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Abstrae~Motivated by applications to electrophoretic techniques for bioseparations, we consider transi- 
ent one-dimensional convection-diffusion through a medium in which the solute diffusivity and convective 
velocity undergo step changes at a prescribed position. An exact method of solution of the governing 
transport equations is formulated in terms of a largely analytical approach representing a novel alternative 
to the self-adjoint formalism advanced by Ramkrishna and Amundson (1974, Chem. Engn 9 Sci. 29, 
1457 1464), and applied recently by Locke and Arce (1993, Chem. Engng Sci. 48, 1675-1686) and Locke et 
al. (1993, Chem. Engng Sci. 48, 4007~4022). A concentration boundary layer of O(Pe- 1) thickness is found to 
form at the upstream side of the interface. No concentration boundary layer exists on the downstream side. 
The exact solution is supplemented with an asymptotic analysis for large P6clet numbers, Pe. Detailed 
study of the boundary layer reveals interesting features of the local dynamical processes whereby 
the interface--infinitesimally thin macroscopically--appears as an effective source or sink of the solute 
content. The asymptotic analysis has direct utility in accurate prediction of concentration profiles for high 
P~clet number operations where analytical approaches break down and finite-difference methods require 
tremendous computational time to achieve sufficient accuracy and resolution. Copyright © 1996 Elsevier 
Science Ltd 
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I. INTRODUCTION 

Mass transport through a medium with discontinu- 
ous variations in physical properties is of interest in 
the study of composite materials, as well as mem- 
branes, gels and liquid-liquid interfaces. Such a study 
finds applications in purification and separation 
methods for organic compounds and biological mole- 
cules. Ramkrishna and Amundson (1974) proposed 
the self-adjoint formulation for modeling convec- 
tion-diffusion through a stationary composite me- 
dium. This method was extended by Locke and Arce 
(1993) and Locke et al. (1993) to include reaction 
within each slab of the composite material I-also see 
Arce and Locke (1994)]. Hladky (1987) studied 
steady-state diffusion and convection of solutes 
(tritiated water, methanol, ethanol, and n-propanol) 
across a wate~octanol interface. Bulk solvent convec- 
tion was assumed to be negligible near the interface 
and the thickness of the 'unstirred layer' was esti- 
mated from experimental data. Levine and Bier (1990) 
and Clark (1992) have experimentally investigated the 
electromigration and partitioning of proteins across a 
two-phase aqueous interface. Numerical results using 
finite-difference (FD) techniques for this system were 
given by Levine et al. (1992). More recently (Raj, 
1994), with the development of counteracting chrom- 
atographic electrophoresis (CACE), the features of gel 
permeation chromatography and gel electrophoresis 
were combined to purify and separate a target protein 

at the junction of two gels. In CACE, the entire 
separation takes place at the interface; the rest of the 
gel length does not contribute toward separation. In 
spite of the extent of experimental and numerical 
results for transport across interfaces, a fundamental 
understanding of the dynamics of solute transport in 
the region near the interface (the boundary layer) has 
yet to be fully developed, especially at large P6clet 
numbers. 

In the present study, the convection-diffusion equa- 
tion describing transport through a surface across 
which material properties change is investigated via 
two complementary methods for the case where there 
is no reaction within the bulk of the medium. More- 
over, we have assumed that partitioning across the 
interface occurs via rapid local equilibrium. Section 2 
presents the governing equations along with the in- 
itial and boundary conditions. In Section 3, we devel- 
op a largely analytical solution method different from 
but comparable to the method of Locke and Arce 
(1993) and Locke et al. (1993). (The details of compari- 
son between the two methods are mentioned after eq. 
(39) below.) In Section 4, we develop a perturbation 
analysis for large P6clet numbers motivated by the 
fact that diffusion is dominated by convection in 
liquid electrophoresis and electropartitioning, to such 
an extent that typically Pe = O(105). This large value 
represents a regime inaccessible to calculations by 
analytical means. Detailed study of the asymptotic 
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behavior in the regime of large Pe greatly simplifies 
the computational effort for evaluating the concentra- 
tion evolution across an interface due to reduction of 
the full-fledged second-order PDE into a sequence of 
first-order PDEs. The inner and outer solutions for 
the solute concentration profile reveal the dynamical 
processes operative in a thin boundary layer near the 
interface and their consequences for transport 
throughout the medium. Specifically, it reveals new 
boundary conditions (jump conditions) that need to 
be imposed on the outer (macroscopic) solutions in 
order to satisfy requirements of rapid equilibrium and 
continuity of flux across the interface. We emphasize 
that by an interface we mean a singular surface across 
which transport properties of a solute undergo a sud- 
den change but that the surface itself offers no mass 
transfer resistance to the solute. 

In addition to static interfaces, there have been 
several attempts to make the two-phase boundary 
dynamic. Grimshaw et al. (1989) have fabricated 
membranes with properties that can be chemically 
and electrically modulated over a period of time. Ly 
and Cheng (1993) have designed liquid crystalline 
membranes with an electrically controlled permeabil- 
ity. With liquid crystals gaining increasing applica- 
tions in chemical engineering, it is conceivable that 
the location of the interface can also be modulated in 
a time-dependent manner. With this in mind, the large 
P~clet number analysis has been extended to dynamic 
media with arbitrary user-imposed interface velocities 
in Appendix B. 

2. F O R M U L A T I O N  

Consider transient, one-dimensional convective- 
diffusive transport of a solute in a dilute solution 
where the convective velocity, v, and the diffusivity, D, 
are uniform except for a discontinuity at a plane 
surface at position x = L :  (Fig. 1). Throughout this 
paper, we will use superscript i = I to distinguish the 
left (upstream) region (0 ~< x ~< LI) and i = II for the 
right-hand side (downstream) domain (L I ~< x ~< L). 
For  such a discontinuous medium, the conservation 
equation can be represented as 

t~ci = O i OZci  ~ c  i 
_ _  __ v i ~t ~-Yx 2 O--~x' i = I, II. (1) 

The solute's convective velocity v i represents a super- 
position of fluid flow and electrophoretic migration in 
an applied field. Any fluid flow contribution is neces- 
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Fig. 1. Column containing discontinuous medium with the 
interface located a distance L I from the entrance. 
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sarily constant by mass conservation in one dimen- 
sion. The speed of electrophoretic migration relative 
to the fluid generally depends upon the gel micro- 
structure, and so differs between regions I and II; this 
is the contribution that imparts a discontinuity to the 
solute velocity. At low solute concentrations, i.e. when 
the solute does not contribute significantly to the 
conductivity of the medium, the electrophoretic mi- 
gration velocity is simply the product of the electric 
field, E, and a mobility equal to z F D i / R T  where z is 
the valency of the solute, F is Faraday's constant, R is 
the universal gas constant, and T is temperature. 

We will consider two modes of operation of the 
column. 

