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Functional Pearl: Short and Mechanized Logical Relation for
Dependent Type Theories
YIYUN LIU, University of Pennsylvania, USA
STEPHANIE WEIRICH, University of Pennsylvania, USA

Proof by logical relations is a powerful technique that has been used to derivemetatheoretic properties of type
systems, such as consistency and parametricity. While there exists a plethora of introductory materials about
logical relation in the context of simply typed or polymorphic lambda calculus, a streamlined presentation
of proof by logical relation for a dependently typed language is lacking. In this paper, we present a short
consistency proof for a dependently typed language that contains a rich set of features, including a countable
universe hierarchy, booleans, and an intensional identity type. We show that the logical relation can be easily
extended to prove the existence of 𝛽𝜂-normal forms. We have fully mechanized the consistency proof using
the Coq proof assistant in under 1000 lines of code, with 500 lines of additional code for the 𝛽𝜂-normal form
extension.
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1 INTRODUCTION
This paper presents a short and mechanized proof of logical consistency for 𝜆Π , a dependent type
theory with a full predicative universe hierarchy, large eliminations, an intensional identity type,
a boolean base type, and dependent elimination forms.

Our goal with this work is to demonstrate the application of the proof technique of syntactic
logical relations to dependent type theories. Logical relations are a powerful proof technique, and
have been used to show diverse properties such as strong normalization [Geuvers 1994; Girard
et al. 1989], contextual equivalence [Constable et al. 1986], representation independence [Pitts
1998], noninterference [Bowman and Ahmed 2015], compiler correctness [Benton and Hur 2009;
Perconti and Ahmed 2014], and the decidability of conversion algorithms [Abel 2013; Abel and
Scherer 2012; Harper and Pfenning 2005].

However, tutorial material on syntactic logical relations [Harper 2016, 2022a,b; Pierce 2002, 2004;
Skorstengaard 2019] is primarily focused on systems with simple or polymorphic types. In that
context, syntactic logical relations can be defined as simple recursive functions over the structure
of types, or (in the case of recursive types) defined over the evaluation steps of the computation. Yet,
neither of these techniques can be used to define a logical relation in the context of a predicative
dependent type theory, so a novice researcher might be excused for thinking that proofs that use
logical relations are not applicable for such languages.
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2 Yiyun Liu and Stephanie Weirich

But this is not the case. Recent authors have developed tour-de-force mechanizations for the
metatheory of modern proof assistants [Abel et al. 2017; Adjedj et al. 2024; Anand and Rahli 2014;
Wieczorek and Biernacki 2018], and have relied on logical relations defined as part of their devel-
opments. However, because these proofs show diverse results about real systems and algorithms,
these developments range in size from 10,000 to 300,000 lines of code. As a result, their uses of
logical relations are difficult to isolate from the surrounding contexts and inaccessible to casual
readers.

Thus, our paper provides a gentle and accessible introduction to a powerful technique for de-
pendent type theories. To promote the use of machine-assisted reasoning, our development is
accompanied by a short mechanized proof script, of less than 1000 lines of code, developed using
the Coq proof assistant [Coq Development Team 2019].

We have streamlined our proof through a number of means: the careful selection of the features
that we include in the object type system and the results that we prove about it, in addition to
the judicious use of automation. Our language is small, but includes enough to be illustrative. For
example, we eschew inductive datatypes or W-types, but we do include propositional equality and
booleans to capture the challenges presented by indexed types and dependent pattern matching.
We do not show the decidability of type checking, nor do we develop a PER semantics, but we
prove logical consistency, which states that empty types are not inhabited in an empty context,
and demonstrate how our consistency proof can be extended (at a moderate cost of 500 lines of
code) to show the existence of 𝛽𝜂-normal forms for well-typed open and closed terms.We include a
full predicative universe hierarchy and type-level computation to demonstrate the logical strength
of the approach.

More concretely, our paper makes the following contributions.

• In Section 2, we introduce 𝜆Π , the dependent type theory of interest. A key design choice
that impacts our proofs is the use of an untyped conversion rule, inspired by Pure Type Sys-
tems [Barendregt 1991], and specified through parallel reduction [Barendregt 1993; Taka-
hashi 1995].

• In Section 3, we formulate logical consistency for 𝜆Π , the property of interest, to motivate
a logical relation. We define the relation first inductively and then later prove that it is a
partial function. Based on this definition, we define semantic typing and prove the funda-
mental theorem, from which consistency follows as a corollary (Section 4). Thanks to the
design of 𝜆Π , our proof showcases the special treatment required to model many of the
most common features of dependent type theories, thus making our proof applicable to a
broad range of type systems.

• We strengthen our logical relation to prove the existence of 𝛽-normal forms (Section 5)
and 𝛽𝜂-normal forms (Section 6) for well-typed open terms. The modifications made to our
initial logical relation are small and closely mirror the necessary extensions for a simply-
typed language.We use this part to show that oncewe have established the base techniques,
we can port ideas from proofs about simpler languages to the dependently typed setting.

• We mechanize all our proofs using the Coq proof assistant, with 957 lines of code for the
consistency proof and amoderate increase to 1568 lines of code for the normalization proof.
We discuss the specifics related to our choice of Coq as our metatheory, including our use
of off-the-shelf semantic engineering infrastructure and automation tools, in Section 7. Our
proof scripts, with comments, are available to reviewers as supplementary materials.

• We compare our work to existing proofs by logical relations and other proof techniques
for proving consistency and normalization. We provide an overview of this prior work
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Functional Pearl: Short and Mechanized Logical Relation for Dependent Type Theories 3

(Section 8) and also give an in-depth explanation on how various design decisions affect
the size of our proof and its extensibility to additional features (Section 9).

The result of our work is an artifact that an interested researcher can navigate and understand.
We accompany this short mechanized proof with an informal description, presented here using set-
theoretic notation and terminology so that it is accessible to readers with a general mathematical
background. That said, our explanations do not stray too far away from our proof scripts. We
link each lemma directly to its counterpart in the proof script, anticipating that readers may wish
to see how these results may be expressed and verified in a proof assistant. The typeset proofs
purposefully follow the mechanized proofs closely while avoiding, as much as possible, artifacts
specific to Coq.

Not only does this close connection aid readers that wish to, like us, adopt proof assistants for
their day-to-day use, but we also find that this precision is important for conveying the proof
technique itself. Unlike properties that are derivable through syntactic means, proofs by logical
relations make demands on the strength of the metalogic in which they are expressed. An infor-
mal proof that attempts to be agnostic or ambiguous about the underlying metatheory requires
substantial effort from the reader to understand whether it is definable in a given ambient logic.

2 SPECIFICATION OF A DEPENDENT TYPE THEORY

Terms
a, b, c, p,A, B ::= Seti | x | Void universes, variables, empty type

| Πx :A.B | 𝜆x .a | a b function types, abstractions, applications
| a ∼ b ∈ A | refl | J c a b p equality types, reflexivity proof, J eliminator
| Bool | true | false boolean type, true, false
| if a then b0 else b1 conditional expression

Substitutions Typing Contexts
𝜌 ∈ Var → Term Γ ::= · | Γ, x : A

Fig. 1. Syntax of 𝜆Π

In this section, we present the dependent type theory, 𝜆Π , whose logical consistency will be
proven in Section 4.

The syntax of 𝜆Π can be found in Figure 1. As a dependent type theory, terms and types are
collapsed into the same syntactic category. The type Seti represent a universe type, annotated by
its universe level, a natural number 𝑖 . Abstractions 𝜆x .a and dependent function types Πx :A.B are
binding forms for the variable 𝑥 in the body of the function and codomain of the function type. 1
We use the notation A → B when the output type B is not dependent on the input variable. For
simplicity, we omit the type annotations in the abstraction forms. We discuss how the inclusion of
type annotations can affect our development in Section 6, where we extend our consistency result
to the existence of 𝛽𝜂-normal forms. We include in 𝜆Π the intensional identity type a ∼ b ∈ A
whose proofs can be eliminated by the J-eliminator J c a b p, where p is an equality proof between
a and b, and c is the term whose type is to be casted. Finally, 𝜆Π includes booleans, with standard
syntax.
1 In the exposition in this paper, binding forms are equal up to 𝛼-conversion and we adopt the Barendregt Variable Con-
vention [Barendregt 1985], which lets us assume that bound variables are distinct. In some places, we are informal about
the treatment of variables and substitution; our mechanized proofs make these notions precise by using de Bruijn in-
dices [de Bruijn 1994].
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4 Yiyun Liu and Stephanie Weirich

Our reduction and typing relations are defined in terms of simultaneous substitutions, 𝜌 , which
are mappings from variables to terms. We use id as the identity substitution. The extension oper-
ation, (𝜌 [x ↦→ a]), updates the substitution 𝜌 to map the variable x to a rather than 𝜌 (x).

The substitution operator, which takes the form a{𝜌}, traverses the syntax of a and replaces
each variable x with the term 𝜌 (x). When traversing under binders (e.g. in the (𝜆x .a){𝜌} case),
it must be the case that 𝜌 maps the bound variable to itself and that the bound variable does not
appear freely in the application of the substitution to any other variable.

The substitution operator is referred to as simultaneous substitution as it substitutes for all
variables at once. It is possible to recover single substitution by composing the extension operator
and the identity substitution: a{b/x} := a{id[x ↦→ b]}.

When reasoning about logical relations, we find it more convenient to formulate simultaneous
substitution directly rather than recovering it from single substitution. In particular, this shows
up in the definition of semantic typing in Section 4, which relies on simultaneous substitution.

2.1 Definitional equality via parallel reduction

a ⇒ b (Parallel Reduction)
P-AppAbs
a0 ⇒ a1 b0 ⇒ b1

(𝜆x .a0) b0 ⇒ a1{b1/x}

P-IfTRue
b0 ⇒ b1

if true then b0 else c0 ⇒ b1

P-IfFalse
c0 ⇒ c1

if false then b0 else c0 ⇒ c1

P-JRefl
c0 ⇒ c1

J c0 a0 b0 refl ⇒ c1

Fig. 2. Parallel reduction (𝛽-rules only)

Before we specify the typing rules, we first specify the equational theory used in the conversion
rule (rule T-Conv in Figure 3). The equivalence relation used in this rule is often referred to defi-
nitional equality in dependent type theories because it defines the equivalence that the syntactic
type system works up to.

In 𝜆Π , we use a relation called convertibility for definitional equality. Two terms are convertible,
if they reduce to a common form. The reduction that we use is called parallel reduction, written
a ⇒ b. The notation a ⇒∗ b indicates the transitive closure of parallel reduction.

