Circuit-Level Modeling, Design, and Optimization for
Digital Systems
Course: ESE370
Units: 1.0 CU
Terms: Fall
Next Offered: Fall 2016
When: MWF 12-1pm
Where: Towne 307
Instructor: Tania Khanna (Moore 203) (office hours: T 3-5pm) ***UPDATED***
TA: Martin Deng (seas: mdeng)
(office hours: M 6-7:30pm in Towne 305, F 3-4:30pm in Towne 303)
URL: <http://www.seas.upenn.edu/~ese370/>
Quick Links:
[Course Objectives]
[Grading]
[Policies]
[Fall
2016 Calendar]
[Reading]
[Piazza]
[Electric Tutorial]
[Ngspice Setup (Windows)]
[Ngspice Setup (Mac)]
Catalog Level Description:
Circuit-level design and modeling of
gates, storage, and interconnect. Emphasis on understanding physical
aspects which drive energy, delay, area, and noise in digital
circuits. Impact of physical effects on design and achievable performance.
Role and Objectives
The goal of this course is to teach students what they need to know about
the physical aspects (area, delay, energy, noise) of electronic circuits to
support high-speed, low-energy, area-efficient design of robust digital and
computer systems.
Students will learn:
- disciplines for robust digital logic and signaling
(e.g., restoration, clocking, handshaking)
- where delay, energy, area, and noise arises in gates, memory, and
interconnect
- how to model these physical effects both for back-of-the-envelope
design (e.g. RC and Elmore delay) and detailed simulation (e.g., SPICE)
- the nature of tradeoffs in optimization
- how to design and optimize logic, memory, and interconnect structures
at the gate, transistor, and wire level
- how technology scales and its impact on digital circuits and computer
systems
This course comes after a basic introduction to devices and circuits
(ESE215) and a course on gate-level digital design (ESE170/171). It
should serve both students who will go on to do circuit-level design and
those who will work primarily at higher levels and need to be able to
reason about technology and fundamental limits to establish capabilities
and understand the circuit-level impact of optimizations they perform
at higher levels of design. This will be the most detailed class on
physical issues required for CMPE BSE students. Students may choose to
continue with more advanced circuit and VLSI courses (e.g., ESE570).
Rough Syllabus (by weeks)
- Review transistor, introduce MOS model
- Gates and restoration, basic gate delay, review transient response
- MOS Transistors (models with physical device parameters
(W,L,Na...)), scaling, variation
- Energy, Delay, Area implications and tradeoffs for MOS circuits
- Clocking, latches, flip-flops (setup, hold, clock skew)
- Other gate models (ratioed, pre/post-charge)
- RC Wire delay and Elmore delay (fanout, transistor sizing)
- Wire Effects (buffering, capacitive coupling/crosstalk)
- RAM design
- Noise: inductive coupling, ground bounce, ionizing particles,
thermal noise
- Transmission lines
- High speed chip-to-chip signaling
- Energy and entropy
See Fall
2016 course calendar for day-by-day calendar with assignments.
Text
- Jan M. Rabaey, Anantha Chandrakasan, and Borivoje Nikolic. Digital Integrated Circuits, A Design Perspective, 2nd edition, Prentice
Hall, 2003.
- Errata for text
Grading
Grading is based on weekly assignments and a longer end-of-term assignment.
- Weekly Assignments [25%]
- Projects [30%]
- Midterms [20%]
- Final [25%]
Projects: Two two-week design/optimization projects: (1)
transistor design and optimization for logic/gates and (2) memory design.
Policies
Homework Turnin
Homework will be due on Wednesdays before the start of class. Assignments can be turned in online via Canvas or in class. Hand written assignments will be accepted, but when specified computer generated figures, graphs and results must be submitted. Homeworks must be legible and all work should be shown. Illegible submissions will not be graded.
Late Assignments
Late assignments will not be accepted or graded. For extenuating circumstances, contact the instructor prior to the due date.
If assignments or exams fall due on a religious holiday, please make arrangements
with the instructor to accommodate before the posted due date.
Absentees
Use the Penn Course Absence Report (CAR) in Penn-in-Touch to report
absences.
Grade Adjustment
Regrade requests must be submitted to the TA no later than 1 week after the assignment is returned to the students. A cover sheet detailing the disrepency should be attached to the original homework, and the TA reserves the right to regrade the entire assignment. Students are responsible for checking posted grades in a timely manner.
Collaboration
You may help each other understand how to use the CETS computers and course
CAD tools.
Each student is expected to do his/her own work -- including developing the
details, drawing circuits, performing simulations, and writing the
solutions. For the homeworks and projects, you are free to
discuss basic strategies and approaches with your fellow classmates or
others, but detail designs, implementations, analysis, and writeups should
always be the work of the individual. If you get advice or insights from
others that influenced your work in any way, please acknowledge this in
your writeups.
In general, you are expected to abide by Penn's
Code of Academic Integrity. If there is any uncertainty, please ask.
Previous Offerings