2.1. Problem 1: no f lux  at entrance 
For this problem, we assume that at time t = 0 the 

column contains a prescribed initial distribution of 
the solute. At all positive times, there is no solute flux 
entering the column from upstream. The section of the 
column beyond x = L is both infinite in length and 
well-mixed, so that Danckwerts' boundary conditions 
hold (Danckwerts, 1953; Novy et al., 1990). Therefore, 

ci(x, O) = f ' ( x ) ,  i = I, II (2) 

_ DI ~CI(0, t) + vJcl(O ' t) = 0, t > 0 (3) 
gx 

c~ cn( L, t) 
- - - 0 ,  t > 0 .  (4) 

~x 

2.2. Problem 2: constant f lux  at entrance 
In this case, at time t = 0 the column is empty. For 

all later times, there is a constant input concentration 
Ci,p flowing into the column. The initial condition 
along with the boundary conditions are 

ci (x ,O)=O,  i = I ,  II (5) 

_ Ol Ocl(O, t) 
~X + VlC[(0, t) = /)ICinp, t ~> 0 (6) 

c3cn(L, t) 
0, t > 0 .  (7) 

gx 
For  both problems, the concentrations on either 

side of the interface are related to each other via the 
requirements of local equilibrium and continuity of 
flux, leading to the matching conditions: 

cI(LI, t) = K e q  c n ( L : ,  t), t > 0 (8) 

_ DIC3CI(L:, t) 
C~'-----~- + vtcI(L/' t) 

= - DnOCn(L: , t) 
OX + v l l c l I ( L f ,  t), t > 0. (9) 

The jump in velocity and diffusivity across the inter- 
face is due to a change in the tortuosity of the medium 
while the equilibrium constant Keq of the solute is 
dictated by the change in the porosity of the medium. 
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Equations (1)-(9) determine the time evolution of where 
the solute concentration throughout the column. Our 
goal in the following sections is to devise two ap- 
proaches to the solution of these equations for d(x,  t). 

3. ANALYT|CAL SOLUTION 

Considerable progress can be made using pencil 
and paper with eqs (1)-(9) and we shall proceed ana- 
lytically as far as possible in order to gain theoretical 
understanding and reduce the computational effort. 

Two key quantities in our solution are the time- 
dependent values of the left- and right-hand side sol- 
ute concentrations at the interface (x = L:); we shall 
denote these by c}(t) and cl}(t), respectively. They are 
not known a priori but will be determined subse- 
quently. Thus, we write 

cI(L/, t) - c}(t), t > 0 (10) 

cn(L:, t) = c~(t), t > 0. (11) 

Our approach is to temporarily regard c}(t) and c~(t) 
as known, and to solve for the concentration distribu- 
tions d(x,  t) and clI(x, t) in terms of these two time- 
dependent functions. Only subsequently do we im- 
pose the matching conditions (8) and (9), which then 
determine c~t) and c~(t), thereby completing the solu- 
tion for the concentration distribution. 

We define new dependent variables sl(x, t) and 
sn(x, t), in lieu of d(x, t) and cU(x, t), such that bound- 
ary conditions in each domain become homogeneous 
and the convective term in eq. (1) is eliminated. These 
simplifications are achieved by making the trans- 
formations 

[ vl _ ( v ' ) 2 t l  
cl(x, t) = sl(x, t) exp -~ l  (x - L:) 4D I j 

c}(t) e x p [ ~  L:)]  (12) + ( x -  

F v 'l ~(v") 2 ] 
CI'(x, t) = sn(x, t) e x P L ~  ( x -  c , ) -  t 

+ cl](t). (13) 

For  problem 1, the modified concentration variables 
s'(x, t) and sa(x, t) are then governed by the respective 
initial and boundary value problems listed below: 

O <~ x <~ L : L g <~ x <~ L 

ds I Did2s___~ l Os a Dn.d2s n 
Ot OX 2 Ot OX 2 

= W I(t) Pl(x) = Wn(t) Pn(x) (14) 

SI(x, 0) = OI(x) sIi(x,  0) = 011(X) (15)  

0SI(0, t) OsH(L, t) 
- -  + hlsl(O,t)=O - -  + hlIsU(L, t) = 0 

Ox Ox 

(16) 

sI(Lf, t) = 0 s l I (Zy,  t) = 0,  (17) 

5301 

dc~ i W i (t) = - -~ -  exp (a t) (18) 

pi(x) = exp[h i (x - L:)] (19) 

gl(x) = {fl(x) exp[ - h I (x - L:)]} 

- {c}(0)exp[h I (x - L : ) ] )  (20) 

ga(x) = {f'I(x) - c~(0)} exp[ - h"(x - L:)] (21) 

and we have used the symbols h i and a i to denote 
(vi/2D i) and (vi)Z/4D i, respectively, with i = I or II. 

Applying the method of separation of variables 
(Weinberger, 1965a), the discrete spectrum of eigen- 
values a~, of the Sturm-Liouville problem (Weinber- 
ger, 1965b) associated with eqs (14)-(17) is given by 

h I sin (~L:)  + ct I cos (ct~L:) = 0 (22) 

h n sin [an (L - L:)] + ~' cos [~t~l(L - L:)] = O, 

n = 1, 2, 3 . . . .  (23) 

The corresponding orthogonal and complete basis 
functions (Weinberger, 1965b; Kreyszig, 1993) take 
the form 

Xi(x)  = sin [cd (x - L:)], n = 1, 2, 3 . . . .  (24) 

The concentration profile si(x, t) can then be written 
as  

ct~ 
si(x, t) = ~ Ai(t) Xi,(x) (25) 

n = l  

where A~ (t) are time-dependent Fourier coefficients. 
The right-hand-side functions pi(x) given by eq. (19) 
can be expanded in terms of the basis functions as 
follows: 

U(x)  = ~ f ,X~(x)  (26) 
n = l  

where the Fourier coefficients of Pqx) are given by 

• IPqx )  X'.Ix) dx  (27) 
P ' -  ii-X~(x)]2 dx 

The interval of integration is [0, L:] and [L:, L], 
respectively, for i = I or II. 

The expressions for si(x, t) in eq. (25), Wi(t) in eq. 
(18), and Pi(x) given by eq. (26) are substituted in eq. 
(14). Solving the resultant ODE term by term in n, we 
obtain the expression for the time-dependent Fourier 
coefficients W,(t) as 

A~,(t) = exp [ - (c~,)2Dit] A~(0) + p~./ 

x exp (d z) exp [(e~,)2DiT] dz}. (28) 

% 

In eq. (28), A~,(0) denotes the value of A~(t) at time 
t = 0. In order to satisfy the initial condition (15) for 
the modified concentration profile of the form given 
by eq. (25), the coefficients A~(0) have to equal the 
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Fourier  coefficients of the modified initial distribu- 
tions g~(x) for i = I, II, respectively. Therefore, 

A~ (O) _ ~g~(x) X~(x) dx (29) 
~[Xi(x)] 2 dx 

Once again, the interval of integration is [0, L : ]  and 
[Lf,  L], respectively, for i = I or II. The integral (27) 
can be evaluated explicitly: 

- 4 (od.) 2 
p~ - (30) 