Definition 2.1 (Convertibility). Two terms a0 and a1 are convertible, written a0 ⇔ a1, if there
exists some term b such that a0 ⇒∗ b and a1 ⇒∗ b.

The definition of the parallel reduction relation, appears in Figure 2. (For brevity, the reflexivity
and congruence rules of this relation are omitted from this figure).

We prove, through standard techniques Takahashi [1995]; Wadler et al. [2022], the following
properties of parallel reduction.

Lemma 2.2 (PaR Refl2). For all terms a, a ⇒ a.

Lemma 2.3 (PaR cong3). If a0 ⇒ a1 and b0 ⇒ b1, then a0{b0/x} ⇒ a1{b1/x}.

CoRollaRy 2.4 (PaR subst4). If a0 ⇒ a1, then a0{b/x} ⇒ a1{b/x} for arbitrary b.
2 join.v:Par_refl 3 join.v:par_cong 4 join.v:par_subst
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Functional Pearl: Short and Mechanized Logical Relation for Dependent Type Theories 5

Lemma 2.5 (PaR diamond5). If a ⇒ b0 and a ⇒ b1, then there exists some term c such that b0 ⇒ c
and b1 ⇒ c.

Convertibility is an equivalence relation. The key step in proving transitivity is showing the
diamond property for parallel reduction.

Lemma 2.6 (ConveRtibility Refl6). For all terms a, a ⇔ a.

Lemma 2.7 (ConveRtibility sym7). If a ⇔ b, then b ⇔ a.

Lemma 2.8 (ConveRtibility tRans8). If a0 ⇔ a1 and a1 ⇔ a2, then a0 ⇔ a2.

Theconvertibility relation that we use for conversion in 𝜆Π is unusual in that it is directly defined
via parallel reduction, instead of using the related notion of 𝛽-equivalence [Barendregt 1991; Co-
quand and Paulin 1990]. This choice does not change the language definition; a detailed argument
of the equivalence between a ⇔ b and untyped 𝛽-equivalence can be found in Barendregt [1993]
and Takahashi [1995]. However, this choice simplifies later proofs, as we discuss in Section 9.

Our definition of equality is untyped: the judgement does not require the two terms to type
check and have the same type. The use of an untyped relation for conversion is similar to Baren-
dregt’s Pure Type Systems [Barendregt 1991] and differs fromMLTT [Martin-Löf 1975], where the
judgmental equality takes the form Γ ⊢ 𝑎 ≡ 𝑏 : 𝐴. By working with an untyped judgement, we can
establish its properties independently from the type system and the logical relation, using well-
established syntactic approaches. Siles and Herbelin [2012] show the equivalence of Barendregt’s
Pure Type System, which employs untyped equality, and its variant that uses typed judgmental
equality. This assures us that we do not lose generality working with a system with untyped con-
version. We compare this definition with type-directed approaches to equality in Section 9.

2.2 Syntactic Typing
Figure 3 gives the full typing rules for 𝜆Π .The premises wrapped in gray boxes can be shown to be
admissible syntactically, though some of them are required to strengthen the inductive hypothesis
of the fundamental theorem.

The typing rules of 𝜆Π are standard for dependent type theories. The variable rule, rule T-VaR,
uses the auxiliary relation x : A ∈ Γ, that holds when a variable declaration is found in the typing
context. The typing of universes ensures that each one belongs to the next higher level. Rule T-Pi
ensures predicative quantification by requiring that all parts of the type be typeable at the same
universe level. Rule T-Abs ensures that all functions have well-formed dependent types. In an
application (rule T-App) the argument is substituted for the variable in the result type.

Rule T-Conv uses the convertibility relation from earlier as our equality judgment for type
conversion.

The elimination form for booleans, rule T-If, demonstrates dependent pattern matching. The
result type of this expression, A{a/x}, is composed of some motive A, a type where its single free
variable has been replaced with the condition of the if expression. When typing the true branch,
this substitution replaces the variable by true, and similarly for the false branch. As a result, the
type system communicates the information gained from the test to each of the branches of the
expression.

A similar sort of dependent pattern matching occurs when eliminating identity types. Such
types are checked for well-formedness with rule T-Eq and introduced by rule T-Refl. In rule T-J,
the elimination form, the subterm 𝑝 is a proof of an equality between a and b. The subterm c is
the body of the elimination form. In this rule, B is the motive and has two free variables. When
5 join.v:par_confluent 6 join.v:Coherent_reflexive 7 join.v:Coherent_symmetric
8 join.v:Coherent_transitive
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6 Yiyun Liu and Stephanie Weirich

⊢ Γ (Context Well-Formedness)

Ctx-Empty

⊢ ·

Ctx-Cons
⊢ Γ Γ ⊢ A : Seti x ∉ dom(Γ)

⊢ Γ, x : A

Γ ⊢ a : A (Typing)

T-VaR
⊢ Γ x : A ∈ Γ

Γ ⊢ x : A

T-Set
⊢ Γ

Γ ⊢ Seti : Set(1+i)

T-Pi
Γ ⊢ A : Seti

Γ, x : A ⊢ B : Seti

Γ ⊢ Πx :A.B : Seti

T-Abs
Γ ⊢ Πx :A.B : Seti
Γ, x : A ⊢ b : B

Γ ⊢ 𝜆x .b : Πx :A.B

T-App
Γ ⊢ b : Πx :A.B

Γ ⊢ a : A

Γ ⊢ b a : B{a/x}

T-Conv
Γ ⊢ a : A

Γ ⊢ B : Seti A ⇔ B

Γ ⊢ a : B

T-Void
⊢ Γ

Γ ⊢ Void : Seti

T-Bool
⊢ Γ

Γ ⊢ Bool : Seti

T-TRue
⊢ Γ

Γ ⊢ true : Bool

T-False
⊢ Γ

Γ ⊢ false : Bool
T-If
Γ, x : Bool ⊢ A : Seti Γ ⊢ a : Bool Γ ⊢ b0 : A{true/x} Γ ⊢ b1 : A{false/x}

Γ ⊢ if a then b0 else b1 : A{a/x}
T-Eq
Γ ⊢ A : Setj Γ ⊢ a : A Γ ⊢ b : A

Γ ⊢ a ∼ b ∈ A : Seti

T-Refl
⊢ Γ Γ ⊢ a : A

Γ ⊢ refl : a ∼ a ∈ A
T-J
Γ ⊢ a : A Γ ⊢ b : A Γ ⊢ A : Setj Γ ⊢ p : a ∼ b ∈ A

Γ, x : A, y : x ∼ a ∈ A ⊢ B : Seti Γ ⊢ c : B{a, refl/x, y}
Γ ⊢ J c a b p : B{b, p/x, y}

Fig. 3. Syntactic typing for 𝜆Π

checking c, the substitution for these variables changes from b to a and from p to refl, witnessing
the information gained through dependent pattern matching.

The universe hierarchy and the boolean base type gives 𝜆Π the ability to compute a type using
a term as input, a feature commonly referred to as large elimination. For example, we can type
check the function 𝜆x .if x then Bool else Void, which returns either Bool or Void depending on
whether its input is true or false.

3 LOGICAL RELATION
Before we define our logical relation, we first formally specify the consistency property that we
want to prove.

TheoRem 3.1 (Logical Consistency). The judgment · ⊢ a : Void is not derivable.

, Vol. 1, No. 1, Article . Publication date: July 2024.



295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Functional Pearl: Short and Mechanized Logical Relation for Dependent Type Theories 7

The property can be formulated in a simply typed language, where Void is similarly defined as
a type that has no term. A related property, referred to as the termination property (for closed
terms), is commonly used in introductory materials such as Skorstengaard [2019], Pierce [2002],
and Harper [2022a] to motivate the need for a logical relation.

A naive attempt to proving Theorem 3.1 by induction on the derivation · ⊢ a : Void would
succeed at almost all cases except for rule T-App. In the application case, we are given · ⊢ b : Πx :
A.B and · ⊢ a : A, and the equality that B{a/x} = Void. Our goal is to show that · ⊢ b a : Void is
not possible. However, note that there is nothing we know of b or a from the induction hypothesis
because neither Πx :A.B nor A is equal to Void. We have no way of deriving a contradiction from
· ⊢ b a : Void. The takeaway from this failed attempt is that, in order to derive the consistency,
we need to know something about types other than Void. From a pragmatic point of view, proof
by logical relation can be seen as a sophisticated way of strengthening the induction hypothesis.
From the strengthened property, the fundamental theorem, we will be able to derive consistency
as a corollary.

The complexity of applying proof by logical relation to dependent types stems from the fact
that the logical relation is much harder to define. In simply typed languages, the logical relation
is defined as a recursive function over the type A. In dependent types, the type A can take the
form (𝜆x .x) Bool. To assign meaning to this type, we need to first reduce it to Bool. However,
we cannot write a function that performs the reduction because we do not know the termination
of well-typed terms a priori. As a result, we define the logical relation as an inductively defined
relation, reminiscent of how we specify the reduction graph of a partial function; the functionality
of the relation can later be recovered in Lemma 3.7.

3.1 Definition of the Logical Relation

⟦A⟧iI ↘ S (Logical Relation)

I-Set
j < i

⟦Setj⟧iI ↘ I (j)

I-Void

⟦Void⟧iI ↘ ∅

I-Bool

⟦Bool⟧iI ↘ {a | a ⇒∗ true ∨ a ⇒∗ false}

I-Eq

⟦a ∼ b ∈ A⟧iI ↘ {p | p ⇒∗ refl ∧ a ⇔ b}

I-Red
A ⇒ B ⟦B⟧iI ↘ S

⟦A⟧iI ↘ S

I-Pi
⟦A⟧iI ↘ S F ∈ S → P(Term) ∀a, if a ∈ S, then ⟦B{a/x}⟧iI ↘ F (a)

⟦Πx :A.B⟧iI ↘ {b | ∀a, if a ∈ S, then b a ∈ F (a)}

Fig. 4. Logical relation for 𝜆Π

The logical relation for 𝜆Π , which takes the form ⟦A⟧iI ↘ S, is defined as an inductively generated
relation (Figure 4). Metavariables A and i stand for terms and natural numbers respectively, as
introduced earlier in Figure 1. The metavariables I and S are sets with the following signatures.

