〉 iff AσX∆ 6= ∅, for every X ∈ V, and
θ(c) = 〈σc, ∆〉 iff Aσc∆ 6= ∅, for every type constant c.6

Indeed, if θ(X1) = 〈σ1, ∆1〉, θ(X2) = 〈σ2, ∆2〉, Aσ1
∆1
6= ∅, Aσ2

∆2
6= ∅, X1 6= X2, and ∆1 6= ∆2,

since 〈σ1, ∆1〉 → 〈σ2, ∆2〉 = error and Aerror = ∅, the condition on θ would be violated. Thus, ε
is a partial function such that ε(x) is of the form ε(x) = ∆ . Mx:σx, when it is defined (where ∆
is uniquely determined by θ).

5The choice of X is irrelevant as long as X does not occur in Γ, since X is bound in ∀X. σ.
6Aσ∆ = ∅ when there is no provable judgement ∆ . M :σ for any M .

51

Given a context Γ, according to definition 17.1, a valuation ρ = 〈θ, ε〉 satisfies Γ (ρ |= Γ) iff

for every xi:σi ∈ Γ, we have ε(xi) ∈ Aσi[θ]∆ , for the fixed context ∆ determined by θ, as explained
above. This means that ε(xi) = ∆ .Mi:σi[θ], for some Mi. A valuation ρ = 〈θ, ε〉 such that ρ |= Γ
defines a substitution [ε]:X → Terms, such that [ε](x) = Mx, where ε(x) = ∆ . Mx:σ[θ], for every
x:σ ∈ Γ.

Thus, the restriction of ρ to Γ defines a substitution ϕ as follows: ϕ(x) = [ε](x) for every
x ∈ dom(Γ), and ϕ(X) = [θ](X) for every X ∈

⋃
σ∈Γ FTV (σ). Also, ρ |= Γ is just the condition

∆ `̀ Γ[ϕ] of definition 17.4, where ∆ is the context uniquely determined by θ.

Define Γ . N :σ � Γ . M :σ iff M
∗−→β N . Finally, we need to define fun, abst, tfun, and

tabst.

We define fun(Γ . M :σ → τ) as the function [Γ . M :σ → τ] from AσΓ to AτΓ, such that

[Γ . M :σ → τ](Γ . N :σ) = Γ . MN : τ,

for every Γ . N :σ ∈ AσΓ.

We define tfun(Γ . M :∀X. σ) as the function [Γ . M : ∀X. σ] from T to
∐

(AσΓ)σ∈T , such that

[Γ . M :∀X. σ](τ) = Γ . Mτ :σ[τ/X],

for every τ ∈ T . In this case, the Φ in tfunΦ is the function from T to T induced by σ, such that
Φ(τ) = σ[τ/X] for every τ ∈ T .

For every pair of contexts Γ, ∆, for every substitution ϕ such that ∆ `̀ (Γ, x:σ)[ϕ], for every

judgement Γ, x:σ .M : τ , consider the function ϕ[Γ, x:σ .M : τ]∆ from A
σ[ϕ]
∆ to A

τ [ϕ]
∆ , defined such

that,
ϕ[Γ, x:σ .M : τ]∆(∆ . N :σ[ϕ]) = ∆ . M [ϕ[x: = N]]: τ [ϕ],

for every ∆ . N :σ[ϕ] ∈ Aσ[ϕ]
∆ . Given any such function ϕ[Γ, x:σ .M : τ]∆, we let

abst(ϕ[Γ, x:σ .M : τ]∆) = ∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ].

For every pair of contexts Γ, ∆, for every substitution ϕ such that ∆ `̀ (Γ, X: ?)[ϕ], for every
judgement Γ, X: ? . M :σ, consider the function ϕ[Γ, X: ? . M :σ]∆ from T to

∐
(Aσ∆)σ∈T , defined

such that,
ϕ[Γ, X: ? . M :σ]∆(τ) = ∆ . M [ϕ[X: = τ]]:σ[ϕ[X: = τ]],

for every τ ∈ T .

Given any such function ϕ[Γ, X: ? . M :σ]∆, we let

tabst(ϕ[Γ, X: ? . M :σ]∆) = ∆ . (λX. M)[ϕ]:∀X. σ[ϕ].

The pre-applicative β-structure just defined is denoted as LT β.

It is clear that ϕ[Γ, x:σ .M : τ]∆ is in [Aσ[ϕ] ⇒ Aτ [ϕ]]∆. Let us verify that

fun(abst(ϕ[Γ, x:σ .M : τ]∆)) � ϕ[Γ, x:σ .M : τ]∆.

52

Since
fun(abst(ϕ[Γ, x:σ .M : τ]∆)) = fun(∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ]),

fun(∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ]) = [∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ]],

[∆ . (λx:σ. M)[ϕ]:σ[ϕ]→ τ [ϕ]](∆ . N :σ[ϕ]) = ∆ . ((λx:σ. M)[ϕ])N : τ [ϕ],

ϕ[Γ, x:σ .M : τ]∆(∆ . N :σ[ϕ]) = ∆ . M [ϕ[x: = N]]: τ [ϕ],

and
((λx:σ. M)[ϕ])N −→β M [ϕ[x: = N]],

the inequality holds. Indeed, (λx:σ. M)[ϕ] is α-equivalent to (λy:σ. M [y/x])[ϕ] for any variable y
such that y /∈ dom(ϕ) and y /∈ ϕ(z) for every z ∈ dom(ϕ), and for such a y, (λy:σ. M [y/x])[ϕ] =
(λy:σ[ϕ]. M [y/x][ϕ]). Then, for this choice of y,

(λy:σ[ϕ]. M [y/x][ϕ])N −→β M [y/x][ϕ][N/y] = M [ϕ[x: = N]].

Regarding the definition of tabst, letting Φ be the function from T to T induced by σ, such
that Φ(τ) = σ[τ/X] for every τ ∈ T , it is clear that ϕ[Γ, X: ? . M :σ]∆ is in

∏
Φ(As∆)s∈T . Let us

now verify that
tfun(tabst(ϕ[Γ, X: ? . M :σ]∆)) � ϕ[Γ, X: ? . M :σ]∆.

Since
tfun(tabst(ϕ[Γ, X: ? . M :σ]∆)) = tfun(∆ . (λX. M)[ϕ]:∀X. σ[ϕ]),

tfun(∆ . (λX. M)[ϕ]:∀X. σ[ϕ]) = [∆ . (λX. M)[ϕ]:∀X. σ[ϕ]],

[∆ . (λX. M)[ϕ]:∀X. σ[ϕ]](τ) = ∆ . ((λX. M)[ϕ])τ :σ[ϕ][τ/X],

ϕ[Γ, X: ? . M :σ]∆(τ) = ∆ . M [ϕ[X: = τ]]:σ[ϕ[X: = τ]],

σ[ϕ][τ/X] = σ[ϕ[X: = τ]],

(by a suitable α-renaming on X), and

((λX. M)[ϕ])τ −→β M [ϕ[X: = τ]],

the inequality holds (the details of the verification using α-renaming are similar to the previous
case).