[(a~)2 + (hl)2] [ (2~ L:)  - sin (2a~ L¢)] 

pll= 
4(~1) 2 

E(al.x) 2 + (hi'} 2] {E2a~. ~ (L - L : ) ]  - sin E2a~. 1 (L - -  L:)]}" 

(31) 

At this stage, the only unknowns in the determina- 
tion of s~(x, t) and sn(x, t) are the interracial concentra- 
t ion distr ibutions cI:(t) and c~(t). Substitution of the 
preceding representation eq. (25) of sl(x, t) and sU(x, t) 
into eqs (12) and (13) and subsequent substitution of 
the form of d(x ,  t) into the interface conditions of eqs 
(8) and (9) leads, after considerable algebra, to the 
following integrodifferential equation for c~(t): 

rtdcn 
Q(t) + Keq | ~-~ G ' ( t ; r )dz  

30 uz 

= Jo-~Z Gu(t;'c) dr  + vnc~(t) (32) 

where 

bt, = (al,)2D 1 

b2 = (al, I)2D I1 

QJ(t) = - D l e x p ( - a l t )  ~ AI(O)~t~ e x p ( - b ~  t) 
. = 1  

II 11 I1 Qn(t) = - Onexp( - a  11 t) ~ A.(0)~. e x p ( - b ,  t) 
n = l  

G I (t; z) = D 1 exp [ - a1(t -- r)] 

1 1 1 x ~. p. exp [ - b. (t - z)] (37) 
. = 1  

Gn(t; z) = O n exp [ - a n ( t  - z)] 

oo 
~-' (XII_11 e x _ r  I1 x z.~ nPn p L - - b .  ( t - - z ) ]  (38) 

n = l  

Q(t) = Ql(t) - Qn(t). (39) 

Solution of eq. (32) gives the evolution of the inter- 
facial concentration on the downstream side. That  on 
the upstream side is quickly evaluated via the condi- 
tion of local equilibrium viz., eq. (8). These interfacial 
concentrations can be substituted in eq. (28) to obtain 
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the t ime-dependent Fourier  coefficients of the distri- 
butions s~(x, t). The concentrat ion profiles are then 
obtained via eqs (12), (13) and (25). Computa t ional  
details have been outlined in Appendix A. 

It is worthwhile to compare briefly the present 
approach with that of Locke and Arce (1993) and 
Locke et al. (1993). These authors  determine a se- 
quence of eigenvalues 2" applicable to the whole M- 
layer (here two-layer) domain 0 < x < L, for which 
the corresponding eigenfunctions u,(x) are given by 
a set of M formulas (each formula applying to one of 
the layers). The solution of the t ransport  problem is 
then given as a single Fourier  series in the u,(x) in 
which the Fourier  coefficients contain the factors 
e x p ( -  2~ t). The present approach develops a se- 
quence of eigenvalues and eigenfunctions, and a cor- 
responding spectral expansion, for each layer. These 
separate expansions are then pieced together in a 
manner  that focuses on the time dependence of the 
interfacial concentration c:(t), which is found to be 
governed by an integrodifferential equation. Refor- 
mulat ion of a differential equation in terms of an 
integral equation of lower dimensionali ty is quite 
common for both theoretical and numerical purposes. 
Thus, for instance, this general approach is used in the 
theory of O D E  [e.g. Ince (1956)], and it forms the 
basis of boundary integral methods in Stokes fluid 
mechanics [e.g. Kim and Karr i la  (1991)]. 

Problem 2 can be solved in the same manner as 
problem 1 if one now defines (Brenner, 1962) if(x, t) = 
d(x ,  t) - Cinp- For  convenience of notation, we may 
trivially define pU(x, t) = cU(x, t). In addition, we de- 
note p~ - pl(L:,  t), and p~ - pn(Lf,  t). The initial and 
boundary conditions now take the familiar form 

(33) pl (x, 0) = - Cinp (40) 

(34) pU (X, 0) = 0 (41) 

(35) _ Di 0pl(0, t) - -  + v l p  1(O,t)=O, t > 0  (42)  
8x 

0p n (L, t) 
- 0 ,  t > 0 .  (43) 

8x 

(36) The solution for pi proceeds in the same manner  as 
that  for c ~ in problem 1 except for two modifications. 
Equations (8) and (9) are replaced by 

pty(t ) + Cinp ~--- K e  q 11 p:(t)  (44) 

Dj c~pl(Lf, t) + vlpt(L/, t) + vlci,p 
8x 

= - -  D I  l 6qp 11(L f ,  t) 
~ X  -~- /311/911 (L f, t). (45) 

Finally, eq. (32) is modified as follows: 

f 'dp~ 
Q(t) + vlCl.p + KeqJo-~Z G1(t; z) dz 

¢*dp n 
= | ~ -  Gn(t; r) dr +/3,,p}1 it). (46) 

30 uz 
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The actual concentrat ion profile in each domain  is 
then recovered by realizing that  cl(x, t ) =  pl(x, t ) +  
Cinp [and trivially, cn(x, t) = pn(x, t)]. 

4. PERTURBATION ANALYSIS FOR LARGE PI~CLET 
NUMBER 

The case of large P6clet number  Pe[ = ~L/D; see eq. 
(55) below] frequently arises in real applications, par-  
ticularly in t ransport  phenomena occurring in un- 
packed columns. Fo r  example, in liquid electrophor- 
esis, the convective velocity of a solute, in the absence 
of electro-osmotic flow, is coupled to its molecular 
diffusivity via the mobil i ty constant.  Fo r  this applica- 
tion, v ; ~ O ( l O - 4 ) m / s ,  D i ~ O ( l O - 9 ) m 2 / s ,  L ~ O ( 1 ) m  
and hence Pe ~ O(105). Fo r  accurate determinat ion of 
the concentrat ion profile near the interface, finite- 
difference techniques require extremely fine meshes of 
a round 2000 nodes per length of column. Stability of 
such schemes demands also very small time steps; 
thus, to obtain useful results one requires extremely 
large computa t ion  times. By performing a per turba-  
tion analysis for large P6clet numbers, we obtain 
a detailed understanding of the fine structure of the 
concentrat ion profile near the interface seen in the 
numerical solution while simultaneously gaining con- 
siderable savings in computa t ion  time. 