I ∈ {j | j < i} → P(Term) S ∈ P(Term)
The notation P(Term) denotes the powerset of the set of 𝜆Π terms. The function I is a family of
sets of terms indexed by natural numbers strictly less than the parameter i, which represents the
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8 Yiyun Liu and Stephanie Weirich

current universe level. In rule I-Set, the function I is used to define the meaning of universes
that are strictly smaller than the current level i. The restriction j < i in rule I-Set ensures the
predicativity of the system.

We tie the knot and obtain an interpretation for all universe levels below.The judgment ⟦A⟧i ↘
S reads that the type A is a level-i type semantically inhabited by terms from the set S.

Definition 3.2 (Logical relation for all universe levels). Define ⟦A⟧i ↘ S recursively through the
well-foundedness of the < relation on natural numbers.

⟦A⟧i ↘ S := ⟦A⟧iI ↘ S,where I (j) := {A | ∃S, ⟦A⟧j ↘ S} for j < i

Definition 3.2 explains how the j < i constraint in rule I-Set makes our system predicative;
the interpretation of the i𝑡ℎ universe is only dependent on universes strictly lower than i, which
have already been defined. This restriction ensures that that the relation is well-defined: without
it the definition of ⟦A⟧i ↘ S would not be well-founded; ⟦A⟧iI ↘ S would call I on universe levels
greater than or equal to i, which are yet to be defined.

By unfolding Definition 3.2, we can show that the same introduction rules for ⟦A⟧iI ↘ S are
admissible for ⟦A⟧i ↘ S. For example, we can prove the following derived rules:

IR-Void

⟦Void⟧i ↘ ∅

IR-Set
j < i

⟦Setj⟧i ↘ {A | ∃S, ⟦A⟧j ↘ S}
In most informal presentations, instead of defining the logical relation in two steps as we have

shown above, the rules for ⟦A⟧i ↘ S are given directly, with the implicit understanding that the
relation is an inductive definition nested inside a recursive function over the universe level i. We
choose the more explicit definition not only because it is directly definable in proof assistants that
lack induction-recursion, but also because it makes clear the induction principle we are allowed
to use when reasoning about ⟦A⟧i ↘ S.

We next take a closer look at the inductive relation ⟦A⟧iI ↘ S, defined in Figure 4. Rules I-
Void and I-Bool capture terms that behave like the inhabitants of the Void and Bool types under
an empty context. For example, the Void type should not have any inhabitants under the empty
context, where as the Bool type only contains terms that reduce to true or false. Note that the
characterization of Bool (and other inhabited types) in our logical relation does not always corre-
spond to well-typed or even closed terms. For example, the term if false then Void true else true
is ill-typed under the empty context but still belongs to the set {a | a ⇒∗ true∨ a ⇒∗ false} since
it evaluates to true. The independence of syntactic typing in our logical relation allows our seman-
tic typing definition in Section 4 to be meaningful on its own. Furthermore, not having to embed
scoping information into the logical relation avoids extra bookkeeping and the need for a Kripke-
style logical relation when we extend our logical relation to prove the existence of 𝛽-normal forms
(Section 5).

Rule I-Eq says that an equality type a ∼ b ∈ A corresponds to the set of terms that reduce to refl
when a ⇔ b also holds and otherwise corresponds to the empty set. Conditions like a ⇔ b are
typically required for indexed types, of which equality types are an instance. Rule I-Red enables
us to reduce types in order to assign meanings. Recall the type expression (𝜆x .x) Bool. Rule I-Red
says that to know that ⟦(𝜆x .x) Bool⟧iI ↘ S for some S, it suffices to show that ⟦Bool⟧iI ↘ S

since (𝜆x .x) Bool ⇒ Bool. The derivation that ⟦(𝜆x .x) Bool⟧iI ↘ {a | a ⇒∗ true ∨ a ⇒∗ false}
therefore follows by composing rule I-Red and rule I-Bool.

Rule I-Pi is the most complex rule in our logical relation. Instead of explaining it directly, we
first consider the following simplified version, rule I-PiAlt, that follows directly from rule I-Pi.
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Functional Pearl: Short and Mechanized Logical Relation for Dependent Type Theories 9

I-PiAlt
⟦A⟧iI ↘ S

∀a, if a ∈ S, then ∃S0, ⟦B{a/x}⟧iI ↘ S0

⟦Πx :A.B⟧iI ↘ {b | ∀a, if a ∈ S, then ∀S0, if ⟦B{a/x}⟧iI ↘ S0, then b a ∈ S0}
Rule I-PiAlt directly captures the meaning of a well-behaved dependent function type. The pre-
condition of the rule says that the function type Πx :A.B has an interpretation if its input type A
can be interpreted as some set S, and for all terms a ∈ S, the type B{a/x}, obtained by substituting
a into the output type B, has some semantic interpretation S0. In its conclusion, the interpretation
of Πx : A.B is the set of terms b, such that for all a ∈ S, where S is an interpretation of A, the
application form b a belongs to all possible interpretations of B{a/x} (the pre-condition ensures
at least one interpretation exists for each B{a/x} where a ∈ S).

Lemma 3.3 (I-PiAlt deRivability). Rule I-PiAlt is derivable from rule I-Pi.

PRoof. The precondition∀a, if a ∈ S, then ∃S0, ⟦B{a/x}⟧iI ↘ S0 from rule I-PiAlt immediately
induces a function F ∈ S → P(Term) such that ∀a, if a ∈ S, then ⟦B{a/x}⟧iI ↘ F (a), which is
exactly what we need to apply rule I-Pi. □

In fact, while rule I-PiAlt is an instantiation of rule I-Pi, these two rules are equivalent in the
sense that every derivation involving rule I-Pi can be systematically replaced by rule I-PiAlt. This
equivalence follows directly from the fact that the logical relation is a partial function, a result
we will show in Lemma 3.7. The preconditions of rule I-Pi, when combined with the functionality
of the logical relation, uniquely determine the function F ∈ S → P(Term) to be the functional
relation {(a, S0) | if a ∈ S, then ⟦B{a/x}⟧iI ↘ S0}. This result is formally shown through the
improved inversion lemma for function types (Lemma 3.8).

Unfortunately, we cannot define the function case of our logical relation directly using rule I-
PiAlt since the occurrence of ⟦B{a/x}⟧iI ↘ S0 in its conclusion not only violates the syntactic
strict positivity constraint required in proof assistants, but is genuinely non-monotone when we
treat the inductive definition as the fixed point of an endofunction over the domain of relations.
Intuitively, the failure of monotonicity stems from the fact that the witness picked in the precon-
dition is not necessarily the same witness being referred to in the post condition as the relation
grows, whereas the function F in rule I-Pi “fixes” the witnesses S0 as F (a) for each a ∈ S, thus pre-
venting the set of witnesses from growing. While it might be possible to restrict the domain with
additional constraints such as functionality and inversion properties to justify thewell-definedness
of our inductive relation with rule I-PiAlt, we opt for our current rule I-Pi that immediately pro-
duces a well-defined inductive relation and usable induction principle. The slight disadvantage of
rule I-Pi is that we need to construct the function F each time we apply it, though this is mitigated
by the derivability of rule I-PiAlt and the alternative Π inversion principle (Lemma 3.8).

3.2 Properties about the Logical Relation
In the rest of this section, we develop the theory of our logical relation with the goal of showing
four key facts: irrelevance (Lemma 3.6), functionality (Lemma 3.7), cumulativity (Lemma 3.9), and
the backward closure property (Lemma 3.12). For the majority of the properties that we prove in
this section, we do not need any information about the parameterized function I . Each property
about ⟦A⟧i ↘ S follows as a corollary of a property about ⟦A⟧iI ↘ S with no or few assumptions
imposed on I . As a result, we usually state our lemmas in terms of ⟦A⟧iI ↘ S without duplicating
them in terms of ⟦A⟧i ↘ S.

First, we prove a family of simple properties, which we refer to as inversion principles for our
logical relation. Given ⟦A⟧iI ↘ S where A is in some head form such as Bool or Πx : A0 .B0, the
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10 Yiyun Liu and Stephanie Weirich

inversion lemma allows us to say something about the set S. Its proof is simple, but we sketch out
the case for functions to help readers confirm their understanding of rule I-Pi.

Lemma 3.4 (InveRsion of the logical Relation).
(1) 9 If ⟦Void⟧iI ↘ S, then S = ∅.
(2) 10 If ⟦Bool⟧iI ↘ S, then S = {a | a ⇒∗ true ∨ a ⇒∗ false}.
(3) 11 If ⟦a ∼ b ∈ A⟧iI ↘ S, then S = {p | p ⇒∗ refl ∧ a ⇔ b}.
(4) 12 If ⟦Πx :A.B⟧iI ↘ S1, then there exists S, F such that:

• ⟦A⟧iI ↘ S
• F ∈ S → P(Term)
• ∀a, if a ∈ S, then ⟦B{a/x}⟧iI ↘ F (a)
• S1 = {b | ∀a, if a ∈ S, then b a ∈ F (a)}

(5) 13 If ⟦Setj⟧iI ↘ S, then j < i and S = I (j).
PRoof. As mentioned earlier, we only show the inversion property for the function type. We

start by inducting over the derivation of ⟦Πx : A.B⟧iI ↘ S. There are only two possible cases we
need to consider.

Rule I-Pi: Immediate.
Rule I-Red: We are given that ⟦Πx :A.B⟧iI ↘ S1. We know that there exists some A0 and B0

such that Πx :A.B ⇒ Πx :A0 .B0 and ⟦Πx :A0.B0⟧iI ↘ S1. From the induction hypothesis,
there exists S and F such that :
• ⟦A0⟧iI ↘ S
• F ∈ S → P(Term)
• ∀a, if a ∈ S, then ⟦B0{a/x}⟧iI ↘ F (a)
• S1 = {b | ∀a, if a ∈ S, then b a ∈ F (a)}

By inverting the derivation of Πx :A.B ⇒ Πx :A0.B0, we derive A ⇒ A0 and B ⇒ B0. By
Lemma 2.4, we have B{a/x} ⇒ B0{a/x} for all a. As a result, by rule I-Red, the same S and
F additionally satisfy the following properties.
• ⟦A⟧iI ↘ S

• ∀a, if a ∈ S, then ⟦B{a/x}⟧iI ↘ F (a)
These properties are exactly what we need to finish the proof.

□

Rule I-Red bakes into the logical relation the backward preservation property. That is, given
⟦A⟧iI ↘ S, if B ⇒∗ A, then ⟦B⟧iI ↘ S also holds. The following property shows that preservation
holds in the usual forward direction too.

Lemma 3.5 (FoRwaRd pReseRvation14). If ⟦A⟧iI ↘ S and A ⇒ B, then ⟦B⟧iI ↘ S.