The other conditions of definition 14.3 are easily verified.

As we already observed, a valuation ρ = 〈θ, ε〉 for the pre-applicative structure LT β, is char-
acterized by a single context ∆ such that, θ(X) = 〈σX , ∆〉 iff AσX∆ 6= ∅, and θ(c) = 〈σc, ∆〉
iff Aσc∆ 6= ∅, for every type constant, and ε is a partial function such that ε(x) is of the form
ε(x) = ∆ . Mx:σx, when it is defined. Also, given a context Γ, a valuation ρ = 〈θ, ε〉 satisfies Γ
(ρ |= Γ) iff ∆ `̀ Γ[ϕ]. Then, by a simple induction on the typing derivation for Γ . M :σ, we can
show that for any valuation ρ = 〈θ, ε〉 such that ρ |= Γ, then

LT β[[Γ . M :σ]]ρ = ∆ . M [ϕ]:σ[ϕ],

where ∆ is uniquely determined by θ, and where ϕ is the substitution defined by the restriction of
ρ = 〈θ, ε〉 to Γ, as explained at the beginning of definition 17.5.

53

18 The Realizability Theorem for λ→,∀
2

In this section, we prove the realizability lemma (lemma 18.6) for λ→,∀
2
, and its main corollary,

theorem 18.7. First, we need some conditions relating the behavior of a meaning function and
covering conditions. We will also need semantic conditions analogous to the conditions (P4)-(P5).

Definition 18.1 We say that a site 〈A,P, Cov〉 is well-behaved iff the following conditions hold:

(1) For any a ∈ As, any ϕ ∈ [As ⇒ At], if abst(ϕ) exists, Covt(C, app(abst(ϕ), a)), and C is a
nontrivial cover, then c � ϕ(a) for every c ∈ C.

(2) For any s ∈ T , any ϕ ∈
∏

Φ(As)s∈T , if tabst(ϕ) exists, CovΦ(s)(C, tapp(tabst(ϕ), s)), and C
is a nontrivial cover, then c � ϕ(s) for every c ∈ C.

In view of definition 17.2, definition 18.1 implies the following condition.

Definition 18.2 (1) For any a ∈ A[[σ]]τ , if Cov[[τ]]θ(C, app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a)) and C
is a nontrivial cover, then c � A[[Γ, x:σ .M : τ]]ρ[x: = a] for every c ∈ C.

(2) For any s ∈ T , if Cov[[σ]]θ[X:=s](C, tapp(A[[Γ . λX.M :∀X. σ]]ρ, s)) and C is a nontrivial cover,
then c � A[[Γ, X: ? . M :σ]]ρ[X: = s] for every c ∈ C.

For the proof of the next lemma, we need to add two new conditions (P4) and (P5) to (P1)-(P3).

Definition 18.3 Given a well-behaved site 〈A,P, Cov〉, properties (P4) and (P5) are defined as
follows:

(P4a) For every a ∈ As, if ϕ(a) ∈ Pt, where ϕ ∈ [As ⇒ At] and abst(ϕ) exists, then abst(ϕ) ∈
Ps→t.

(P4b) For every s ∈ T , if ϕ(s) ∈ PΦ(s), where ϕ ∈
∏

Φ(As)s∈T and tabst(ϕ) exists, then
tabst(ϕ) ∈ P∀(Φ).

(P5a) If a ∈ Ps and ϕ(a) ∈ Pt, where ϕ ∈ [As ⇒ At] and abst(ϕ) exists, then app(abst(ϕ), a) ∈ Pt.

(P5b) If s ∈ T and ϕ(s) ∈ PΦ(s), where ϕ ∈
∏

Φ(As)s∈T and tabst(ϕ) exists,
then tapp(tabst(ϕ), s) ∈ PΦ(s).

In view of definition 17.2, definition 18.3 implies the following conditions.

Definition 18.4

(P4a) If A[[Γ, x:σ .M : τ]]ρ ∈ P[[τ]]θ, then A[[Γ . λx:σ. M : (σ → τ)]]ρ ∈ P[[σ→τ]]θ.

(P4b) If A[[Γ, X: ? . M :σ]]ρ ∈ P[[σ]]θ, then A[[Γ . λX. M : ∀X. σ]]ρ ∈ P[[∀X. σ]]θ.

(P5a) If a ∈ P[[σ]]θ and A[[Γ, x:σ .M : τ]]ρ[x: = a] ∈ P[[τ]]θ, then app(A[[Γ . λx:σ.M : (σ → τ)]]ρ, a) ∈
P[[τ]]θ.

(P5b) If s ∈ T and A[[Γ, X: ? .M :σ]]ρ[X: = s] ∈ P[[σ]]θ[X:=s], then tapp(A[[Γ . λX.M : ∀X. σ]]ρ, s) ∈
P[[σ]]θ[X:=s].

54

Lemma 18.5 Given a well-behaved scenic site 〈A,P, Cov〉 and a family P satisfying conditions
(P1)-(P5), for every sheaf valuation µ = 〈θ, η〉 and every valuation ρ = 〈θ, ε〉 sharing the same type
valuation θ, for every context Γ, if ρ |= Γ, then the following properties hold: (1) If ρ(y) ∈ r[[δ]]µ
for every y: δ ∈ Γ, x:σ, if for every a, (a ∈ r[[σ]]µ implies A[[Γ, x:σ . M : τ]]ρ[x: = a] ∈ r[[τ]]µ), then
A[[Γ . λx:σ. M : (σ → τ)]]ρ ∈ r[[σ → τ]]µ;

(2) If A[[Γ, X: ? . M :σ]]ρ[X: = s] ∈ r[[σ]]µ[X: = 〈s, S〉], for every s ∈ T and every S ∈
Sheaf(A, P)s, then A[[Γ . λX. M :∀X. σ]]ρ ∈ r[[∀X. σ]]µ.

Proof . (1) We prove that A[[Γ . λx:σ. M : (σ → τ)]]ρ ∈ P[[σ→τ]]θ, and that for every every a, if
a ∈ r[[σ]]µ, then app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a) ∈ r[[τ]]µ. We will need the fact that the sets of
the form r[[σ]]µ have the properties (S1)-(S3), but this follows from lemma 16.8, since (P1)-(P3)
hold. First, we prove that A[[Γ . λx:σ. M : (σ → τ)]]ρ ∈ P[[σ→τ]]θ.

Since ρ(y) ∈ r[[δ]]µ for every y: δ ∈ Γ, x:σ, letting a = ρ(x), by the assumption of lemma 18.5,
A[[Γ, x:σ . M : τ]]ρ ∈ r[[τ]]µ. Then, by (S1), we have A[[Γ, x:σ . M : τ]]ρ ∈ P[[τ]]θ, and by (P4a), we
have A[[Γ . λx:σ. M : (σ → τ)]]ρ ∈ P[[σ→τ]]θ.