To begin with we define the small parameter  
e = l /Pe  and cast eqs (1)-(4) in terms of dimensionless 
variables as follows: 

Oei 02ci i OCi 
- -  = e i ( 4 7 )  

e'(~, 0) = f i  (~) (48) 

,10el(O, "t) 
- ~tp ~ + / ~ l c I ( 0 ,  z )  = 0 ( 4 9 )  

0ell( l ,  Z) 
- 0.  ( 5 0 )  0~ 

At the interface, ~I = LI /L ,  eqs (8) and (9) can be 
written in an equivalent form as 

c l =  K,q c n (51) 

Oel /~IcI = -- e4, II 0cli - e4,' ~-~ + ~ +/znc n. (52) 

Here the variables have been defined as 

D 1 + D n v I + v II 
b 2 ' f = ~ (53) 

tO x 
z L '  ~ L 

tSL 1 
P e = - i f ,  e = p--~ 

D i v i 

4,' =-~' "' =-'e 
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4.1. Outer region 
For  large Pe, diffusional effects are negligible away 

from the interface. Hence, in the outer region the 
solution may be expanded in a regular per turbat ion 
series 

e;'°u' (~,  T) = c ~ ° ~ ' ( ~ ,  ~) + ~ c~'°u' (~,  T) 

+ e 2 e~ °ut(~, z) + -.- . (57) 

We may express the given arbi t rary initial distribu- 
t ion as 

f i(~) =fg(~) + e f i (¢)  + ezf~(¢) + "'" . (58) 

Compar ing  zeroth- and first-order terms we obtain 
the successive governing first-order differential equa- 
tions 

0e~ o., 0c~ o., 
- -  + f f  = 0 ( 5 9 )  

0e~/O°, 0c~ o., 02c~O., 
0---~- + # ' - -  = 4,` - -  (60) 

subject to the auxiliary conditions 

e~OUt (~, 0) = f g ( ~ )  (61) 

c] '°ut (~, 0) =f~(~). (62) 

4.2. Inner region 
In the region near the interface, concentration chan- 

ges are expected to occur over distances of order e. To 
resolve this boundary  layer structure, we introduce 
the stretched coordinate  ( =  ( ~ -  ~I)/e, in terms of 
which eq. (47) becomes 

Oel = 4,i 02e~ _ ui ~ci 
e ~ 0( 2 ~-~. (63) 

Proceeding again with a regular per turbat ion expan- 
sion, the inner solution takes the form 

c~'~"((, r) = c~'°(( ,  ~) + ~ c~';"((, r) 

+ e 2 c~in((, Z) + - - ' .  (64) 

Collecting terms of order e ° and e a, we obtain the 
differential equations: 

4,i 02c~in i Oe~in 
0( 2 p ~ = 0  (65) 

02C~ in 0¢~ in 0¢~ in 
4,i _ _  ~i _ _  _ _ _  (66) 

0( 2 0(  Or 

which apply both to the left and right regions of the 
interface (( < 0 and ( > 0, respectively). The succes- 

(54) sive differential equations are supplemented with aux- 
iliary condit ions of fast equilibrium and continuity of 
flux expressed by eqs (8) and (9). Thus, by equating 

(55) terms of like power in e, we find 

e TM = KeqC~ 'in (67) 

(56) c~' i n  = Keqell  I, i n  (68) 
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and at the interface ( = 0: 

__ (1) 1 0oLin ÷ ] -/leLin "~ ll, in ] 211cH'in = _ d~ll cci5 .... + (69) 
- 0( - 0( 

__ (~1 0e l ' in  #Icll'in = - -  ~b II 0c/ l ' in  -t- ]jllc[li'in. (70)  

The general solution of the preceding equations, 
subject to the requirements of at most algebraic diver- 
gence as ( - ,  +_ oo is 

c~iin ((, v) = r'(v) [1 ( /xi + \ K ° q ~ i i -  l )exp(vt( ) ]  (71) 

Clo l'i" (~, r) = rn(O (72) 

: _ Z ( d r ' t " t )  cll' in (( ,  r )  
/x'\ dz /#( 

x [ 1 - - ( K e q :  -- l )  exptv '0]  

ll(r) 
+ ~ exp(vIO + ki(r) (73) 

__L(drIl(l') 
cl l ' in(~,  T) = 

~" \ dr J ( + kH(r) (74) 

where ?(0,  rU(r), kl(r), kn(z), IX(r) are as yet unknown 
functions of time z, and v t =/~/~b( It is worth noting 
that to the right of the interface there is no exponen- 
tial dependence of concentration on ( because it 
would increase the concentration without bound as 
one leaves the boundary layer. 

4.3. Matching of inner and outer solutions 
The perturbation analysis is completed by match- 

ing the outer and inner solutions to the left and right 
of the interface. Thus, as ( --* + oo, ~ --, ~:, 

c~i" + se~ io + . . . .  c~$ °°t + ceil '°<'t + . . . .  (75) 

In the left region, the inner expansion through first 
order, c~5 in + e c] 'i", grows linearly with ( asympto- 
tically as ( -+ - oo: 

¢~jin+t;eLin--rl('c)~-~I--(~tl)(drl(r"~+ki('t') ] \  dr // 

(76) 

The behavior is reproduced by the outer solution, 
eL °<'' + ec~ °<'t, as can be seen from the Taylor expan- 
sion valid near ¢ = ~:, 

C Lout .{- ~ f ~c~'°°' c'~°"'(~ , "r) 

\( °cI:' ¢ 
+ ¢¢(~ -- ~:) + eeL°Ut(~:, z). (77) 

Noting that ( = (4 - ~.:)/s, e q s  (76 )  a n d  (77)  are con- 
sistent if and only if 

rl(r) = c~°"t(~:, r) (78) 
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drJ(z) /0c  l, o~t 'X 
- -  - ) (79)  
dr P ' t Z T ~  ~f 

k~(r) = c~'°"'(~:, r). (80) 

The above equations determine the inner solution for 
the concentration profile to the left in terms of the 
corresponding outer solution. Matching of the inner 
and outer solutions to the right of the interface pro- 
ceeds similarly but more simply owing to the absence 
of the exponential term. Thus, we arrive at the inner 
solutions 

(81) 

c~'i"(~, r) = c[J'°u'(~ , z) (82) f 

V Ocl $o°, f f  
c l ' i n ( ~ , r ) = L - ' ~ ] ¢ . f ( , [ 1 - ( K , q -  ~ - 1) exp(vl0]  

VOcL out ]./1 

x [1 -exp(vlO] + exp (riO [Keqc~ '°°' (~f:)  

- Cll'°Ut(¢:, "r)] + c]'°u'(¢:,z) (83) 

V0C[J'°ut J -- cIl.out(~ , Z). (84) = ~ +  : ell, In((, .[.) [ - - - - - ~  Cf 

Substitution of this form into eqs (69) and (70) implies 
that the concentration profiles c I'°ut and c T M  are 
related as follows: 

I, o u t  c~ .... (G,r) ~ C o  (G,r) (85) 

/OCLO.t \ ~b I \ K ' q ~  ii - ~ ' U  ~° / + 

\ 0¢ JCf /]\ 0¢ /]¢f 
/0CII, out \ 

+.c,  (¢s,r)=-C"f"~° / 

+ '  nK c i.'°ut/x r / (86) pt eq 1 I%f~ ). 

These two equations conveniently express the conse- 
quences of near-interface dynamics as interfacial con- 
ditions that can be imposed in connection with eqs 
(59) and (60) in determining the behavior of the ma- 
croscopically observable (outer) concentration field 
c i'°ut. Equation (85) is analogous to the jump mass 
balance for an interface for purely convective (fluid 
mechanical) flow as discussed e.g. by Slattery (1981). 
Equation (86) gives the first-order correction to 
the mass balance across an interface in the presence 
of diffusional effects. We discuss its significance in 
Section 6. 