PRoof. We carry out the proof by induction over the derivation of ⟦A⟧iI ↘ S.
The only interesting case is rule I-Red. Given that A ⇒ B0 and ⟦B0⟧iI ↘ S, we need to show

for all B1 such that A ⇒ B1, we have ⟦B1⟧iI ↘ S. By the diamond property of parallel reduction
(Lemma 2.5), there exists some term B such that B0 ⇒ B and B1 ⇒ B. By the induction hypothesis,
we deduce ⟦B⟧iI ↘ S from B0 ⇒ B and ⟦B0⟧iI ↘ S. By rule I-Red and B1 ⇒ B, we conclude that
⟦B⟧iI ↘ S.

The remaining cases all fall from induction hypotheses and basic properties about convertibility
and parallel reduction we have established in Section 2. □
9 semtyping.v:InterpExt_Void_inv 10 semtyping.v:InterpExt_Bool_inv
11 semtyping.v:InterpExt_Eq_inv 12 semtyping.v:InterpExt_Fun_inv 13 semtyping.v:InterpExt_Univ_inv
14 semtyping.v:InterpExt_preservation
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Functional Pearl: Short and Mechanized Logical Relation for Dependent Type Theories 11

FromLemma 3.5 and rule I-Red, we can easily derive the following corollary that two convertible
types can always interpret into the same set. We adopt the terminology from Adjedj et al. [2024]
and refer to this property as irrelevance.

CoRollaRy 3.6 (IRRelevance of logical Relation15). If ⟦A⟧iI ↘ S and A ⇔ B, then ⟦B⟧iI ↘ S.

Because the definition of our logical relation is an inductive relation, it is not immediately obvi-
ous why each type A can only uniquely correspond to one set S. The following lemma shows that
our logical relation is indeed functional.

Lemma 3.7 (Logical Relation is functional16). If ⟦A⟧iI ↘ S0 and ⟦A⟧iI ↘ S1, then S0 = S1.

PRoof. The proof proceeds by induction over the derivation of the first premise ⟦A⟧iI ↘ S0. All
cases that are not rule I-Red follow immediately from Lemma 3.4, the inversion properties.

For rule I-Red, we are given that there exists some B such that A ⇒ B and ⟦B⟧iI ↘ S0. Our
goal is to show that given ⟦A⟧iI ↘ S1 for some S1, we have S0 = S1. By the preservation property
(Lemma 3.5), we know that ⟦B⟧iI ↘ S1 since A ⇒ B. The statement S0 = S1 then immediately
follows from the induction hypothesis. □

Lemma 3.7 enables us to show the following improved inversion lemma for function typeswhose
statement is free of the relation F , analogous to the derivable rule I-PiAlt.

Lemma 3.8 (Pi InveRsion Alt17). Suppose ⟦Πx :A.B⟧iI ↘ S, then there exists some S0 such that
the following constraints hold:

• ⟦A⟧iI ↘ S0
• ∀a, if a ∈ S0, then ∃S1, ⟦B{a/x}⟧iI ↘ S1
• S = {b | ∀a, if a ∈ S0, then ∀S1, if ⟦B{a/x}⟧iI ↘ S1, then b a ∈ S1}

PRoof. Immediate from Lemmas 3.4 and 3.7. □

The next lemma shows that our logical relation satisfies cumulativity. That is, if a type has an
interpretation at a lower universe level, then we can obtain the same interpretation at a higher
universe level.

Lemma 3.9 (Logical Relation cumulativity18). If ⟦A⟧i0I ↘ S and i0 < i1, then ⟦A⟧i1I ↘ S.

PRoof. Trivial by structural induction over the derivation of ⟦A⟧i0I ↘ S. □

Note that in the statement of Lemma 3.9, we implicitly assume that I is defined on the set of
natural numbers less than i1.

CoRollaRy 3.10 (Logical Relation is functional with diffeRent levels19). If ⟦A⟧i0I ↘ S0
and ⟦A⟧i1I ↘ S1, then S0 = S1.

PRoof. Immediate from Lemmas 3.7 and 3.9. □

Definition 3.11 (Sets closed under expansion). We say that a set of terms S is closed under expan-
sion if given a ∈ S, then b ∈ S for all b ⇒ a.

The final property we want to show is that the output set S from the logical relation is closed
under expansion. Unlike the previous lemmas, we directly state the lemma in terms of ⟦A⟧i ↘ S

rather than ⟦A⟧iI ↘ S because we need to know something about I for this property to hold in the
rule I-Set case.
15 semtyping.v:InterpUnivN_Coherent 16 semtyping.v:InterpExt_deterministic
17 semtyping.v:InterpExt_Fun_inv_nopf 18 semtyping.v:InterpExt_cumulative
19 semtyping.v:InterpExt_deterministic'
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12 Yiyun Liu and Stephanie Weirich

Lemma 3.12 (InteRpReted sets aRe closed undeR expansion20). If ⟦A⟧i ↘ S, then the set S is
closed under expansion.

PRoof. By the definition of ⟦A⟧i ↘ S, we unfold ⟦A⟧i ↘ S by one step into ⟦A⟧iI ↘ S where
I (j) := {A | ∃S, ⟦A⟧j ↘ S}. We then proceed by induction over the derivation of ⟦A⟧iI ↘ S.

All cases are trivial except for the rule I-Set case, where we want to show that the set I (j) is
closed under expansion for all j < i. However, by the definition of I , we know that A ∈ I (j) if and
only if there exists some S such that ⟦A⟧jI ↘ S. By rule I-Red, we must also have B ∈ I (j) for all
B ⇒ A. □

4 SEMANTIC TYPING AND CONSISTENCY
In this section, we show that all closed, well-typed terms are contained within their type-indexed
sets. In other words, · ⊢ a : A implies ⟦A⟧i ↘ S and a ∈ S. This result gives us consistency
because we know that ⟦Void⟧i ↘ S is defined, and that S must be the empty set. Therefore, if
there were some closed, well-typed term of type Void, it would need to be a member of the empty
set, a contradiction.

To prove this result, we define a notion of semantic typing based on the logical relation we have
defined in Section 3 and prove the fundamental lemma, which states that syntactic typing implies
semantic typing. Semantic typing extends our logical relation from being a (type-indexed) family
of predicates on closed terms, to a type-indexed family of predicates on open terms.

The necessity of semantic typing as an extra layer of definition on top of the logic relation can
be understood in simply typed languages [Harper 2022a; Pierce 2002; Skorstengaard 2019]. In our
setting, attempting to show that · ⊢ a : A implies ⟦A⟧i ↘ S and a ∈ S through induction over
the derivation of · ⊢ a : A will fail in rule T-Abs, where the induction hypothesis is not helpful
since the body of the lambda term is typed under a non-empty context. Through the definition of
semantic typing, we can state a strengthened property that is actually provable.

Definition 4.1 (Semantic well-formed substitution21). Define 𝜌 ⊨ Γ when
∀x,A, i, and S, if x : A ∈ Γ and ⟦A{𝜌}⟧i ↘ S, then 𝜌 (x) ∈ S

The 𝜌 ⊨ Γ notation denotes the semantic well-formedness of a substitution 𝜌 with respect to a
context Γ. For every variable x with its associated typeA in the context, 𝜌 (x) is a term that inhabits
all possible interpretations of the type A{𝜌}. The ∀ quantifier in its definition might look excessive
since we know from Lemma 3.7 that each type can have at most one interpretation. However, since
𝜌 ⊨ Γ mostly appears in the position of a hypothesis, the ∀ statement is easy to instantiate and
makes our proofs slightly easier. The few cases where we need to prove 𝜌 ⊨ Γ are handled by the
following two structural properties, the second of which depends on Lemma 3.7.

Lemma 4.2 (Well-foRmed 𝜌 empty22). 𝜌 ⊨ Γ whenever Γ is the empty context.

Lemma 4.3 (Well-foRmed 𝜌 cons23). If ⟦A⟧i ↘ S, a ∈ S, and 𝜌 ⊨ Γ, then 𝜌 [x ↦→ a] ⊨ Γ, x : A.

We next define semantic well-typedness.

Definition 4.4 (Semantic typing24). Define Γ ⊨ a : A when
∀𝜌, if 𝜌 ⊨ Γ then there exists some j and S such that ⟦A{𝜌}⟧j ↘ S and a{𝜌} ∈ S

This definition says the term a can be semantically typed A under the context Γ if for all sub-
stitutions 𝜌 such that 𝜌 ⊨ Γ, the type A{𝜌} can be interpreted as the set S, and a{𝜌} ∈ S. Our
20 semtyping.v:InterpUnivN_back_clos 21 soundness.v:𝜌_ok 22 soundness.v:𝜌_ok_nil
23 soundness.v:𝜌_ok_cons 24 soundness.v:SemWt
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definition of semantic well-typedness is standard, though dependent types add a small twist that
we apply the 𝜌 to A and require that A{𝜌} has some interpretation.

Finally, we define semantic well-formedness for contexts, analogous to the relation ⊢ Γ.

Definition 4.5 (Semantic context well-formedness25). Define ⊨ Γ as follows.
∀x : A ∈ Γ, there exists some 𝑖 such that Γ ⊨ A : Seti

Recall that ⊢ Γ is defined inductively in terms of the syntactic typing judgment. We take a
different approach here with its semantic counterpart ⊨ Γ. The definition of ⊨ Γ is not telescopic:
with ⊢ Γ, a variable appearing earlier in the context is well-scoped under a truncated context,
whereas with ⊨ Γ, the types are only required to be semantically well-formed with respect to the
full context, regardless of their position in Γ. Our definition of ⊨ Γ could be strengthened, though
the simpler definition is sufficient for showing the fundamental lemma.

We can recover the structural rules for ⊨ Γ as lemmas.

Lemma 4.6 (Semantic context well-foRmedness empty26). ⊨ Γ holds when Γ is empty.

Lemma 4.7 (Semantic context well-foRmedness cons27). If ⊨ Γ and Γ ⊨ A : Seti, then ⊨ Γ, x :
A.

The following lemma makes the statement Γ ⊨ A : Seti easier to work with.

Lemma 4.8 (Set InveRsion28). The following two statements are equivalent:
• Γ ⊨ A : Seti
• ∀ 𝜌 , if 𝜌 ⊨ Γ, then there exists S such that ⟦(A{𝜌})⟧i ↘ S

PRoof. The forward direction is immediate by Lemma 3.4. We now consider the backward di-
rection and show that Γ ⊨ A : Seti given the second bullet.