Next, we prove that for every every a, if a ∈ r[[σ]]µ, then app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a) ∈
r[[τ]]µ. Assume that a ∈ r[[σ]]µ. Then, by the assumption of lemma 18.5, A[[Γ, x:σ . M : τ]]ρ[x: =
a] ∈ r[[τ]]µ. Thus, by (S1), we have a ∈ P[[σ]]θ and A[[Γ, x:σ . M : τ]]ρ[x: = a] ∈ P[[τ]]θ. By (P5a), we
have app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a) ∈ P[[τ]]θ. Now, there are two cases.

If τ is a base type, then r[[τ]]µ = P[[τ]]θ. Since app(A[[Γ.λx:σ.M : (σ → τ)]]ρ, a) ∈ P[[τ]]θ, we have
app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a) ∈ r[[τ]]µ.

If τ is not a base type, then app(A[[Γ.λx:σ.M : (σ → τ)]]ρ, a) is simple (since the site is scenic).
Thus, we prove that app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a) ∈ r[[τ]]µ using (S3). By lemma 16.8, the
case where app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a) is stubborn is trivial.

Otherwise, assume that Cov[[τ]]θ(C, app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a)), where C is a nontrivial
cover. By condition (1) of definition 18.2, c � A[[Γ, x:σ .M : τ]]ρ[x: = a] for every c ∈ C, and since
by assumption, A[[Γ, x:σ . M : τ]]ρ[x: = a] ∈ r[[τ]]µ, by (S2), we have c ∈ r[[τ]]µ. Since c ∈ r[[τ]]µ
whenever c ∈ C, by (S3), we have app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a) ∈ r[[τ]]µ.

(2) We prove that A[[Γ . λX. M :∀X. σ]]ρ ∈ P[[∀X. σ]]θ, and that for every s ∈ T and every
S ∈ Sheaf(A, P)s, tapp(A[[Γ . λX. M :∀X. σ]]ρ, s) ∈ r[[σ]]µ[X: = 〈s, S〉]. By lemma 16.8, since
(P1)-(P3) hold, the sets of the form r[[σ]]µ[X: = 〈s, S〉] have the properties (S1)-(S3). First, we
prove that A[[Γ . λX. M : ∀X. σ]]ρ ∈ P[[∀X. σ]]θ.

By the assumption of lemma 18.5, A[[Γ, X: ? . M :σ]]ρ ∈ r[[σ]]µ[X: = 〈s, S〉] for every s ∈ T
and every S ∈ Sheaf(A, P)s. In particular, this holds for s = θ(X) and S = η(X), and we have
A[[Γ, X: ? . M :σ]]ρ ∈ r[[σ]]µ. Then, by (S1), we have A[[Γ, X: ? . M :σ]]ρ ∈ P[[σ]]θ, and by (P4b), we
have A[[Γ . λX. M :∀X. σ]]ρ ∈ P[[∀X. σ]]θ.

Next, we prove that tapp(A[[Γ . λX. M : ∀X. σ]]ρ, s) ∈ r[[σ]]µ[X: = 〈s, S〉], for every s ∈ T
and every S ∈ Sheaf(A, P)s. By the assumption of lemma 18.5, A[[Γ, X: ? . M :σ]]ρ[X: = s] ∈
r[[σ]]µ[X: = 〈s, S〉]. Thus, by (S1), we have A[[Γ, X: ? .M :σ]]ρ[X: = s] ∈ P[[σ]]θ[X:=s]. By (P5b), we
have tapp(A[[Γ . λX. M : ∀X. σ]]ρ, s) ∈ P[[σ]]θ[X:=s]. Now, there are two cases.

If σ is a base type, then r[[σ]]µ[X: = 〈s, S〉] = P[[σ]]θ[X:=s]. Since tapp(A[[Γ.λX.M :∀X.σ]]ρ, s) ∈
P[[σ]]θ[X:=s], we have tapp(A[[Γ . λX. M :∀X. σ]]ρ, s) ∈ r[[σ]]µ[X: = 〈s, S〉].

55

If σ is not a base type, then tapp(A[[Γ . λX. M :∀X. σ]]ρ, s) is simple (since the site is scenic).
Thus, we prove that tapp(A[[Γ . λX. M :∀X. σ]]ρ, s) ∈ r[[σ]]µ[X: = 〈s, S〉], using (S3). The case
where tapp(A[[Γ . λX. M :∀X. σ]]ρ, s) is stubborn is trivial.

Otherwise, assume that Cov[[σ]]θ[X:=s](C, tapp(A[[Γ.λX.M :∀X.σ]]ρ, s)), where C is a nontrivial
cover. By condition (2) of definition 18.2, c � A[[Γ, X: ? . M :σ]]ρ[X: = s] for every c ∈ C, and
since by assumption, A[[Γ, X: ? . M :σ]]ρ[X: = s] ∈ r[[σ]]µ[X: = 〈s, S〉], by (S2), we have c ∈
r[[σ]]µ[X: = 〈s, S〉]. Since c ∈ r[[σ]]µ[X: = 〈s, S〉] whenever c ∈ C, we deduce using (S3) that we
have tapp(A[[Γ . λX. M :∀X. σ]]ρ, s) ∈ r[[σ]]µ[X: = 〈s, S〉].

We now prove the main realizability lemma for λ→,∀
2
.

Lemma 18.6 Given a well-behaved scenic site 〈A,P, Cov〉 and a family P satisfying conditions
(P1)-(P5), for every sheaf valuation µ = 〈θ, η〉 and every valuation ρ = 〈θ, ε〉 sharing the same
type valuation θ, for every context Γ, if ρ |= Γ and ρ(y) ∈ r[[δ]]µ for every y: δ ∈ Γ, then for every
Γ . M :σ, we have A[[Γ . M :σ]]ρ ∈ r[[σ]]µ.

Proof . We proceed by induction on the derivation of Γ . M :σ. If M is a variable x, then
A[[Γ . x:σ]]ρ = ε(x) ∈ r[[σ]]µ, by the assumption on ρ.

If M = M1N1, where Γ . M1: (σ → τ) and Γ . N1:σ, by the induction hypothesis,

A[[Γ . M1: (σ → τ)]]ρ ∈ r[[σ → τ]]µ and A[[Γ . N1:σ]]ρ ∈ r[[σ]]µ.

By the definition of r[[σ → τ]]µ, we get app(A[[Γ . M1: (σ → τ)]]ρ,A[[Γ . N1:σ]]ρ) ∈ r[[τ]]µ, i.e.,
A[[Γ . (M1N1): τ]]ρ ∈ r[[τ]]µ, by definition 17.2.