4.4. Concentration profiles 
Figure 2 illustrates the determination of the solute 

concentration from eqs (59)-(61), (85), (86) by the 
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Region I Region IIb j/,~. 

~ ~ S l o p e  Ix u / ~  

Fig. 2. Diagram of phase space for evaluating the perturba- 
tion solutions. In regions I and IIa, there is convective 
propagation and diffusional deformation of the initial con- 
centration distribution along the characteristics. Near-inter- 

face dynamics comes into play in region lib. 

method of characteristics in the (~, z) plane. In regions 
I and IIa to the left and right of the interface, the 
initial distributions propagate along the character- 
istics corresponding to the respective convective vel- 
ocities v ~ and v n. In region IIb, the boundary layer 
dynamics causes the concentration propagated within 
region I to undergo a sudden change on passing 
through the interface. This change is given by eqs (85) 
and (86), and subsequent propagation of the concen- 
tration profile follows the characteristics in region II, 
viz., with a velocity v n. Thus, the concentration is 
determined through the entire phase space. The pre- 
ceding descriptive statements can be made concrete in 
mathematical terms. Propagation and deformation of 
the initial concentration distribution along the char- 
acteristics in regions I and IIa is described by the 
general solution of eqs (59) and (60) subject to the 
initial condition (61),(62) and is given by 

c~°"'(~., 1-) =f~)(~ -- #'z') G 
/ c~'°°'(~, 1-) = 4,'ffo'(~ - #&) + f ' ( ~  - ~&) 

region I 

(87) 

clJ'°"'(~, ~) = / " ( ~  - / ~ " r )  -~ 

/ elI1 .... t.,/~ "r) = ~ll'rf3ol(¢ -- #n" 0 +f~'(~ -- UII~ ") 

region IIa (88) 

where double dots denote the second derivative with 
respect to its argument. The concentration distribu- 
tion in region I undergoes alteration due to interfacial 
dynamics in region IIb and this alteration is described 
by the equations 

1 
cll,°<"(~, r) = ..@~J(~, ~) i 
c7.O,,(~, ~) = 6n1-(~-~),,(~, T) + ~'1'(~, ~) J 

region IIb (89) 
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where I 
~-~J(~, r) = ~iifo~(r#) (90) 

= , , ,  

1 I K //i 

/.~i 2 

, : ' . . ' E .  <9,, 
The single dot denotes the first derivative with respect 
to its argument and the double primes represent 
the second derivative with respect to 4. Equations 
(87)-(92) describe the outer solution to problem 1 over 
the entire phase space. The inner solution is obtained 
by substitution of the appropriate form of the outer 
solution into eqs (81)-(84). The complete concentra- 
tion profile is obtained by evaluating the composite 
solution 

C i (~,  .~) = ¢i, out(~, 1-) .~_ el, in(~, I") -- ci'mateh(~, 1-) (93) 

where c ~'match describes the limiting behavior of the 
concentration distribution in the transition from the 
inner to the outer region and is given by 

lim 
c i 'match( l '  ~') = ~ ~ i f  ei'°ut(~' 1-) (94) 

/~cl,out 
/,out t__~... - fl,f(~ = Co (¢s ,  1-) + - ~ s )  

+ ~ c~' °u'(~ e, r). (95) 

Remark: (1) We note for completeness in regions 
I and IIa the outer solution to all order in e may be 
written as 

c,.O.,(~, 1-) =f~(~ _ ~11-) + ~ , f f ~ ( ~  _ ~*T) 

i2 2 
+ ~ 2 ~ 5 _  (f~),o(~ _ ~'r) + .-. 

oo n (d~i~m1-m 

× (fi_,.)z,.(~ _ p/v) (96) 

where (f/n-m) 2" denotes the 2ruth derivative of 
f~_,, with respect to its argument. 

(2) Asymptotic analysis in the limit of large Prclet 
numbers reduces the governing equations to a set of 
first-order equations. The concentration profiles for 
all times z > 0 were determined solely from the initial 
distribution. Therefore, the solutions are expected to 
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violate the boundary conditions given by eqs (2) and 
(4) at x = 0 and x = L, respectively. Due to the form 
of the initial distribution used in our calculations, the 
error in concentration values at the boundaries is 
small. In particular, the initial distribution used has 
effectively tailed off to zero value and zero slope at 
x = 0 and x = L. In reality, boundary layers would 
form at the entrance and exit of the column to adjust 
the values of the concentration to satisfy the boun- 
dary conditions. The boundary layer would produce 
only small local changes in the concentration which 
are not essential to the solute transport and are not 
considered further. 

5. RESULTS 

Figure 3 shows the results for problems 1 and 2 for 
two different values of the P6clet number Pe for the 
case when the right-hand domain is less permeable to 
the solute. The interface is located at ~I = 0.5. For  the 
purpose of illustration, we consider the case of pure 
electrophoretic migration, i.e. without fluid flow. We 
also assume that the solute is present in dilute quantit-  
ies and does not contribute to the current. The con- 
vective velocity, v ~, is thus proport ional  to the 
diffusion coefficient, D ~, in the respective region. The 
effect of the change in transport properties across the 
interface has been reported in terms of the ratio of 
velocities di = DII/vI(:DII/DI). We have restricted the 

discussion to the case where the equilibrium constant 
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Pc=50  - -  Exact solution for Problem 1 

- -  Exact solutitm for  Problem 2 
- - -  Initial distribution for  Problem I 
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(b) 
- -  ExaCt solution for Problem i 

Pe=lO0 ....... Exac~ solut ion for Problem 2 
- - - Initial distr i l~t ion for Problem 1 

0.2 0.4 0.6 0.8 1.0 
{ 

Fig. 3. Analytical solutions to problems 1 and 2 for 5 = 0.5. 
In problem 1, the initial concentration is a Gaussian distri- 
bution while in problem 2, the input concentration Cinp is 1. 
The dimensionless time z is 0.170 and 0.375 for problems 

1 and 2, respectively. 
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(Keq) is unity. The assumption of 6 # 1 and geq  = 1 
implies the use of a medium that offers an appreciable 
change in tortuosity but negligible change in the po- 
rosity across the two domains. However, both the 
analytical method and the perturbation analysis are 
valid even when the above-mentioned restrictions on 
6 and Keq are relaxed. We further assume that terms 
of higher order in e for the initial concentration distri- 
bution (f~, n > 0) in problem 1 are identically zero. In 
problems 1 and 2, we see that the boundary layer 
thickness scales with 1/Pe. Figures 4-6 compare the 
exact solutions with the perturbation analysis trun- 
cated to zeroth or first-order for three ratios of the 
velocities on either side of the interface. For  Pe = 50, 
truncation at zeroth order reproduced qualitative fea- 
tures, whereas addition of the first-order term gave 
poor results. This is because e = 1/Pe is not small 
enough in this case. For  Pe = 100, addition of the 
first-order term results in a slight improvement  in 
agreement with exact results; for Pe = 200 addition of 
the first-order term produced a definite improvement. 
This is consistent with the general fact that the opti- 
mal asymptotic approximation includes more and 
more terms as the small parameter (here e = 1/Pe) 
--*0. As the value of Pe increases the results of 

@ 

10] • ] 
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Fig. 4. Comparison of exact solution of problem 1 with the 
perturbation approximation (PA) at time z =0.170 for 
6 = 0.5 and different values of Pe. The perturbation solution 
in (a) has been truncated to zeroth order. Both zeroth- and 
first-order solutions are illustrated separately in (b). Per- 
turbation solution in (c) is the sum of zeroth- and first-order 

solution. 
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Fig. 5. Comparison of exact solution of problem 1 with the 
perturbation approximation at time z = 0.225 for 6 = 1 (no 
interface) and different values of Pe. The perturbation solu- 
tion in (a) has been truncated to zeroth order. Both zeroth- 
and first-order solutions are illustrated separately in (b). 
Perturbation solution in (c) is the sum of zeroth- and first- 

order solution. 