Suppose 𝜌 ⊨ Γ, thenwe know that there exists some S such that ⟦(A{𝜌})⟧i ↘ S. By the definition
of semantic typing, it suffices to show that there exists some j and S0 such that ⟦Seti⟧j ↘ S0 and
A{𝜌} ∈ S0. Pick 1 + i for j and {A | ∃S, ⟦A⟧i ↘ S} for S0 and it is trivial to verify the conditions
hold. □

Next, we show some non-trivial cases of the fundamental theorem as top-level lemmas. For
example, we can define the semantic analogue to the syntactic typing rule for variables (rule T-
VaR).

Lemma 4.9 (ST-VaR). If ⊨ Γ and x : A ∈ Γ, then Γ ⊨ x : A.

PRoof. Suppose 𝜌 ⊨ Γ. By the definition of semantic typing, we need to show that there exists
some i and S such that

• ⟦A{𝜌}⟧i ↘ S
• 𝜌 (x) ∈ S

By the definition of semantic context well-formedness, we deduce from ⊨ Γ and x : A ∈ Γ that
there exists some universe level i such that Γ ⊨ A : Seti. By the equivalence from Lemma 4.8, there
exists S such that ⟦A{𝜌}⟧i ↘ S. However, by the definition of 𝜌 ⊨ Γ, we know that 𝜌 (x) ∈ S,
which is exactly what we need for the conclusion. □

Lemma 4.10 (ST-Set). If i < j, then Γ ⊨ Seti : Setj .

PRoof. Immediate by Lemma 4.8 and rule IR-Set. □
25 soundness.v:SemWff 26 soundness.v:SemWff_nil 27 soundness.v:SemWff_cons
28 soundness.v:SemWt_Univ
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14 Yiyun Liu and Stephanie Weirich

Lemma 4.11 (ST-Pi). If Γ ⊨ A : Seti and Γ, x : A ⊨ B : Seti, then Γ ⊨ Πx :A.B : Seti.

PRoof. Applying Lemma 4.8 to the conclusion, it now suffices to show that given 𝜌 ⊨ Γ, there
exists some S such that ⟦(Πx : A.B){𝜌}⟧i ↘ S. From Lemma 4.8 and Γ ⊨ A : Seti, we know that
there exists some set S0 such that ⟦A{𝜌}⟧i ↘ S0. From Γ, x : A ⊨ B : Seti, we know that there must
exist S such that ⟦B{𝜌 [x ↦→ a]}⟧i ↘ S for every a ∈ S0. The conclusion immediately follows from
the admissible rule I-PiAlt. □

Lemma 4.12 (ST-Abs). If Γ ⊨ Πx :A.B : Seti and Γ, x : A ⊨ b : B, then Γ ⊨ 𝜆x .b : Πx :A.B.

PRoof. By unfolding the definition of Γ ⊨ 𝜆x .b : Πx : A.B, we need to show that given some
𝜌 ⊨ Γ, there exists some i and S such that ⟦(Πx :A.B){𝜌}⟧i ↘ S and (𝜆x .b){𝜌} ∈ S.

By Lemma 4.8 and the premise Γ ⊨ Πx : A.B : Seti, there exists some set S such that ⟦(Πx :
A.B){𝜌}⟧i ↘ S. It now suffices to show that (𝜆x .b){𝜌} ∈ S. By Lemma 3.8, the alternative inver-
sion principle for rule I-Pi, there exists some S0 such that all following conditions hold:

• ⟦A{𝜌}⟧i ↘ S0
• ∀a, if a ∈ S0, then ∃S1, ⟦B{𝜌 [x ↦→ a]}⟧i ↘ S1
• S = {b | ∀a, if a ∈ S0, then ∀S1, if ⟦B{𝜌 [x ↦→ a]}⟧i ↘ S1, then b a ∈ S1}

To show that (𝜆x .b){𝜌} ∈ S, we need to prove that given a ∈ S0, ⟦B{𝜌 [x ↦→ a]}⟧iI ↘ S1, we
have (𝜆x .b){𝜌} a ∈ S1. By Lemma 3.12, the set S1 is closed under expansion. Since (𝜆x .b){𝜌} a ⇒
b{𝜌 [x ↦→ a]}, it suffices to show that b{𝜌 [x ↦→ a]} ∈ S1, which is immediate from Γ, x : A ⊨ b : B
and the fact that the logical relation is deterministic and cumulative (Lemma 3.10). □

Lemma 4.13 (ST-App). If Γ ⊨ b : Πx :A.B and Γ ⊨ a : A, then Γ ⊨ b a : B{a/x}.

PRoof. Suppose 𝜌 ⊨ Γ.The goal is to show that there exists some i and S1 such that b{𝜌} a{𝜌} ∈
S1 and ⟦B{a/x}{𝜌}⟧i ↘ S1, or equivalently, ⟦B{𝜌 [x ↦→ a{𝜌}]}⟧i ↘ S1 since B{a/x}{𝜌} =
B{𝜌 [x ↦→ a{𝜌}]}. By the premise Γ ⊨ b : Πx : A.B, Lemma 4.8, and Lemma 3.8, there exists
some i and S0 such that:

• ⟦A{𝜌}⟧i ↘ S0
• ∀a0, if a0 ∈ S0, then ∃S1, ⟦B{𝜌 [x ↦→ a0]}⟧i ↘ S1
• ∀a0, if a0 ∈ S0, then ∀S1, if ⟦B{𝜌 [x ↦→ a0]}⟧i ↘ S1, then b{𝜌} a0 ∈ S1

Instantiating the variable a0 from the last two bullets with the term a{𝜌}, the conclusion immedi-
ately follows. □

TheoRem 4.14 (The Fundamental TheoRem29).
• If Γ ⊢ a : A, then Γ ⊨ a : A.
• If ⊢ Γ, then ⊨ Γ.

PRoof. Proof by mutual induction over the derivation of Γ ⊢ a : A and ⊢ Γ. The cases related
to context well-formedness immediately follow from Lemmas 4.6 and 4.7. The semantic typing
rules (Lemmas 4.9, 4.10, 4.11, 4.12, 4.13) can be used to discharge their syntactic counterparts (e.g.
Lemma 4.12 for case rule T-Abs). The remaining cases not covered by the lemmas are similar to
the ones already shown. □

Recall the logical consistency property (Theorem 3.1), which states that the judgment · ⊢ a : Void
is not derivable. We now give a proof of the property using the fundamental lemma.

29 soundness.v:soundness
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PRoof. Suppose · ⊢ a : Void is derivable, then by the fundamental lemma, we have · ⊨ a : Void,
which states that for all 𝜌 ⊨ ·, and for all j, S such that ⟦Void⟧j ↘ S, we have a{𝜌} ∈ S. By
Lemma 4.2, any 𝜌 we pick trivially satisfies 𝜌 ⊨ Γ. For convenience, we pick 𝜌 as id, though any
𝜌 would work since · ⊢ a : Void ensures there is no free variable in a. We have a{id} = a ∈ S.
By the Void case of the inversion property (Lemma 3.4), we know that S must be the empty set,
contradicting the assumption that a ∈ S. □

Our soundness theorem also tells us something about closed terms of type Bool; they either
reduce to true or false.

CoRollaRy 4.15 (Canonicity30). If · ⊢ b : Bool, then either b ⇒∗ true or b ⇒∗ false.

PRoof. The proof is similar to above, except that we use the Bool case of the inversion property.
□

5 EXISTENCE OF 𝛽-NORMAL FORMS
In this section, we show how the logical relation from Section 3 can be extended to show the
existence of 𝛽 normal forms for (open and closed) well-typed terms. In other words, we prove
that it is possible to repeatedly use the parallel reduction relation to reduce any term to its unique
normal form, where no further (non-identity) reductions can be applied. This result can be used
to show that our type conversion relation is decidable.

The goal of this section is also to demonstrate that our logical relations proof technique can be
extended to reason about the reduction properties of open terms, not just the reduction of terms
after closing substitutions. Reasoning about open terms is particularly important for dependently-
typed languages because type checking involves working with open terms. While this extension
employs well-known techniques, it continues to be short and demonstrates the robustness of our
initial framework.

We begin this part with a description of the 𝛽-normal forms of 𝜆Π . The syntactic forms e and f

𝛽-neutral terms e ::= x | e f | J e f f f | if e then f else f

𝛽-normal terms f ::= e | Seti | Void | Πx : f .f | f ∼ f ∈ f
| 𝜆x .f | refl | Bool | true | false

Fig. 5. 𝛽-neutral and normal forms

(Figure 5) capture the neutral terms and normal forms with respect to 𝛽-reduction. Instead of the
metavariables 𝑒 and 𝑓 , we also use the judgment forms ne a and nf a to indicate that there exists
e or f such that a = e or a = f .

The predicateswne a andwn a describe terms that can evaluate into 𝛽-neutral or 𝛽-normal form
through parallel reduction and are defined as follows.

weakly normalizes to a neutral form wne a ⇐⇒ ∃e, a ⇒∗ e
weakly normalizes to a normal form wn a ⇐⇒ ∃f , a ⇒∗ f

The updated logical relation is shown in Figure 6. 31 There is one new rule in this figure, rule I-
Ne. In a non-empty context, a type itself may evaluate to a neutral term and in turn can only
be inhabited by neutral terms. Otherwise, the rest of the rules in this figure are updates to the
30 soundness.v:canonicity 31 semtypingopen.v:InterpExt
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⟦A⟧iI ↘ S (Logical Relation)

I-Ne
neA

⟦A⟧iI ↘ {a | wne a}

I-VoidNew

⟦Void⟧iI ↘ {a | wne a}

I-BoolNew

⟦Bool⟧iI ↘ {a | a ⇒∗ true ∨ a ⇒∗ false ∨wne a}

I-EqNew
nf a nf b nf A

⟦a ∼ b ∈ A⟧iI ↘ {p | (p ⇒∗ refl ∧ a ⇔ b) ∨wne p}

Fig. 6. Extended logical relation (new and changed rules)

analogous rules in Figure 4. Note that, we omit the rules for the function and universe cases because
they are identical to the original version.

The changes to rule I-Bool and rule I-Void follow the same pattern: an open term of type Bool
does not necessarily reduce to true or false, but may reduce to a variable, or more generally, a
neutral term. Likewise, while the Void type remains uninhabited under an empty context, it may
be inhabited when there is a variable in the context that has type Void or that can be eliminated
to type Void.