If M = λx:σ. M1, where Γ . λx:σ. M1: (σ → τ), consider any a ∈ r[[σ]]µ and any valuation ρ
such that ρ(y) ∈ r[[δ]]µ for every y: δ ∈ Γ. Note that by (S3) and (P1), r[[σ]]µ is indeed nonempty.
Thus, the valuation ρ[x: = a] has the property that ρ[x: = a](y) ∈ r[[δ]]µ for every y: δ ∈ Γ, x:σ.
Applying the induction hypothesis to Γ, x:σ .M1: τ and to the valuations µ, and ρ[x: = a], we have

A[[Γ, x:σ .M1: τ]]ρ[x: = a] ∈ r[[τ]]µ.

Since this holds for every a ∈ r[[σ]]µ, by lemma 18.5 (1), A[[Γ . λx:σ. M1: (σ → τ)]]ρ ∈ r[[σ → τ]]µ.

If M = M1τ , where Γ . M1τ :σ[τ/X] and Γ . M1:∀X. σ, by the induction hypothesis,

A[[Γ . M1:∀X. σ]]ρ ∈ r[[∀X. σ]]µ.

By the definition of r[[∀X. σ]]µ, letting s = [[τ]]θ and S = r[[τ]]µ, we get

tapp(A[[Γ . M1:∀X. σ]]ρ, [[τ]]θ) ∈ r[[σ]]µ[X: = 〈s, S〉].

However, by lemma 16.7, we have

r[[σ[τ/X]]]µ = r[[σ]]µ[X: = 〈[[τ]]θ, r[[τ]]µ〉],

which is just
r[[σ[τ/X]]]µ = r[[σ]]µ[X: = 〈s, S〉],

56

since s = [[τ]]θ and S = r[[τ]]µ, and thus, by definition 17.2, we have A[[Γ . (M1τ):σ[τ/X]]]ρ ∈
r[[σ[τ/X]]]µ.

If M = λX. M1, where Γ . λX. M1:∀X. σ, consider any arbitrary s ∈ T and any arbitrary
S ∈ Sheaf(A, P)s. Since X /∈ dom(Γ), by lemma 16.6, we have r[[δ]]µ = r[[δ]]µ[X: = 〈s, S〉] for
every y: δ ∈ (Γ, X: ?). Thus, we can apply the induction hypothesis to Γ, X: ? . M1:σ, and to the
valuations µ[X: = 〈s, S〉] and ρ, and we have

A[[Γ, X: ? . M1:σ]]ρ ∈ r[[σ]]µ[X: = 〈s, S〉].

Since the above holds for every s ∈ T and every S ∈ Sheaf(A, P)s, by lemma 18.5 (2), we have
A[[Γ . λX. M1:∀X. σ]]ρ ∈ r[[∀X. σ]]µ.

If M is a closed term of type σ, lemma 17.3 implies that A[[.M :σ]]ρ is independent of ρ, and
thus we denote it as A[[M :σ]]. We obtain the following important theorem for λ→,∀

2
.

Theorem 18.7 Given a well-behaved scenic site 〈A,P, Cov〉 and a family P satisfying conditions
(P1)-(P5), for every judgement . M :σ where M is closed, we have A[[M :σ]] ∈ P[[σ]]θ. (in other
words, the realizer A[[M :σ]] satisfies the unary predicate defined by P, i.e, every provable type is
realizable).

Proof . Apply lemma 18.6 to the judgement .M :σ, to any sheaf valuation µ = 〈θ, η〉 such that
η(X) = Pθ(X) for every X ∈ V, and to any valuation ρ.

19 Applications to the System λ→,∀
2

This section shows that theorem 18.7 can be used to prove a general theorem about terms of the
system λ→,∀

2
. As a corollary, it can be shown that all terms of λ→,∀

2
are strongly normalizing and

confluent.

In order to apply theorem 18.7, we define a notion of cover for the site A whose underlying
pre-applicative structure is the structure LT β of definition 17.5.

Definition 19.1 An I-term is a term of the form either λx:σ. M or λX. M . A simple term (or
neutral term) is a term that is not an I-term. Thus, a simple term is either a variable x, a constant
c, an application MN , or a type application Mτ . A term M is stubborn iff it is simple and, either

M is irreducible, or M ′ is a simple term whenever M
+−→β M

′ (equivalently, M ′ is not an I-term).

We define a cover algebra on the structure LT β as follows. Let P be a (unary) property of
typed second-order λ-terms.

Definition 19.2 The cover algebra Cov is defined as follows:

(1) If Γ . M :σ ∈ P〈σ, Γ〉 and M is an I-term, then

Cov(Γ . M :σ) = {{Γ . N :σ | M ∗−→β N}}.

(2) If Γ . M :σ ∈ P〈σ, Γ〉 and M is a (simple and) stubborn term, then

Cov(Γ . M :σ) = {∅, {Γ . N :σ | M ∗−→β N}}.

57

(3) If Γ . M :σ ∈ P〈σ, Γ〉 and M is a simple and non-stubborn term, then

Cov(Γ . M :σ) = {{Γ . N :σ | M ∗−→β N}, {Γ . N :σ | M +−→β Q
∗−→β N, for some I-term Q}}.

Recall from definition 15.3 that M is simple iff it has at least two distinct covers. Thus,
definition 19.2 implies that a term is simple in the sense of definition 19.1 iff it is simple in the
sense of definition 15.3. Similarly a term is stubborn in the sense of definition 19.1 iff it is stubborn
in the sense of definition 15.3. Also, definition 19.1 implies that LT β is scenic.

Properties (P1-P3) are listed below.

Definition 19.3 Properties (P1)-(P3) are defined as follows:

(P1) Γ, x:σ . x:σ ∈ P〈σ, Γ〉, Γ . c:σ ∈ P〈σ, Γ〉, for every variable x and constant c (such that
Type(c) = σ).

(P2) If Γ . M :σ ∈ P〈σ, Γ〉 and M −→β N , then Γ . N :σ ∈ P〈σ, Γ〉.

If M is simple, then:
(P3a) If Γ . M : (σ → τ) ∈ P〈σ→τ, Γ〉, Γ . N :σ ∈ P〈σ, Γ〉, Γ . (λx:σ. M ′)N : τ ∈ P〈τ, Γ〉 whenever

M
+−→β λx:σ. M ′, then Γ . MN : τ ∈ P〈τ, Γ〉.

(P3b) If Γ . M :∀X. σ ∈ P〈∀X. σ, Γ〉, τ ∈ T , Γ . (λX. M ′)τ :σ[τ/X] ∈ P〈σ[τ/X], Γ〉

whenever M
+−→β λX. M

′, then Γ . Mτ :σ[τ/X] ∈ P〈σ[τ/X], Γ〉.