Fig. 6. Comparison of exact solution of problem 1 with the 
perturbation approximation at time T = 0.675 for 6 = 2 and 
different values of Pe. The perturbation solution in (a) has 
been truncated to zeroth order. Both zeroth- and first-order 
solutions are illustrated separately in (b). Perturbation solu- 

tion in (c) is the sum of zeroth- and first-order solution. 

perturbation analysis are expected to coincide 
with those of the exact solution. However,  the analyti- 
cal solution involving separation of variables cannot 
be implemented for Pe > 100 because it contains ex- 
ponentials of Pe resulting in large roundoff errors. 
Hence, for Pe exceeding 100, the 'exact'  solution 
was obtained using the finite-difference scheme 
Q U I C K E S T  (Leonard, 1979). This scheme avoids 
the stability problems of central differencing and 
reduces the inaccuracies of numerical diffusion 
associated with upstream differencing. Boundary 
layer results seem to be in very good quantitative 
agreement with exact results for Pe = 200. Perturba- 
tion analysis for the case of continuous input 
(problem 2) could also be performed. Owing to 
Danckwerts '  boundary condition, the concentra- 
tion distribution is essentially discontinuous at the 
inlet. On  performing boundary layer analysis, it 
is seen that the outer solution for this case is also 
given in terms of eq. (96) with f ~ ( ~ - # l z ) =  
C i n p H [  - -  ( ~  - -  # I T ) ' ]  and fl,(~ - -  f l i T )  = 0, n > 0, 
where H is the Heaviside function. Thus, the 
outer solution is given in terms of a discontinuous 
function and its derivatives. Hence, results of per- 
turbation analysis for this problem have not been 
presented. 

6. DISCUSSION 

As the results indicate, there exists a region immedi- 
ately to the left of the interface which is governed by 
markedly different dynamics compared to the rest of 
the column. Here in a thin layer diffusional effects are 
not  negligible, and the concentration in this layer 
decays exponentially. However,  no such layer exists to 
the right of the interface. This can be inferred from the 
result that the inner solution to the right is merely the 
Taylor series expansion of the value of the outer 
solution at the interface. The boundary layer ap- 
proach is accurate quantitatively for values of Pe 
> 100. For  larger Pe, the analytical solution cannot 

be evaluated due to large roundoff errors. Finite- 
difference schemes, on the other hand, are capable of 
giving accurate results for arbitrarily large Pe's. To 
ensure accuracy in the region close to the interface 
(modeled as a sigmoidal variation over 4 nodes), the 
mesh size (Ax) was set to at least a tenth of the 
thickness of the boundary layer. Stability of the nu- 
merical scheme for this small mesh size requires the 
use of a very small time step. The consequence was 
extremely large computat ional  times: a 2000 node per 
column-length mesh required a dimensionless time 
step as small as 3.75 x 10 -8 and resulted in 181 h of 
C P U  time per unit simulated time z on a Silicon 
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Graphics Indigo machine with the R4000 processor. 
The perturbation analysis achieved comparable accu- 
racy in less than 60 s per unit simulated time z. 

The numerical calculations in Fig. 4 show a pro- 
nounced sharp peak immediately upstream of the 
interface. Physically, this feature of the concentration 
profiles represents a local accumulation of solute aris- 
ing from the fact that region II is less conducive to 
solute transport than region I. Similarly, Fig. 6 illus- 
trates a drop in the concentration level upstream of 
the interface which can be attributed to the fast de- 
pletion of solute content owing to a higher down- 
stream velocity. This qualitative statement is made 
precise by the asymptotic analysis, which furnishes 
a quantitative description of the observed behavior 
and establishes the magnitudes of the peak width and 
height. Figures 4-6 reveal that the domain of validity 
of the perturbation approach does not seem to be 
affected by the ratio of transport properties. 

In addition to facilitating the calculation of the 
concentration in region IIb, eqs (85) and (86) have an 
interesting physical interpretation. At lowest order, 
the solute outer flux is purely convective, and eq. (85) 
states that the limiting value of the convective fluxes 
must match at the interface lest there be local accumu- 
lation of solute. The situation is more interesting at 
first order. The first-order outer fluxes on the left and 
right sides now have both a convection contribution 
from c] and a diffusional contribution from c~, and 
they do not match, i.e. the interface appears as a source 
or sink of solute on a macroscopic scale. The reason is 
that as the zeroth-order inner concentration em- 
bodied in c TM and c~ 'i" evolves, it encompasses an 
amount of solute that changes with time. The amount 
is of order r because c Lin is of order unity and the 
boundary layer has thickness of order e. Any local 
accumulation of solute must then be supplied from 
the outer region via a flux discontinuity in the outer 
region. More specifically, if fi.ou, denotes the mass 
flux based on the outer solutions alone, 

~ci, Out 
o. ~i'°ut : - - (~E  i (?~ ~ ~lici,Out 

= WC ~ out + ~ ( _ ~i  a~,°u' W d  "°°') + ~ -  + ... 

= f~5out + e ¢~,out + ... .  (97) 

Let f~5,"# and /,out • f 1 , :  denote the zeroth- and first-order 
outer fluxes at the interface. Then 

. . . . . .  _ f o . : Z  . . . .  = ~ . c l ~ . o ~ , ( C : ,  l .z . . . .  Jo . :  T) --/~ Co (C:, r). (98) 

From eq. (85), the right-hand side of the above equa- 
tion is 0" 

/t~cn.Om \ 
. o o ,  , . . . .  ~ l , f  - -  f l , f  11 0 Cf -~ 

/t~cL°ut ) 1 O + ¢ ~--~ ~: - Wd.ou'(~:, ~) 

= ( ~ 1 ( : -  1)j~OI(~f __ //IT). (99) 
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The last equality in eq. (99) comes about by virtue of 
eq. (85) and eq. (86) for Keq = 1. It can be verified that 
the right-hand side of the above equation is precisely 
the rate of change of the interfacial excess solute 
content 

(~T L J -  oo 

Thus, dynamical processes in the boundary layer im- 
bues the interface (which appears infinitesimally thin 
from a macroscopic viewpoint) with an effective 
source/sink character. 