The rule for equality type a ∼ b ∈ A is augmented with the precondition that a, b, and A are all
normal forms because otherwise our model would include equality types that are themselves not
normalizing. Furthermore, the condition a ⇔ b is only required when the equality proof reduces
to refl. If the proof term reduces to a neutral term, then there is nothing we need to show about
the relationship between a and b.

Because we are working with open terms, we need a few additional syntactic lemmas about
reduction. First, a renaming 𝜉 is a generalization of weakening when working with simultane-
ous substitutions. It consistently maps the variables that appears in terms to other variables. If a
renamed term has been reduced, we can always recover the result of the reduction without the
renaming.

Lemma 5.1 (PaR anti-Renaming32). If a{𝜉} ⇒ b0, then there exists some b such that b{𝜉} = b0
and a ⇒ b.

We can show that parallel reduction preserves 𝛽-normal and neutral forms.

Lemma 5.2 (PaR pReseRves 𝛽-neutRal and noRmal foRms33). If a ⇒ b, then

• ne a implies ne b
• nf a implies nf b

Lemma 5.2 could have been strengthened to say that if ne a or nf a and a ⇒ b, then a = b. Since
ne and nf captures terms free of 𝛽 redexes, parallel reduction cannot take any real reduction steps
and can only step into a term itself. However, for the purpose of our proof, Lemma 5.2 is sufficient.

32 normalform.v:Par_antirenaming 33 normalform.v:nf_ne_preservation

, Vol. 1, No. 1, Article . Publication date: July 2024.

normalform.v
normalform.v


785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Functional Pearl: Short and Mechanized Logical Relation for Dependent Type Theories 17

All the properties we have shown in Section 3 and 4 before the fundamental lemma can be
proven in the same order, where the new cases due to rule I-Ne and the augmentation of neutral
terms to rules I-Void, I-Eq, and I-Bool can be immediately discharged by Lemma 5.2.

Furthermore, Lemma 5.2, in its current weaker form, would still hold after we extend our equa-
tional theory with the function 𝜂 rule, where parallel reduction can take 𝜂 steps but still preserves
𝛽-normal form.

We also need to know that the wne a and wn a relations can be justified compositionally. For
example, an application has a neutral formwhen the function has a neutral form and the argument
has a normal form.

Lemma 5.3 (Wne application34). If wne a and wn b, then wne (a b).

PRoof. Immediate by induction over the length of the reduction sequences in wne a and wn b.
□

Furthermore, if we know that an application of a term to a variable has a normal form, then we
know that the term must have a normal form.

Lemma 5.4 (Wn extensionality35). If wn (a x), then wn a.

PRoof. By induction over the length of the reduction sequence in wn (a x). The conclusion
follows from Lemmas 5.1 and 5.2. □

Before we can prove the fundamental theorem and derive the normalization property as its
corollary, we need to additionally formulate and prove an adequacy property about the logical
relation. This property, that the interpretation of each type is a reducibility candidate, allows us
to conclude that every term in each interpretation has a normal form. In the previous section, we
only needed a property of the interpretation of the Void type. However, for this section, we need
to know something about the interpretation of every type.

Furthermore, to prove this adequacy property, we need to strengthen it to also give us more
information about neutral terms as we proceed by induction. In particular, we need to know that all
terms that reduce to neutral forms are contained within the interpretation. Therefore, we formally
define when a set is a reducibility candidate (shortened as 𝐶𝑅) as follows. Our definition of 𝐶𝑅 is
inspired by Girard et al. [1989], but not identical since we only care about weak normalization.

Definition 5.5 (Reducibility Candidates (CR)36). Let S be a set of terms. We say that S ∈ 𝐶𝑅 if and
only if conditions 𝐶𝑅1 and 𝐶𝑅2 hold.

• S ∈ 𝐶𝑅1 ⇐⇒ ∀a, if wne a, then a ∈ S
• S ∈ 𝐶𝑅2 ⇐⇒ ∀a, if a ∈ S, then wn a

We now state and prove the adequacy lemma.

Lemma 5.6 (Adeacy37). If ⟦A⟧i ↘ S, then we have S ∈ 𝐶𝑅.

PRoof. We start by strong induction over i. We are given the induction hypothesis that for all
j < i, ⟦A⟧j ↘ S implies S ∈ 𝐶𝑅. Our goal is to show ⟦A⟧i ↘ S implies S ∈ 𝐶𝑅.

By Definition 3.2, we have the equality ⟦A⟧i ↘ S = ⟦A⟧iI ↘ S where I (i) := {A | ∃S, ⟦A⟧i ↘ S}.
We then proceed by structural induction over the derivation of ⟦A⟧iI ↘ S. The only interesting
cases are rule I-Pi and rule I-Set. The function case requires Lemmas 5.4 and 5.3, which we have
shown earlier.
34 normalform.v:wne_app 35 normalform.v:ext_wn 36 semtypingopen.v:CR 37 semtypingopen.v:adequacy
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The rule I-Set case is the most interesting. We must show that for all j < i, the set {A |
∃S, ⟦A⟧j ↘ S} ∈ 𝐶𝑅. We immediately know that {A | ∃S, ⟦A⟧j ↘ S} ∈ 𝐶𝑅1 by rule I-Ne. It
remains to show that {A | ∃S, ⟦A⟧j ↘ S} ∈ 𝐶𝑅2, or equivalently, for all A, ⟦A⟧j ↘ S implieswnA.
Suppose ⟦A⟧j ↘ S for an arbitrary A. We have ⟦A⟧j ↘ S = ⟦A⟧jI ↘ S where I has the same defini-
tion from earlier but its domain restricted to numbers less than j. We perform another induction
on the derivation of ⟦A⟧jI ↘ S. All cases are trivial except for the case for rule I-Pi. Our induction
hypothesis immediately gives us wnA. To derive wn (Πx :A.B), it remains to show wnB. We use
the outermost induction hypothesis to show that x semantically inhabits A, from which we derive
wn (B{x/x}) and conclude wnB through antirenaming (Lemma 5.1). □

The formulation of semantic well-typedness and the fundamental lemma from Section 4 remains
unchanged. The proof of the fundamental lemma38 is still carried out by induction over the typing
derivation, where the additional neutral term related cases are handled by Lemma 5.6, the adequacy
property.

The normalization property then follows as a corollary of the fundamental theorem.

CoRollaRy 5.7 (Existence of 𝛽-noRmal foRms39). If Γ ⊢ a : A, then wn a and wnA.

PRoof. By the fundamental lemma, we know that Γ ⊨ a : A. That is, for all 𝜌 ⊨ Γ, there exists
some i and S such that ⟦A{𝜌}⟧i ↘ S and a{𝜌} ∈ S. We pick the 𝜌 to be the identity substitution id,
which injects variables as terms.The side condition id ⊨ Γ is satisfied since Lemma 5.6 says neutral
terms, including variables, semantically inhabit any S0 where S0 is the interpretation of some type.
With our choice of 𝜌 , we have A{𝜌} = A{id} = A and a{𝜌} = a{id} = a. Then we know that
⟦A⟧i ↘ S and a ∈ S for some i and S. By Lemma 5.6, we conclude that wn a and wnA. □

The extension of our logical relation to prove normalization of open and closed terms closely
mirrors the progression from normalization of closed terms [Harper 2022a] to normalization of
open terms [Harper 2022b] in the simply typed lambda calculus. Indeed, a mechanization of nor-
malization generalized to open terms appears in Abel et al. [2019]. In this setting, as above, ade-
quacy must be proven before the fundamental theorem so they can handle elimination rules such
as rule T-App where the scrutinee is a neutral term. Dependent types make the adequacy proof
slightly more complicated because we also need to know that every type has a normal form, not
just terms. This complicates our proof specifically in the rule I-Set case for our adequacy property
(Lemma 5.6).

Overall, despite the dependently typed setting, it is in fact reassuring that once we have laid the
foundational technique for handling dependent types in our logical relation, the extension to open
terms mostly boils down to properties that can be independently derived from the logical relation
through syntactic means.

6 EXISTENCE OF 𝛽𝜂-NORMAL FORMS
Abel et al. [2017]; Adjedj et al. [2024]; Wieczorek and Biernacki [2018] include the 𝜂 law for func-
tions in their equational theory and use relational models to justify its validity. In our system, we
can easily incorporate the function 𝜂 law to the equational theory of 𝜆Π by adding the following
parallel reduction rule.

P-AbsEta
y ∉ fv(a0) a ⇒ a0

𝜆y.((𝜆x .a) y) ⇒ a0

38 soundnessopen.v:soundness 39 soundnessopen.v:mltt_normalizing
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In this section, we show how we easily extend the existence of 𝛽-normal forms from Section 5 to
the existence of 𝛽𝜂-normal forms after this addition.

First, we recover the same confluence result about parallel reduction using the standard tech-
niques from Barendregt [1993]; Takahashi [1995], though anti-renaming (Lemma 5.1) must be
proven before the diamond property (Lemma 2.5). Another complication is that the anti-renaming
property and the diamond property for parallel reduction are now proven through induction on a
size metric of lambda terms; rule P-AbsEta reduces a term that is not a strict subterm.

Note that, after this extension, the specification of our logical relation does not require any up-
dates. The proof of the fundamental theorem also remains identical since the complications intro-
duced by 𝜂 are hidden behind the proofs of the diamond property and the anti-renaming property.
As before, ne and nf represent 𝛽-neutral and 𝛽-normal forms, and the fundamental lemma shows
us that every well-typed term has a 𝛽-normal form. However, in the presence of the 𝜂 reduction
rule, Lemma 5.2 tells us that 𝜂 reduction preserves 𝛽-normal forms (i.e. does not produce new 𝛽-
redexes). Furthermore, since the 𝜂 reduction rule for functions strictly decreases the size of the
term, the existence of 𝛽𝜂 normal form trivially follows.

CoRollaRy 6.1 (Existence of 𝛽𝜂-noRmal foRm). If Γ ⊢ a : A, then a has 𝛽𝜂-normal form.

A well-known issue with our approach is the failure of syntactic confluence when the lambda
term contains type annotations. A simple counterexample is 𝜆y :B.((𝜆x :A.a) y) where y ∉ fv((𝜆x :
A.a)); depending on whether rule P-AbsEta is performed on the whole term or rule P-AppAbs is
used on the inner 𝛽 redex, we end up with the terms 𝜆x :B.a (after 𝛼-conversion) or 𝜆x :A.a, where
A and B are not necessarily syntactically equal terms. Choudhury et al. [2022] resolve this problem
by stating their confluence result in terms of an equivalence relation that quotients out parts of
the terms that are computationally irrelevant; the annotations of lambda terms are ignored since
the behavior of a lambda term is not affected by its type annotation. We believe the same approach
is applicable to our proof.