A careful reader will notice that conditions (P3) of definition 19.3 are not simply a reformulation
of conditions (P3) of definition 15.4. This is because according to definition 19.2, Γ . M :σ, where

M is a non-stubborn term, is covered by the nontrivial cover {Γ.N :σ |M +−→β Q
∗−→β N}, where

Q is some I-term, but the conditions of definition 19.3 only involve reductions to I-terms. However,
due to condition (P2) and the fact that a nontrivial cover is determined by the I-terms in it, the
two definitions are indeed equivalent.

If Γ . M : (σ → τ) ∈ P〈σ→τ, Γ〉 where M is a stubborn term and Γ . N :σ ∈ P〈σ, Γ〉 where N
is any term, then Γ . MN : τ ∈ P〈τ, Γ〉 by (P3a). Furthermore, MN is also stubborn since it is a
simple term and since it can only reduce to an I-term if M itself reduces to a an I-term. Thus,
if Γ . M : (σ → τ) ∈ P〈σ→τ, Γ〉 where M is a stubborn term and Γ . N :σ ∈ P〈σ, Γ〉 where N is
any term, then Γ . MN : τ ∈ P〈τ, Γ〉 where MN is a stubborn term. We can show in a similar
fashion that (P3b) implies that if Γ . M : ∀X. σ ∈ P〈∀X. σ, Γ〉 where M is a stubborn term, then
Γ . Mτ :σ[τ/X] ∈ P〈σ[τ/X], Γ〉, where Mτ is a stubborn term, for any τ ∈ T .

Properties (P4-P5) are listed below.

Definition 19.4 Properties (P4) and (P5) are defined as follows:

(P4a) If Γ, x:σ .M : τ ∈ P〈τ, Γ〉, then Γ . λx:σ. M : (σ → τ) ∈ P〈σ→τ, Γ〉.

(P4b) If Γ, X: ? . M :σ ∈ P〈σ, Γ〉, then Γ . λX. M :∀X. σ ∈ P〈∀X. σ, Γ〉.

(P5a) If Γ . N :σ ∈ P〈σ, Γ〉 and Γ . M [N/x]: τ ∈ P〈τ, Γ〉, then Γ . (λx:σ. M)N : τ ∈ P〈τ, Γ〉.

(P5b) If τ ∈ T and Γ . M [τ/X]:σ[τ/X] ∈ P〈σ[τ/X], Γ〉, then (Γ . λX. M)τ :σ[τ/X] ∈ P〈σ[τ/X], Γ〉.

58

Again, a careful reader will notice that conditions (P5) of definition 19.4 are not simply a
reformulation of conditions (P5) of definition 18.4. However, because of (P2) and the fact that a
nontrivial cover is determined by the I-terms in it, the two sets of conditions are equivalent.

We now show that the conditions of definition 15.2 and the conditions of definition 18.2 hold.

Lemma 19.5 Definition 19.2 defines a cover algebra, and the site 〈LT β,P, Cov〉 is scenic and
well-behaved.

Proof . The verification is straightforward. As an illustration, let us verify the conditions of
definition 18.2. First, recall that for the structure LT β, for every valuation ρ = 〈θ, ε〉 such that
ρ |= Γ, there is some ∆ uniquely determined by θ, such that ∆ `̀ Γ[ϕ], and

LT β[[Γ . M :σ]]ρ = ∆ . M [ϕ]:σ[ϕ],

where ϕ is the substitution defined by the restriction of ρ = 〈θ, ε〉 to Γ.

(1) For any a ∈ A[[σ]]τ , if Cov[[τ]]θ(C, app(A[[Γ.λx:σ.M : (σ → τ)]]ρ, a)) and C is a nontrivial cover,
then c � A[[Γ, x:σ .M : τ]]ρ[x: = a] for every c ∈ C.

We have app(A[[Γ . λx:σ. M : (σ → τ)]]ρ, a) = ∆ . ((λx:σ. M)[ϕ])a: τ [ϕ], where ϕ is the substi-
tution defined by the restriction of ρ to Γ. By definition 19.1, since C is nontrivial, c ∈ C means
that

((λx:σ. M)[ϕ])a
+−→β Q

∗−→β c,

for some I-term Q. This can only happen if there is a reduction

((λx:σ. M)[ϕ])a −→β (M [ϕ])[a/x]
∗−→β c.

However, we have (M [ϕ])[a/x] = M [ϕ[x: = a]] (using a suitable renaming of x). By the definition
of LT β[[Γ, x:σ . M : τ]]ρ, we have LT β[[Γ, x:σ . M : τ]]ρ[x: = a] = ∆ . M [ϕ[x: = a]]: τ [ϕ], and this
part of the proof is complete.

(2) For any s ∈ T , if Cov[[σ]]θ[X:=s](C, tapp(A[[Γ . λX.M :∀X. σ]]ρ, s)) and C is a nontrivial cover,
then c � A[[Γ, X: ? . M :σ]]ρ[X: = s] for every c ∈ C.

We have tapp(A[[Γ . λX. M : ∀X. σ]]ρ, s) = ∆ . ((λX. M)[ϕ])s: (σ[s/X])[ϕ], where ϕ is the
substitution defined by the restriction of ρ to Γ. By definition 19.1, since C is nontrivial, c ∈ C
means that

((λX. M)[ϕ])s
+−→β Q

∗−→β c,

for some I-term Q. This can only happen if there is a reduction

((λX. M)[ϕ])s −→β (M [ϕ])[s/X]
∗−→β c.

However, we have (M [ϕ])[s/X] = M [ϕ[X: = s]], and (σ[s/X])[ϕ] = σ[ϕ[X: = s]], (using a suitable
renaming of X). By the definition of LT β[[Γ, X: ? . M :σ]]ρ, we have

LT β[[Γ, X: ? . M :σ]]ρ[X: = s] = ∆ . M [ϕ[X: = s]]: τ [ϕ[X: = s]],

59

and the proof is complete.

Thus, the site 〈LT β,P, Cov〉, is scenic and well-behaved. Consequently, we can apply theorem

18.7, and get a general new theorem for proving properties of terms of the system λ→,∀
2
. In fact,

for the structure LT β, for a property P satisfying conditions (P1)-(P5), by (P1) and (P3), every
variable x is stubborn. Thus, for every context Γ, we can apply lemma 18.6 to the sheaf valuation
µ = 〈θ, η〉 such that θ(X) = 〈X, Γ〉 and η(X) = PX for every type variable, and to the valuation
ρ = 〈θ, ε〉 such that ε(x) = x for every variable x, since by lemma 16.8, r[[δ]]µ contains every
stubborn term, for every x: δ ∈ Γ. Consequently, we have the following new theorem.

Theorem 19.6 If P is a family of λ-terms satisfying conditions (P1)-(P5), then P〈σ, Γ〉 = Λ〈σ, Γ〉
for every type σ (in other words, every term satisfies the unary predicate defined by P).