7. CONCLUSION 

A novel analytical approach to solving transport 
problems in discontinuous media has been presented 
(Section 3). This approach is, in principle, valid for 
any Pe. In practice, the approach breaks down for Pe 
> 100 due to large round offerrors. Hence, it cannot 

be implemented for accurate prediction of the dynam- 
ics of the region near the interface where diffusional 
resistance cannot be neglected. Finite-difference tech- 
niques can yield accurate results for arbitrarily large 
Pe in a continuous medium. For a medium with a 
region of infinite gradients in transport properties, 
these methods tend to be unstable unless the region of 
discontinuity is approximated with a sharp but con- 
tinuous transition• For high Pe, this implies very fine 
meshes, very small time increments and consequently 
very large computational times• The large-Pe per- 
turbation approach is very suitable for such cases. It is 
seen to yield accurate results with almost 104-fold 
reduction in computation time. 
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NOTATION 

time constant, 1/s 
Fourier coefficient, mol/m a 
time constant, 1/s 
concentration of solute, mol/m 3 
diffusion coefficient, mE/s 
electric field, V/m 
actual initial concentration distribution, 
mol/m 3 
Faraday's constant, 96,500 C/mol 
downstream concentration distribution, 
mol/m 3 
modified initial concentration distribu- 
tion, mol/m 3 
kernel in eq. (32), m/s 
constant, 1/m 
integral term, m 
parameter in eq. (73), mol/m 3 
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x 
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equilibrium constant, dimensionless 
parameter in eq. (73), mol /m 3 
length of column, m 
location of interface from column en- 
trance, m 
Fourier  coefficient, dimensionless 
modified Boltzmann distribution in eq. 
(19), dimensionless 
mean P6clet number, dimensionless 
flux term in eq. (32), mol /m s 
parameter in eq. (73), mol /m 3 
universal gas constant, J/(mol K) 
modified concentration of solute, mol /m 3 
components  of kernel G, m/s 
time, s 
temperature, K 
velocity, m/s 
inhomogeneous term in eq. (18), mol/m3s 
lab-fixed spatial coordinate, m 
basis (eigen) function, dimensionless 
valency of the solute 

Greek letters 
eigenvalue, 1/m 

fl spatial coordinate, m 
7 parameter in eq. (A7), 1/m 
6 ratio of downstream to upstream veloc- 

ity, dimensionless 
e inverse mean P~clet number  
( stretched spatial coordinate, dimension- 

less 
r/ parameter defined in eq. (92), dimension- 

less 
2 parameter in eq. (A7), 1/m 

dimensionless velocity 
v ratio of dimensionless velocity to dimen- 

sionless diffusion coefficient 
dimensionless lab-fixed spatial coordi- 
nate 

p modified concentration in problem 2, 
mol /m 3 

a time in Appendix B, s 
dimensionless time 

q~ dimensionless diffusion coefficient 

Superscripts 
- average between two domains 

derivative w.r.t, argument 
' derivative w.r.t. 
i upstream or downstream domain 
in inner region 
I upstream domain 
II downstream domain  
match transition region between inner and 

outer region 
out outer region 

Subscripts 
f interface 
inp input 
n index of Fourier  expansion term 
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APPENDIX A 

The sums Gt(t;z) and GlI(t,z) in eqs (37) and (38) were 
found to diverge at z = t. This is because as n --* o~, the terms 
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c~,p~ and ct~,p~ do not vanish but rather approach constant 
values of ( - 2/L:)  and [2/(L - L:)],  respectively. Based on 
physical considerations, the interfacial concentrations on 2 
either side must remain finite. This implies that although the 
sums Gl(t; z) and Gn(t; r) diverge at z = t, the integrals con- ~" 
taining these sums remain finite. In order to evaluate these 0 
integrals, we expand the coefficients ~i, (ct~,) 2 and ct~,p / in 
orders of 1/n. We then add and subtract the leading terms of 
these terms from the series Gt(t; z) and G"(t; r). In doing so, we - 2  
express the singularity in each of these series in terms of 
another singular series whose asymptotic behavior in the 
region of divergence is known. The leading terms of the 
above coefficients are given by 

(A1) 

[( :2.,3 o 
(~,.)2 = " -  + \ L :  7 + -n 

[ o 2 . , . . 1  
i i =  1 - 2 + -  -I- /Z 2 n 2  F 0  ctnp, -~ n 

(A3) 

where ?i, 2 i = L y  for i = I and 7 ~ = - (L - L:) ,  2 s = L - L f  
for i = II. The kernels G~(t; z) are then given in terms of three 
sums, 

G'(t; r) = sil(t; r) + S~(t; ~) + S~(t; z) (A4) 

where 

S~(t; z) = D; exp [ - a;(t -- "0] ~ ~.P.; ~ + 
n - 1  

× exp [ - (~i.)zOi (t - r)] (A5) 

- 2  
S~z(t; z) = D' exp [ - ai(t - z)] 

7 i 

V - 2h i Di 
x exp L---~7--- (t - r ) ] , ~ , {  exp [ - {(ct/) 2 

- 2  . 
Si3(t; z) = 1)' exp [ - aiD i (t - O] 

),i 

V - 2hi 
× exp L-- ~ D i (t -- "r)] E l 

x e x p { - - [ ( n - - ~ ] Z D ' ( t - - z ) }  (A7) 

Here S~(t; z) and S~(t; z) contain pre-exponential terms which 
decay as 1/n 2 and hence these sums are uniformly convergent 
even for t = t. For convenience, let S~2(t;r) denote 
S~(t; z) + S~z(t; z). The sum Si3(t; 0, on the other hand, is diver- 
gent as r-- ,  t. To identify its asymptotic behavior in the 
region of divergence, we consider the series Sy = 
~ =  aye,- ~/2)~ for 0 ~< y < 1. From Fig. A1 it is seen that 

)= -0.12078 -0.5 [ln[-In @)]] 

! 
. . . .  [ . . . .  I ' l ' '  I . . . .  I I ' ' ' [ . . . .  I . . . .  I ' ' ' ' l  . . . .  

-6 -5 -4 -3 -2 -1 0 1 

In[-In(y)] 

Fig. AI. The series S r in the domain 0 ~< y < 1. The open 
circles represent the actual value of S r. The solid line repre- 
sents the asymptotic behavior as y --* 1 obtained by curve 

fitting. 

S r - ( n / x ~ ) [ -  In(y)] -1/2 for y exceeding a critical value 
{here taken as lnl- - In(y)]- - 5  or y = 0.993}. Therefore for 
z exceeding a critical value zc, the sum S~3(t; z) can be ex- 
pressed in its asymptotic form as given below, 

Sia(t; r) "- -- x / ~ -  2, (z > T~) (A8) 
7~ x/ t  -- z 

where re is given by 

I n2D~(t - %) 1 exp ~-~7)~- ] = 0.993 (A9) 
L 

The sums Gl(t;r) and Gn(t;z) are now integrable as z--* t 
because the sums St3(t; r) and S~(t; r) as given by the above 
equations contain a finite area under the curve in the interval 
[0, t]. 