The bigger issue is extensions such as 𝜂-laws for unit and products. Surjective pairing, for
example, is not confluent for untyped lambda terms [Klop and de Vrijer 1989]. The relational,
type-annotated, and Kripke-style models from Abel et al. [2017]; Adjedj et al. [2024]; Wieczorek
and Biernacki [2018] can be more easily extended to support these rules. We note, however, that
the issue with 𝜂 rules is not exclusive to dependently typed languages and has been studied in
more limited languages that are either simply typed [Pfenning 1997; Pierce 2004] or dependently
typed but without large eliminations [Abel and Coquand 2005; Harper and Pfenning 2005]. Com-
mon workarounds include type-directed conversion and shifting the focus to obtaining 𝜂-long
forms [Abel and Scherer 2012].

While not without limitations, our simple proof demonstrates the core building blocks of more
complex arguments, thus paving the way for experimentation and eventual extension to more
expressive systems.

7 MECHANIZATION
To demonstrate the scale of our proof scripts, Figure 7 shows the number of non-blank, non-
comment lines of code40 for each file of our development, including the base consistency proof
from Section 3 and 4 and the extension to 𝛽-normalization from Section 5. For comparison, we
have also proven syntactic type soundness through preservation 41 and progress42.

The 𝛽𝜂-normalization proof from Section 6 comprises 1568 lines of non-blank, non-comment
lines of code. We choose not to include it in the chart, because of slight differences in lemma
40 calculated by the tokei tool, available from https://github.com/XAMPPRocky/tokei.
41 syntactic_soundness.v:subject_reduction 42 syntactic_soundness.v:wt_progress
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Consistency Normalization Syntactic metatheory
Syntactic typing 83 = =
Untyped reduction 344 = =
Neutral and normal forms - 273 -
Logical relation 338 430 -
Semantic soundness 192 211 -
Syntactic soundness - - 629
Total 957 1341 1056

Fig. 7. Nonblank, noncomment lines of code of the Coq Development. The marker = indicates that the line
count is the same as the column to the left. The marker - indicates the file does not contribute to the total.

dependencies for untyped reduction and normal forms that make the comparison less informative.
However, when compared to the 𝛽-normalization extension, the 𝛽𝜂 extension has the same line
count in the definition of the logical relation and the semantic soundness proof.

The Autosubst 2 tool takes our 13 line syntax specification, written in higher-order abstract syn-
tax, and generates the Coq syntax specification, renaming and substitution functions, and lemmas
and tactics that allow reasoning about those functions. The auto-generated syntax file (291 LOC)
and other Autosubst library files are also not included in the figure.

Axioms. OurCoq development assumes two axioms: functional extensionality and propositional
extensionality. The former is also required by the Autosubst 2 libraries. Both axioms are known
to be consistent with Coq’s metatheory. These axioms bridge the gap between our mechanization
and our informal proofs. For example, in set theory, to show that two sets S0 and S1 are equal, it
suffices to show the extensional property that ∀𝑥, 𝑥 ∈ S0 ⇐⇒ 𝑥 ∈ S1. We leverage this fact
occasionally in our presented proofs. However, in Coq, sets of terms (P(Term)) are encoded as
the type tm -> Prop, a predicate over 𝜆Π terms. In axiom-free Coq, predicates do not come with
the extensionality property. Given two predicates 𝑃 and 𝑄 , we cannot conclude that 𝑃 = 𝑄 when
given a proof of ∀𝑥, 𝑃 (𝑥) ⇐⇒ 𝑄 (𝑥). But this is exactly the statement of predicate extensionality,
an immediate corollary from functional extensionality and propositional extensionality.

Encoding the logical relation in Coq. We next discuss specific details of the Coq encoding of the
logical relation presented in Section 3.

In the Coq mechanized proof, the definition of ⟦A⟧iI ↘ S has type Prop, where I has type nat
-> tm -> Prop and S has type tm -> Prop.

However, if desired, we could consistently replace the use of Prop with Coq’s predicative sort
Type in the definition of ⟦A⟧iI ↘ S. This alternative definition could be part of the interpretation
for any finite number of universes. The use of Type becomes troublesome only when we attempt
to define ⟦A⟧i ↘ S, the top-level logical relation (Definition 3.2) that recursively calls itself at
smaller universe levels. Therefore, the one feature of 𝜆Π that truly requires impredicativity is its
countable universe hierarchy.

The definition of ⟦A⟧iI ↘ S has an almost one-to-one correspondence to the Coq definition. The
main difference is the specification of I . In Section 3, we define I as a function over numbers less
than i, the universe level. In Coq, we only require I to be a function with the set of natural numbers
as its domain. In the Coq encoding of ⟦A⟧i ↘ S, we define I ∈ N→ P(Term) as follows.

I (j) =
{
{A | ∃S, ⟦A⟧j ↘ S} when 𝑗 < 𝑖

∅ otherwise
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Since I is only applied to numbers strictly less than i in rule I-Set, we can retroactively show that
the set we return in the 𝑗 ≥ 𝑖 case is junk data that does not affect the result of the logical relation.
This property allows us to recover the simple equation for ⟦A⟧i ↘ S shown in Definition 3.2.

Rule I-PiCoq shows how rule I-Pi is actually encoded in our mechanized proof.
I-PiCoq

⟦A⟧iI ↘ S R ∈ S × P(Term)
∀a, ∃S0, (a, S0) ∈ R ∀a,∀S0, if (a, S0) ∈ R, then ⟦B{a/x}⟧iI ↘ S0

⟦Πx :A.B⟧iI ↘ {b | ∀a,∀S0, if (a, S0) ∈ R, then b a ∈ S0}
Compared to rule I-Pi, rule I-PiCoq replaces the function F with a total relation R. The equivalence
of these two rules follows from the fact that the logical relation is a partial function (Lemma 3.7).
In set-theoretic notation, rule I-Pi is more readable. However, if we want to encode the same rule
in Coq, we must encode F as a relation (with type tm -> (tm -> Prop) -> Prop) that satisfies
the functionality constraint: forall a S0 S1, F a S0 -> F a S1 -> S0 = S1. In comparison,
rule I-PiCoq does not require this side condition and results in a simpler definition.

We note that we cannot ascribe F the type tm -> (tm -> Prop) since Coq requires functions
of such type to be computable. While defining F as a computable Coq function rather than a
functional relation does result in a concise encoding of rule I-Pi, we will have trouble instantiating
F with the logical relation, which is defined as a relation that we prove to be functional, rather
than a computable function.

Automation. Our Coqmechanization heavily uses automation, supported by the tools Autosubst
2 [Stark et al. 2019] and CoqHammer [Czajka and Kaliszyk 2018].

We use the Autosubst 2 framework to produce Coq syntax files based on a de Bruijn repre-
sentation of variable binding and capture-avoiding substitution. In addition to these generated
definitions, Autosubst 2 provides a powerful tactic asimpl that can be used to prove the equiv-
alence of two terms constructed using the primitive operators provided by the framework. This
tactic simplifies the reasoning about substitution as many substitution-related properties about
syntax are immediately discharged by asimpl.

For other automation tasks that are not specific to binding, we use the powerful sauto tactic pro-
vided by CoqHammer to write short and declarative proofs. For example, here is a one-line proof
of the triangle property about parallel reduction, from which the diamond property (Lemma 2.5)
follows as a corollary. The triangle property states that if a ⇒ b, then b ⇒ a∗, where a∗ is the
Takahashi translation [Takahashi 1995] which roughly corresponds to simultaneous reduction of
the redexes in a, excluding the new redexes that appear as a result of reduction.
Lemma Par_triangle a : forall b, (a ⇒ b) -> (b ⇒ tstar a).
Proof.

apply tstar_ind; hauto lq:on inv:Par use:Par_refl,Par_cong ctrs:Par.
Qed.

In prose, the triangle property can be proven by induction over the graph of tstar a, the Taka-
hashi translation. Options inv:Par and ctrs:Par say that the proof involves inverting and con-
structing of the derivations of parallel reduction. The option use:Par_refl,Par_cong allows the
automation tactic to use the reflexivity and congruence properties of parallel reduction as lemmas.

The flag lq:on tunes CoqHammer’s search algorithm. While this flag appears arcane, when de-
veloping our proof scripts we never specify this option manually. Instead, we first invoke the best
tactic provided by CoqHammer, specifying only the inv, ctrs, and lemmas that we want to use.
The best tactic then iterates through possible configurations and provides us with a replacement
with the tuned performance flags that save time for future re-execution of the proof script.
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The automation provided by CoqHammer not only gives us a proof that is shorter and more
resilient to changes, but also provides useful documentation for readers who wish to understand
the mechanized proof. Although automation performs extensive search, we can configure it to not
use lemmas or invert derivations that are not specified in the use or inv flags.

8 RELATEDWORK
8.1 Logical relations for dependent types
In the most general sense, a logical relation can be viewed as a practical technique that uses a type-
indexed relation to strengthen the induction hypothesis for the property of interest. The original
idea of this technique can be traced back to Tait [1967]. This proof maps types to sets of terms
satisfying certain properties related to reduction. The same idea is explained in Girard et al. [1989]
and extended to prove strong normalization of System F. Tait’s method has also been successfully
applied to dependently typed languages to prove strong normalization [Barendregt 1993; Geuvers
1994; Luo 1990; Martin-Löf 1975].

However, the pen-and-paper representation of logical relations proofs can be challenging to
adapt to a theorem prover since many details are hidden behind concise notations. For example,
Geuvers [1994] presents the interpretation for types as an inductively defined total function over
the set of syntactically well-formed types. In untyped set theory, it makes sense to define the
logical relation as a simply-typed function that takes a type and returns some set; however in
constructive type theory, the metalogic of Coq and Agda, the interpretation function must be a
dependently-typed function whose return type depends on the derivation of the well-typedness
of its input.Thewell-typedness derivation and the proof of the classification theorem are examined
in the body of the interpretation function to decide whether an argument of an application should
be erased during interpretation. As a result, this definition causes difficulties for modern proof
assistants. Due to the impredicativity of the object language, Geuvers [1994]’s proof cannot be
encoded in Agda, which has a predicative metatheory. Due to the use of proof-relevant derivations,
even in Coq, a proof assistant that supports impredicativity, one would need to constantly juggle
between the impredicative but irrelevant sort Prop sort and the predicative but relevant sort Type.