Proof . By lemma 19.5, the site 〈LT β,P, Cov〉 is scenic and well-behaved. By the discussion
just before stating theorem 19.6, for every context Γ, if we consider the sheaf valuation ρ = 〈θ, η〉
such that θ(X) = 〈X, Γ〉 and η(X) = PX for every type variable, and the valuation ρ = 〈θ, ε〉 such
that ε(x) = x for every variable x, we have ρ(x) ∈ r[[σ]]µ for every x: δ ∈ Γ. Thus, we can apply
lemma 18.6 to any judgement Γ . M :σ and to µ and ρ just defined, and we have

LT β[[Γ . M :σ]]ρ ∈ r[[σ]]µ.

However, in the present case, LT β[[Γ . M :σ]]ρ = Γ . M :σ. Thus, Γ . M :σ ∈ r[[σ]]µ, and since
r[[σ]]µ ⊆ P〈σ, Γ〉, we have Γ . M :σ ∈ P〈σ, Γ〉, as claimed.

As a corollary, we can prove strong normalization and confluence. We prove strong normaliza-
tion below. For simplicity of notation, instead of using judgements Γ .M :σ, we will use the terms
M . Since we are concerned with reduction properties, this is not harmful at all.

Theorem 19.7 The reduction relation
∗−→β of the system λ→,∀

2
is strongly normalizing.

Proof . Let P be the family defined such that Pσ = SN σ is the set of strongly normalizing terms
of type σ. By theorem 19.6, we just have to check that P satisfies conditions (P1)-(P5). First, we
make the following observation that will simplify the proof. Since there is only a finite number of
redexes in any term, for any term M , the reduction tree7 for M is finitely branching. Thus, if M is
any strongly normalizing term (abbreviated as SN term from now on), every path in its reduction
tree is finite, and since this tree is finite branching, by König’s lemma, this reduction tree is finite.
Thus, for any SN term M , the depth8 of its reduction tree is a natural number, and we will denote
it as d(M). We now check the conditions (P1)-(P5). (P1) and (P2) are obvious.

(P3a) Since M ∈ SN σ→τ and N ∈ SN σ, d(M) and d(N) are finite. We prove by induction on
d(M) + d(N) that MN is SN. We consider all possible ways that MN −→β P . Since M is simple,
MN itself is not a redex, and so P = M1N1 where either N = N1 and M −→β M1, or M = M1

and N −→β N1.

If M1 is simple or M1 = M , d(M1) + d(N1) < d(M) + d(N), and by the induction hypothesis,
P = M1N1 is SN. Otherwise, M1 = λx:σ. M ′, N1 = N , by assumption (λx:σ. M ′)N is SN, and so
P is SN. Thus, P = M1N1 is SN in all cases, and MN is SN.

7the tree of reduction sequences from M
8the length of a longest path in the tree, counting the number of edges

60

(P3b) Since M ∈ SN ∀X. σ, d(M) is finite. We prove by induction on d(M) that Mτ is SN. We
consider all possible ways that Mτ −→β P . Since M is simple, Mτ itself is not a redex, and so
P = M1τ where M −→β M1.

If M1 is simple, d(M1) < d(M), and by the induction hypothesis, P = M1τ is SN. Otherwise,
M1 = λX.M ′, by assumption (λX.M ′)τ is SN, and so P is SN. Thus, P = M1τ is SN in all cases,
and Mτ is SN.

(P4) These cases are all similar, and hold because a reduction cannot apply at the outermost
level.

(P4a) Any reduction from λx:σ. M must be of the form λx:σ. M
+−→β λx:σ. M ′ where

M
+−→β M

′. We use a simple induction on d(M).

(P4b) Similar to (P4a).

(P5a) Since N ∈ SN σ and M [N/x] ∈ SN τ , the term M itself is SN. Thus, d(M) and d(N) are
finite. We prove by induction on d(M) + d(N) that (λx:σ. M)N is SN. We consider all possible
ways that (λx:σ.M)N −→β P . Either P = (λx:σ.M1)N where M −→β M1, or P = (λx:σ.M)N1

where N −→β N1, or P = M [N/x]. In the first two cases, d(M1) + d(N) < d(M) + d(N),
d(M) + d(N1) < d(M) + d(N), and by the induction hypothesis, P is SN. In the third case, by
assumption M [N/x] is SN. But then, P is SN in all cases, and so (λx:σ. M)N is SN.

(P5b) This case is quite similar to (P5a). Since M [τ/X] ∈ SN σ[τ/X], the term M itself is
SN. Thus, d(M) is finite. We prove by induction on d(M) that (λX. M)τ is SN. We consider all
possible ways that (λX.M)τ −→β P . Either P = (λX.M1)τ where M −→β M1, or P = M [τ/X].
In the first case, d(M1) < d(M), and by the induction hypothesis, P is SN. In the second case, by
assumption M [τ/X] is SN. But then, P is SN in all cases, and so (λX. M)τ is SN.

Confluence can be shown exactly as in Gallier [5].

20 Conclusion and Suggestions for Further Research

A semantic notion of realizability using the notion of a cover algebra was defined and investigated.
For this, we introduced a new class of semantic structures equipped with preorders, called pre-
applicative structures. In this framework, we proved a general realizability theorem. Applying
this theorem to the special cases of the term model for the simply-typed λ-calculus and for the
second-order λ-calculus, we obtained some general theorems for proving properties of typed λ-terms,
including a new theorem for proving properties of terms in λ→,∀

2
(theorem 19.6). As corollaries,

we obtain alternate proofs of strong normalization and confluence.

This approach clarifies the reducibility method by showing that the closure conditions on can-
didates of reducibility can be viewed as sheaf conditions. Indeed, cover conditions provide a clear
axiomatization of the conditions needed for the proof of the realizability theorem. Our approach
yields a clearer separation of the semantic versus the syntactic ingredients of the proof. For ex-
ample, the fact that the sheaf property is an invariant with respect to the notion of realizability
is a semantic property which has little to do with λ-terms. In fact, this uses only part of the
pre-applicative structure (app, tapp, π1, π2, inl, inr). On the other hand, at some point, it

61

is necessary to interpret λ-terms in order to show what amounts to the soundness of our realiz-
ability interpretation, and it is in this part that substitution and reduction properties of λ-terms
play a role. In traditional presentations of proofs using reducibility, the underlying pre-applicative
structure of the term model is only implicit, and it is harder to see that substitutions are really
valuations. It is also practically impossible to see that cover conditions are present. It should also
be noted that our pre-applicative structures are models of the reduction relation, and not of the
convertibility relation. This seems inevitable, since we are interested in proving properties of the
reduction relation, but this seems to have been missed until now. We also managed to formulate
conditions on the property P to be proved, independently of the conditions on the candidates.
Strong normalization and confluence happen to satisfy these conditions, but more progress in this
direction would be interesting.