The integrodifferential equation (32) can now be solved 
in the following manner. The interval of integration [0,t] 
is discretized into steps of width At chosen such that 
At<<t - %. The integral terms are evaluated as a sum over 
the subintervals [0,t - At] and [t - At, t]. The sums Gl(t;z) 
and Gn(t;r) remain convergent in the subinterval 0 ~< 
z ~< t -  At due to significant contribution from their ex- 
ponential decay terms. The singular behavior of Gl(t; r) and 
Gn(t; z) is restricted to the remainder of the interval of integ- 
ration, viz., t - At < r ~< t. In this small subinterval, the two 
kernels are written according to eqs (A4)-(A7). On making 
these changes and substituting them in the integrodifferential 
equation we get 

r '  -atdc 'l(z) fdcy (r) '~ 
Q(t) + K,q | ~ O'(t ;r)dz 

x [S 2( t ;z )+S t ; z ) ]d r  
- At 

(d4(r) ) 
= J o  T Gll(t; z) dz + \ dr , : t  

× [S~i2(t; r) + sn(t; z)] d r  + vncl](t). (A10) 
dr-At 

In writing the above equation, we have assumed that the 
concentration gradient does not change significantly in the 
small interval [t - At, t] and can therefore be approximated 
with its value at r = t which can then be placed outside the 
integral. The time derivative of the interracial concentration 
is approximated with a simple upstream difference formula, 
viz., 

dc~(z) n c : ( O  - c~}(r - at) 
(All )  

dr At 
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On substituting this in eq. (A10), the interfacial concentra- velocities (VII < l:f(t) < /)I), the solute will catch up with the 
tion at time t may be written in terms of its value at previous plane of discontinuity and thereafter the entire solute con- 
instances of time as follows: tent will move with the same velocity as that of the interface. 

Q(t) + (K ql, - 12)- {[c~(t - At)](K q/~ + I~ - K qI~ - I:) } 
~ ( t )  = At 

v,i_[!Kql~ + I~ At---- KeqYz- 12) I (AI2) 

where 

/~t At c l l ( r )  - -  c ~ ( r  - -  A t )  
ll  = | s" Gl(t;O dr  (A13) 

3o At 

: , -a ,  cn(r) -- c~(z -- At) 
12 = l : G"(t;r) dr (A14) 

30 At 

L 
- At 

It = S~2(t; z) dz (A15) 

L 
- At 

I~ = slll2(t; r) dr (A 16) 

t t  I~ = SI3(t; ~) d T =  - 2 ~ ~ (Al7) 
J t  - At Yi 

I~2= I '  S~(t;r) d r = - 2 ~ "  (A18) 
j r -  ar 71 

The first four integrals were evaluated with the trapezoidal 
rule. Finally, the interfacial concentration at time t is evalu- 
ated by successive determination of its value at all intermedi- 
ate steps between 0 and the required time. 

For large Pe, calculating the concentration profiles from 
the analytical solution suffered increasingly from numerical 
difficulties. These problems stemmed from the need to take 
exponentials of numbers of O(Pe) and, after some manipula- 
tion, dividing them again by numbers of equivalent magni- 
tude. The process first resulted in simple round-off 
errors, then overflows. The problem is worst for concentra- 
tions away from the interface, and in fact for Pe = 100 we 
found spurious peaks in the concentrations near the end of 
the column; these were set to zero before presenting our 
results. 

A P P E N D I X  B 

In this section, we describe the analysis of the limiting 
case of infinite Pe for the transient transport of a solute 
in a dynamic discontinuous medium. As before the trans- 
port properties of the solute remain constant on either side 
of the interface but the interface itself is allowed to mi- 
grate with an externally imposed velocity that can be a func- 
tion of time. Liquid crystals (de Gennes and Prost, 1993) 
offer a good example of such dynamic materials and 
are gaining increasing importance in chemical engineering 
applications. 

Consider the case of solute migration in a discontinuous 
medium with a sharp interface that can be moved with an 
imposed velocity v:(t) such that its location at any time t is 
given by Ly(t) = Ls(O ) + Stovl(s)ds, where L/{0) is the posi- 
tion of the interface at time t = 0. We shall restrict the 
analysis to conditions of negligible diffusional effects, i.e. Pe 

oo. Ignoring diffusional contribution to solute transport 
requires that the interface velocity v:(t) be much smaller than 

I I1 the solute convective velocities v and v . For cases where the 
interface velocity lies between the values of the convective 

The change in its effective velocity from V 1 to Vy(t) can be 
attributed to diffusional resistance to mass transport which 
becomes significant whenever the solute lies within O(Pe-1) 
distance from the interface. Thus, for this range of the inter- 
face velocity, the transient mass transport of the solute can- 
not be adequately described by the asymptotic analysis in 
the limit of infinite Pe. 

Using the same notation as before to denote i = I, II for 
the left and right domains, respectively, the mass balance in 
each domain (for v:(t) < v I, v") may be written as 

~C1 I ~CI 
--~t +V~-x = 0 ,  x < L s ( t )  (B1) 

~C ]1 ~C II 

-'7 + v"--~x =0 '  x > Ls(t ). (B2) 

We assume that there is an initial concentration distribution 
in the left domain while the right domain is empty. On 
contacting the interface, the concentration undergoes a sud- 
den change owing to local dynamics as discussed in relation 
with eq. (85). The above initial and boundary conditions can 
be represented mathematically as 

ct(x, 0) =fl(x)  (B3) 

cn(x, 0) = 0 (B4) 

{v I -- vf(t)}cJ(Lf(t), t) = {v II - vf(t)}cn(Lf(t), t). (B5) 

We introduce the coordinates (fl, 6) such that the location 
of the interface in this coordinate system is independent of 
time. The new coordinate system is defined by the trans- 
formation 

fo = x -  vf(s) ds 

= x -- L:(t) + Lf(O) (B6) 

= t. (B7) 

The conservation equations along with the initial and 
boundary conditions in the transformed coordinate system 
are given by 

~CI I ~CI 
~ + Vr(a)-~ = O, fl < Lf(O) (B8) 

~c" ~c u 
_ _  u - -  = 0 ,  f l > L : ( 0 )  ( B 9 )  
a~ + v,(a) aft 

c'(fl, 0) = f l  (fl) (S 10) 

cn(fl, 0) = 0 (BID 

v l r ( f ) c I ( L f ( 0 ) ,  0") = Vlrl(O ") c'I(Ls(0), or) (Sl2) 
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where  v~(a) = [v I - vy(a)] and  vl, I(tr) = Iv II - v / ( a ) ]  
denote the velocities in each domain relative to the 
front. The solution to this system of equations is given 
by the method of characteristics (Carrier and Pearson, 1976) 
as  

cl(fl, (7) =f t ( f l  0 

vL'(a + ~))f'(fl2) c"(IS, a) v~r,(o + 
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where ct is the solution to 

f~ +'vlrl(s) = Lf (O)  - fl ds  

and fll and f12 are given by 

/o (B13) fll = tl -- v~(s) ds  

(B14) f12 = L/(O) - v~,(s) ds. 

(B15) 

(B16) 

(B17) 