More recent work such as Abel and Scherer [2012] and Abel et al. [2008] make their definitions
more explicit and precise and thus more directly encodable in proof assistants. Our logical relation
resembles their definition of a semantic universe hierarchy, although we close our relation under
expansion with respect to parallel reduction rather than weak-head reduction. Furthermore, Abel
and Scherer [2012] and Abel et al. [2008] use their semantic universe hierarchy as a measure to
define Kripke-style logical relations, from which they derive the correctness of their conversion
algorithms. In our work, we use the semantic universe hierarchy directly in our definition of se-
mantic typing because it is sufficient for our purposes (consistency and normalization).

8.2 Mechanized logical relations for dependent types
Figure 8 presents severalmechanized proofs that feature logical-relations arguments for dependently-
typed languages. Each of these proofs is significantly larger than than our development; but they
also prove more results about different object languages.The table provides a comparison between
the various features of their object languages, but is not exhaustive. For example, Casinghino et al.
[2014] and Anand and Rahli [2014] both have support for partial programs. However, we include
features that we believe to be most impactful to the definition of the logical relation.

Casinghino et al. [2014] introduce 𝜆𝜃 , a dependently typed programming language that uses
modality to distinguish between logical proofs and programs. The consistency proof of 𝜆𝜃 ’s logi-
cal fragment has been mechanized in Coq through a step-indexed logical relation; step-indexing
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U Ind C L E A Main results
𝜆Π (this work) N Id, Bool U ✓ 1 Consistency and normalization
𝜆𝜃 0 Id, Nat U ✗ 1 Consistency
Core Nuprl N W-Types E ✓ 2 Consistency
NBE-in-Coq 1 Nat T ✗ 2 Correctness of NBE
𝜆Π𝑈N 1 Nat, Σ T ✓ 2 Decidability of conversion
MLTT-á-la-Coq 1 Id, Nat, Σ T ✓ 2 Decidibility of type checking

Universes: Countable (N), Zero (0), One (1)
Inductives: Identity types (Id), Natural numbers (Nat), Σ-types (Σ), W-types
Conversion: Untyped (U), Typed (T), Extensional (E)
Large Eliminations: Included (✓), not included (✗)
Arity of interpretation: Sets of terms (1), Relations between terms (2)

𝜆𝜃 Casinghino et al. [2014] (logical fragment only)
Core Nuprl Anand and Rahli [2014]
𝜆Π𝑈N Abel et al. [2017]
NBE-in-Coq Wieczorek and Biernacki [2018]
MLTT-á-la-Coq Adjedj et al. [2024]

Fig. 8. Feature matrix for dependently typed languages with mechanized logical relations

is required to model the programmatic fragment, which interacts with the logical fragment. The
lack of polymorphism and type-level computation means their logical relation can be defined re-
cursively for well-formed types using a size metric, which has been used in Liu andWeirich [2023].
Their development is around 8,000 lines of nonblank, noncomment code.

Abel et al. [2017] mechanize in Agda the decidability of type conversion rule for a dependently
typed language with one predicative universe level and a typed judgmental equality that includes
the function 𝜂 law. They use a Kripke-style logical relation parameterized over a type-directed
equivalence relation satisfying certain properties to facilitate the reuse of their definition. The
logical relation is defined using the induction-recursion scheme, which is available in Agda but
not in Coq. Their development involves around 10,000 lines of Agda code. Adjedj et al. [2024]
transports the logical relation fromAbel et al. [2017] in the predicative fragment of Coq and further
extends the decidability of type conversion result from Abel et al. [2017] to the decidability type
checking of a bidirectional type system. Their development has around 30,000 lines of Coq code.

Anand and Rahli [2014] mechanize the metatheory of Nuprl [Constable et al. 1986] in Coq. This
metatheory is an extensional type theory with features such as dependent functions, inductive
types, partial types, and a full universe hierarchy. They construct a PER model in Coq to show the
logical consistency of their language. Their development has been further extended with features
such as intersection types, union types, and quotient types. The extensive coverage of features
results in a Coq development with around 330,000 lines of code. Wieczorek and Biernacki [2018]
mechanize the normalization-by-evaluation algorithm in Coq for a dependently typed language
with one predicative universe, similar to Abel et al. [2017] and Adjedj et al. [2024]. However, since
their type system has no elimination form for natural numbers, the only base type from the object
language, large elimination is not supported despite the one predicative universe. Their develop-
ment has around 20,000 lines of Coq code. Both Anand and Rahli [2014] and Wieczorek and Bier-
nacki [2018] leverage the impredicative Prop sort of Coq to define the interpretation of dependent
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function types and thus are closely related to our mechanization. Anand and Rahli [2014] further
show it is possible to encode a finite universe hierarchy without the use of either impredicativity
or induction-recursion. Their encoding of a countable universe hierarchy relies on impredicativity,
similar to our development.

8.3 Other mechanized metatheory of dependent types
Barras [2010]; Wang and Barras [2013] assign set-theoretic semantics to dependent type theory
in Coq. Unlike the previous efforts, which primarily focus on predicative type theory and more
direct reducibility models, Barras [2010]; Wang and Barras [2013] tackle extensions of 𝐶𝐶𝜔 , a
system that incorporates a predicative universe on top of the impredicative sort in the Calculus of
Constructions. We choose to focus on a syntactic term model so we do not have to take the extra
step of mechanizing mathematical objects such as sets and domains.

There are other mechanized developments for dependently typed systems that only involve
properties that are derivable through syntactic means. For example, Sozeau et al. [2019] prove the
correctness of a type checker for the Predicative, Cumulative Calculus of Inductive Constructions
(PCUIC), Coq’s core calculus, assuming the strong normalization property of the object language.
Weirich et al. [2017] define SystemD, a core calculus of dependent Haskell, and prove the syntactic
type soundness of the type system. Because System D includes nontermination, they proved the
consistency of definitional equality from the confluence of parallel reduction.

Compared to the systems described here, the most notable features we are missing are cu-
mulativity and impredicativity. Our semantic model already satisfies the cumulativity property
(Lemma 3.9), but we need to extend our convertibility relation into a subtyping relation in our
syntactic typing rules. Impredicativity, on the other hand, is known to be difficult to model when
the impredicative sort is at the bottom of a predicative universe hierarchy; in this scenario, the
erasure technique from Geuvers [1994] is not applicable [Abel 2013]. Whether there is a similarly
short and simple treatment for impredicativity remains an open question.

9 DISCUSSION
Our short consistency proof achieves the goal of demonstrating the technique of proof by logical
relation for dependently typed languages. However, what remains unanswered is what makes our
development significantly shorter. Arewe proving simpler results for smaller languages, ormaking
more use of automation, or is our proof technique genuinely more efficient?

First, the metatheoretic properties that we prove are indeed simpler. Compared to Core Nuprl,
our system lacks extensionality, which would require a relational model to justify consistency.
Because the conversion rule for 𝜆Π is untyped, we do not need a Kripke-style relational model to
prove Π-injectivity among other properties, unlike systems with typed conversion. Furthermore,
we prove the existence of normal forms, which induces a simple normalize-and-compare proce-
dure for type conversion [Pierce 2004]. Abel et al. [2017]; Wieczorek and Biernacki [2018], on the
other hand, need to show how their algorithmic conversion procedure is sound and complete with
respect to their respective declarative equational theory.

Second, the definition of our logical relation does contribute to a more concise proof. In rules I-
Red and I-Bool, we choose parallel reduction, a full reduction relation, to close over our semantic
interpretation of types and terms. Parallel reduction is non-deterministic, but it satisfies useful
structural properties such as congruence (Lemma 2.3) and the diamond property (Lemma 2.5).
We pay the price of using a non-deterministic reduction relation when we want to prove that our
logical relation is a partial function; because of rule I-Red, we can haveA ⇒ B0 andA ⇒ B1, where
B0 and B1 each have their separate interpretations that we have to prove to be equal. Fortunately,
this complexity is reconciled by the diamond property, which is easy to derive syntactically.
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In contrast, Abel et al. [2017] and Wieczorek and Biernacki [2018] employ a deterministic weak
head reduction relation. A deterministic reduction relation makes the functionality of a logical
relation trivial to prove, but fails to satisfy the substitution property (Lemma 2.4), an issue that
has been observed by Casinghino et al. [2014]. If we had chosen to work with a deterministic
reduction relation, we would likely need results such as the factorization theorem [Accattoli et al.
2019; Takahashi 1995] in our development before we can prove the fundamental theorem, leading
to a more complicated proof.

With untyped conversion, we sidestep the relational, Kripke-style logical relation found in other
mechanized proofs. However, our early dependence on confluence before the fundamental the-
orem is established can be alarming. In a system with type-directed reduction, confluence is not
immediately available because it depends on Π-injectivity, which is usually only proven after the
fundamental theorem. Fortunately, there are syntactic workarounds for the Π-injectivity problem
that allow us to recover the confluence property independently from the logical relation. Siles and
Herbelin [2012] generalize the notion of Type Parallel One Step Reduction from Adams [2006]
to syntactically prove Π-injectivity for arbitrary Pure Type Systems. Weirich et al. [2017] add Π-
injectivity to their equational theory, thus allowing subject reduction to be proven independently
from confluence. By adopting these techniques that allow us to derive confluence early even for
systems with type-directed reduction, we believe our proof technique can significantly shorten
the existing logical relation proofs for systems with typed judgmental equality. We leave that as
part of our future work.

10 CONCLUSION
In this work, we present a short and mechanized proof by logical relations for a dependently
typed language with a full universe hierarchy, large eliminations, an intensional identity type, and
dependent eliminators. We show the extensibility of our approach by proving the existence of
𝛽𝜂-normal forms with only small and mechanical changes to our proof development. Our Coq
mechanization leverages existing Coq libraries for reasoning about metatheory and for general
purpose automation, allowing us to significantly reduce the verbosity typically associated with
mechanized proofs. The result is a declarative proof style that rivals pen and paper.

Related work gives us confidence that we could extend our logical relation to include features
such as full inductive datatypes, irrelevant arguments, and type-directed conversion; however, it
is not clear howmuch of the brevity of this development can be maintained. Furthermore, we hope
that mechanized logical relations proofs will eventually grow to include other features found in
dependent type theories, such as impredicative universes, universe polymorphism, and cumulativ-
ity. Regardless, our development shows that proofs by logical relations for dependent types are
accessible and do not require months of effort to implement. We hope our proof can inspire re-
searchers to more frequently mechanize results, such as consistency and normalization, for their
dependent type theories.
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