Extending the results of this paper to pre-applicative βη-structures and to typed λ-calculi with
η-like reductions should pose no problems for the types →, ×, and ∀2. However, in view of results
of Dougherty [3], there may be some difficulties in dealing with the sum type, since confluence fails
(with the traditional orientation of η-like rules).

As we mentioned in the introduction, Hyland and Ong [11] show how strong normalization
proofs can be obtained from the construction of a modified realizability topos. Very roughly,
they show how a suitable quotient of the strongly normalizing untyped terms can be made into a
categorical (modified realizability) interpretation of system F. There is no doubt that Hyland and
Ong’s approach and our approach are somewhat related, but the technical details are very different,
and we are unable to make a precise comparison at this point. Clearly, further work is needed to
clarify the connection between Hyland and Ong’s approach and ours.

We have checked that in all proofs of reducibility that we are aware of, except for a recent paper
by McAllester, Kučan, and Otth [19], and a recent paper by Michel Parigot [21], the conditions on
sets of realizers are sheaf conditions.9 One simply needs to change slightly the definition of Cov.
However, the pre-applicative structures defined in this paper are not always general enough to carry
out these proofs (for example, in the case of untyped λ-terms and typing systems with intersection
types). McAllester, Kučan, and Otth [19], prove various strong normalization results using another
variation of the reducibility method, and we need to understand how this method relates to the
method presented in this paper. It seems that their approach consists in modifying the definition
of reducibility itself. However, only strong normalization is considered, and it seems that they
squeezed some of the conditions from one place to another in the proof. Their presentation may
be more attractive to the community at large, which is not a negligeable point.

We believe that nonextentional structures modelling reduction are interesting in their own right,
and thus, we think that it would be interesting to investigate classes of nonextentional structures
more general than pre-applicative structures (perhaps using category theory). When dependent
types are considered, we run into the problem that interpreting types requires interpreting terms.
We were able to define cover conditions that seem adequate for proving a general realizability
theorem, but we ran into problems in defining the meaning of terms. The problem has to do with
type-conversion rules: a term no longer has a unique type, and we run into a coherence problem
in attempting to define the meaning of term by induction on typing-derivations. Overcoming this
difficulty seems to be the most pressing open problem. More generally, we believe that there is

9We need to examine more closely these approaches to determine whether they fit into our framework.

62

a deeper connection between realizability semantics and other kinds of semantics, and that the
notion of a cover algebra plays a significant role in that connection. We believe that understanding
this connection would be worthwhile. Another challenging question is to figure out whether it is
possible to adapt the framework of this paper to deal with other calculi, for example, the pure
λ-calculus, or calculi for various systems of linear logic.

Acknowledgment : I wish to express my gratitude to Jim Lipton, since I would not have been
able to write this paper without his inspiring suggestions and incisive questions. I also would like
to thank Philippe de Groote, Andre Scedrov, Scott Weinstein, and two anonymous referees, for
some very helpful comments.

21 Appendix: Extensional and βη Pre-Applicative Structures

We begin with extensional pre-applicative structures for λ→,×,+. First, we define isotonicity. Given
a monotonic function f :W1 → W2, where W1 and W2 are preorders, we say that f is isotone iff
f(w1) � f(w2) implies that w1 � w2, for all w1, w2 ∈W1.

Definition 21.1 A pre-applicative β-structure A is extensional iff fun, Π, and 〈cinl, cinr〉, are
isotone, and the following conditions hold:

(1) ran(fun) ⊆ dom(abst);

(2) ran(Π) ⊆ dom(〈−, −〉);

(3) ran(〈cinlσ,τ,δ, cinrσ,τ,δ〉) ⊆ dom([−, −] ◦ (abstσ,δ × abstτ,δ)).

When A is an applicative β-structure, conditions (1)-(3) hold, and the functions fun, Π, and
〈cinl, cinr〉, are injective, we say that we have an extensional applicative β-structure.

When A is an extensional pre-applicative β-structure, in view of condition (1), abst(fun(f))
is defined for any f ∈ Aσ→τ . Observe that by condition (1) of definition 8.1, we have fun(f) �
fun(abst(fun(f))), and since fun is isotone, this implies that

(1) abst(fun(f)) � f , for all f ∈ Aσ→τ .

Similarly, we can prove that

(2) 〈π1(a), π2(a)〉 � a, for all a ∈ Aσ×τ ; and

(3) [abst(cinl(h)), abst(cinr(h))] � h, for all h ∈ A(σ+τ)→δ.

We will call the above inequalities the η-like rules.

In many cases, a pre-applicative β-structure that satisfies the η-like rules is not extensional.
This motivates the next definition.

Definition 21.2 A pre-applicative β-structure A is a βη-structure if the following conditions hold:

(1) ran(fun) ⊆ dom(abst), and abst(fun(f)) � f , for all f ∈ Aσ→τ ;

(2) ran(Π) ⊆ dom(〈−, −〉), and 〈π1(a), π2(a)〉 � a, for all a ∈ Aσ×τ ; and

(3) ran(〈cinlσ,τ,δ, cinrσ,τ,δ〉) ⊆ dom([−, −] ◦ (abstσ,δ × abstτ,δ)), and

63

[abst(cinl(h)), abst(cinr(h))] � h, for all h ∈ A(σ+τ)→δ.

When A is an applicative β-structure and in conditions (1)-(3), � is replaced by =, we say that
we have an applicative βη-structure.

From the remark before definition 21.2, an extensional pre-applicative β-structure is a βη-
structure. When A is an applicative βη-structure, conditions (1)-(3) of definition 21.2 amount
to:

(1) abstσ,τ ◦ funσ,τ = id;

(2) 〈−, −〉σ,τ ◦Πσ,τ = id; and

(3) ([−, −] ◦ (abstσ,δ × abstτ,δ)) ◦ 〈cinlσ,τ,δ, cinrσ,τ,δ〉 = id.

This implies that fun, Π, and 〈cinl, cinr〉, are injective. Thus, an applicative βη-structure
is extensional. In this case, (together with conditions (1)-(3) of definition 8.1 in the case of an
applicative β-structure), we have dom(abst) = fun(Aσ→τ), fun is a bijection between Aσ→τ and a
subset of [Aσ ⇒ Aτ] (with inverse abst), Π is a bijection between Aσ×τ and a subset of Aσ × Aτ
(with inverse 〈−, −〉), and 〈cinlσ,τ,δ, cinrσ,τ,δ〉 is a bijection between A(σ+τ)→δ and a subset of
[Aσ ⇒ Aδ] × [Aτ ⇒ Aδ] (with inverse [−, −] ◦ (abstσ,δ × abstτ,δ)).

Extensional pre-applicative structures and βη-structures for λ→,×,+,⊥ are defined just as in
definition 21.1 and definition 21.2, and the same remarks apply. However, these remarks only
apply for types different from ⊥.

We now define extensional pre-applicative structures for λ→,∀
2
.

Definition 21.3 A pre-applicative β-structure A is extensional iff fun and tfun are isotone, and
the following conditions hold:

(1) ran(fun) ⊆ dom(abst);

(2) ran(tfun) ⊆ dom(tabst).

When A is an applicative β-structure, conditions (1)-(2) hold, and the functions fun and tfun

are injective, we say that we have an extensional applicative β-structure.

When A is an extensional pre-applicative β-structure, in view of condition (1), abst(fun(f))
is defined for any f ∈ As→t. Observe that by condition (1) of definition 14.3, we have fun(f) �
fun(abst(fun(f))), and since fun is isotone, this implies that

(1) abst(fun(f)) � f , for all f ∈ As→t.

Similarly, we can prove that

(2) tabst(tfun(f)) � f , for all f ∈ A∀(Φ).

We will call the above inequalities the η-like rules.

In many cases, a pre-applicative β-structure that satisfies the η-like rules is not extensional.
This motivates the next definition.

64

Definition 21.4 A pre-applicative β-structure A is a βη-structure if the following conditions hold:

(1) ran(fun) ⊆ dom(abst), and abst(fun(f)) � f , for all f ∈ As→t;

(2) ran(tfun) ⊆ dom(tabst), and tabst(tfun(f)) � f , for all f ∈ A∀(Φ).

When A is an applicative β-structure and in conditions (1)-(2), � is replaced by =, we say that
we have an applicative βη-structure.

The term model can easily be made into a pre-applicative βη-structure (by adapting definition
17.5). From the remark before definition 21.4, an extensional pre-applicative β-structure is a βη-
structure. When A is an applicative βη-structure, conditions (1)-(2) of definition 21.4 amount
to:

(1) absts,t ◦ funs,t = id;

(2) tabstΦ ◦ tfunΦ = id.

This implies that fun and tfun, are injective. Thus, an applicative βη-structure is extensional.
In this case, (together with conditions (1)-(4) of definition 14.3 in the case of an applicative β-
structure), we have dom(abst) = fun(As→t), fun is a bijection between As→t and a subset of
[As ⇒ At] (with inverse abst), dom(tabst) = tfun(A∀(Φ)), and tfun is a bijection between A∀(Φ)

and a subset of
∏

Φ(As)s∈T (with inverse tabst).

References

[1] M. J. Beeson. Foundations of Constructive Mathematics. Springer-Verlag, Berlin, 1985.

[2] V. Breazu-Tannen and T. Coquand. Extensional models for polymorphism. Theoretical Com-
puter Science, 59:85–114, 1988.

[3] D.J. Dougherty. Some lambda calculi with categorical sums and products. In C. Kirchner, ed-
itor, Rewriting Techniques and Applications, LNCS, Vol. 690, pages 137–151. Springer-Verlag,
1993.

[4] Jean H. Gallier. On Girard’s “candidats de reductibilité”. In P. Odifreddi, editor, Logic And
Computer Science, pages 123–203. Academic Press, London, New York, May 1990.

[5] Jean H. Gallier. On the correspondence between proofs and λ-terms. In P. DeGroote, ed-
itor, The Curry-Howard Isomorphism, Cahiers du Centre de Logique, No. 8, pages 55–138.
Université Catholique de Louvain, 1995.

[6] Jean-Yves Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application à
l’élimination des coupures dans l’analyse et la théorie des types. In J.E. Fenstad, editor, Proc.
2nd Scand. Log. Symp., pages 63–92. North-Holland, 1971.

[7] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université de Paris VII, June 1972. Thèse de Doctorat d’Etat.

[8] Jean-Yves Girard. The system F of variable types, fifteen years later. Theoretical Computer
Science, 45(2):159–192, 1986.

65

[9] R. J. Grayson. Forcing in intuitionistic systems without power set. J. Symbolic Logic,
48(3):670–682, 1983.

[10] C. A. Gunter. Semantics of Programming Languages. Foundations of Computing. MIT Press,
1992.

[11] J. M. E. Hyland and C.-H. L. Ong. Modified realizability topos and strong normalization
proofs. In M Bezem and J.F. Groote, editors, Typed Lambda Calculi and Applications, volume
664 of Lecture Notes in Computer Science, pages 179–194. Springer Verlag, 1993.

[12] B. Jacobs, I. Margaria, and M. Zacchi. Filter models with polymorphic types. Theoretical
Computer Science, 95(1):143–158, 1992.

[13] S. C. Kleene. On the interpretation of intuitionistic number theory. J. Symbolic Logic, 10:109–
124, 1945.

[14] S. C. Kleene. Introduction to Metamathematics. North-Holland, seventh edition, 1952.

[15] G. Koletsos. Church-Rosser theorem for typed functional systems. J. Symbolic Logic,
50(3):782–790, 1985.

[16] G. Kreisel. Interpretation of analysis by means of functionals of finite type. In A. Heyting,
editor, Constructivity in Mathematics, pages 101–128. North-Holland, 1959.

[17] J.L. Krivine. Lambda-Calcul, types et modèles. Etudes et recherches en informatique. Masson,
1990.

[18] S. MacLane and I. Moerdijk. Sheaves in Geometry and Logic. Springer Verlag, New York,
1992.

[19] D. McAllester, J. Kučan, and D. F. Otth. A proof of strong normalization for F2, Fω, and
beyond. Technical report, MIT, Boston, Mass, 1993. Draft.

[20] J. C. Mitchell. A type-inference approach to reduction properties and semantics of polymorphic
expressions. In ACM Conference on LISP and Functional Programming, pages 308–319. ACM,
1986. Reprinted in Logical Foundations of Functional Programming, G. Huet, Ed., Addison
Wesley, 1990, 195-212.

[21] M. Parigot. Strong normalization for second-order classical natural deduction. In Eighth
Annual IEEE Symposium on Logic In Computer Science, pages 39–46. IEEE, 1993.

[22] G.D. Plotkin. A semantics for static type inference. Theoretical Computer Science, 1993. To
appear.

[23] R. Statman. Logical Relations and the Typed λ-Calculus. Information and Control,
65(2/3):85–97, 1985.

[24] W.W. Tait. Intensional interpretation of functionals of finite type I. J. Symbolic Logic, 32:198–
212, 1967.

66

[25] W.W. Tait. A realizability interpretation of the theory of species. In R. Parikh, editor, Logic
Colloquium, volume 453 of Lecture Notes in Math., pages 240–251. Springer Verlag, 1975.

[26] A. S. Troelstra. Metamathematical Investigation of intuitionistic arithmetic and analysis. Lec-
ture Notes in Mathematics No 344. Springer-Verlag, 1973.

[27] A.S. Troelstra and D. van Dalen. Constructivism in Mathematics: An Introduction, Vol. I and
II, volume 123 of Studies in Logic. North-Holland, 1988.

67

