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Abstract—Large language models (LLMs) have shown great
potential in automating significant aspects of coding by produc-
ing natural code from informal natural language (NL) intent.
However, given NL is informal, it does not lend easily to checking
that the generated code correctly satisfies the user intent.

In this paper, we propose a novel interactive workflow
TICODER for guided intent clarification (i.e., partial formaliza-
tion) through tests to support the generation of more accu-
rate code suggestions. Through a mixed methods user study
with 15 programmers, we present an empirical evaluation of
the effectiveness of the workflow to improve code generation
accuracy. We find that participants using the proposed workflow
are significantly more likely to correctly evaluate AI generated
code, and report significantly less task-induced cognitive load.
Furthermore, we test the potential of the workflow at scale with
four different state-of-the-art LLMs on two python datasets,
using an idealized proxy for a user feedback. We observe an
average absolute improvement of 45.97% in the pass@1 code
generation accuracy for both datasets and across all LLMs within
5 user interactions, in addition to the automatic generation of
accompanying unit tests.

Index Terms—Intent Disambiguation, Code Generation,
LLMs, Human Factors, Cognitive Load, Test Generation.

I. INTRODUCTION

LARGE Language Models (LLMs) have shown tremen-
dous potential in generating natural-looking programs

from informal intent expressed in natural language. There has
been a surge in research around training LLMs over program-
ming language artifacts in just the last couple of years [1], [2],
[3], [4], [5]. Commercial offerings such as GitHub Copilot [6]
are widely available, and have been shown to generate a non-
trivial fraction of code in real-world scenarios [7].

However, there are several challenges that arise when gen-
erating code from natural language specifications.[8], [9]. For
example, natural language prompts crafted by users may not
always fully capture a their intent, as they may contain am-
biguous language and lack of nuance. More importantly, it is
not possible to automatically evaluate whether code generated
from a natural language prompt is correct. Natural language
is inherently ambiguous and enforcing the user intent through
some mechanical process (such as testing, static analysis or
formal verification) is not immediately possible.

Consider the following docstring, taken from MBPP [10],
a popular Python programming tasks benchmark:

1 def text_lowercase_underscore(text):
2 """Write a function that returns true if the

input string contains sequences of lowercase
letters joined with an underscore and false
otherwise""

While the intent may seem obvious at first, it is not
immediately clear how to check the correctness of a potential
solution. Querying an LLM such as text-davinci-003 [11]
yields several plausibly correct code implementations that pass
simple tests such as rejecting the empty string “ ”, or accepting
the string "aa_bb". However, it may also produce subtly
buggy code solutions that accept strings such as "aa_bb_cc",
which is inconsistent with the original user intent that expects
the string to consist entirely of two sequences of lowercase
letters joined by an underscore (as defined by the accompa-
nying hidden reference solution and the validation tests from
MBPP). In practice, this can often lead to users accepting code
with subtle bugs while using LLMs [12], [13]. The apparent
ambiguity in this particular docstring, and more importantly
the informal nature of natural language, highlights the inability
to immediately ascertain the correctness of the code generated
by an LLM. Instead, it would be desirable to avoid surfacing
such subtly incorrect codes by first clarifying, and partially
formalizing, the user intent into a checkable specification.

This issue can be compounded when users are presented
with a list of candidate suggestions from LLMs, such as
in the Copilot VSCode IDE suggestions pane, which can
display up to 10 suggestions. Users often have to linearly
scan the list of code suggestions, review them, and reject
the incorrect ones until arriving at one that satisfies their
intent. In such situations, subtle bugs may be overlooked,
with significant downstream impacts. In fact, several recent
works exploring developer-AI interaction have highlighted the
need for mechanisms to facilitate verification of AI-generated
code[14], [9], such as those that allow users to use tests that
disambiguate between the different code suggestions [15].

However, prior research has shown that it can be difficult
for users to manually provide a sufficient number of test cases
to disambiguate suggestions upfront [16].

Inspired by findings around example generation and
disambiguation techniques in Programming By Examples
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(PBE) [17], and recent emerging ability of LLMs to generate
tests [18], [19], [20] in this paper, we propose leveraging
user-feedback through LLM-generated tests to improve the
trust and correctness of LLM-generated code. Specifically,
we propose the workflow of test-driven interactive code gen-
eration (TICODER) to (a) clarify (i.e., partially formalize) user
intent through generated tests, and (b) generate a ranked list
of code that is consistent with such tests.

Let us demonstrate a simple instantiation of this framework
using the earlier example, where a user prompts an hypothet-
ical LLM to generate code satisfying their natural language
intent. Instead of directly displaying a list of plausible code
suggestions, our framework TICODER would query the user
with a question:

text_lowercase_underscore("aa_bb_cc") == True?

Let us assume that the user answers ’no’, since they
expect only two sequences of lowercase letters, joined by one
underscore, as mentioned earlier. The workflow would likely
query the user again with the following question:

text_lowercase_underscore("aa_bb") == True?

If the user says ’yes’, then the system would output the list
of approved tests, as well as a set of semantically ranked code
suggestions that are consistent with those tests. Once the user
chooses a suggestion from such a list, it would generate code
along with accompanying tests.

def text_lowercase_underscore(text):
return True if bool(re.search(r’ˆ[a-z]_[a-z]+$
’, text)) else False

def test_text_lowercase_underscore():
assert text_lowercase_underscore("aa_bb")==
True

test_text_lowercase_underscore()

In the case of LLM-based code generation, the generated
tests not only help make natural language intent more precise
and prune incorrect suggestions generated by the LLM, but
can also serves as debugging aid for remaining suggestions
and regression tests for future code edits [7].

While the proposed framework appears intuitive, it may not
scale to more complex code generation tasks. For example,
in cases where the user is unable to validate tests, e.g. for
tests that require intricate testing frameworks, the a workflow
may not be tenable. Furthermore, the utility of the interactive
framework is contingent upon (a) the ability of LLMs to
generate useful tests, and (b) the cost-benefit trade-off of the
overhead of user interaction versus the benefit on pruning and
ranking of code suggestions.

To this end, we seek to understand: How does the proposed
workflow impact the performance of developers evaluating
AI generated code? In addition, the proposed framework
should scale, augmenting the code generation accuracy of
several open and closed-source LLMs. Thus we also seek to
answer: Does proposed workflow augment the accuracy of
code generation models?

To answer these questions, we explore the effectiveness
of our proposed framework through a (1) mixed-effects user
study and (2) a large scale evaluation of the approach on two

Python benchmarks for code generation. This paper makes
the following contributions:
1) We propose an interactive workflow, TICODER, for guiding

user intent clarification through automatically-generated
tests and improving code generation accuracy of LLMs.
TICODER leverages off-the-shelf LLMs for generating
code and tests, and provides a mechanism to check AI-
generated code through user-approved tests.

2) We evaluate the effectiveness of TICODER by conducting a
mixed-methods user study comparing two different variants
of TICODER for generating and evaluating code sugges-
tions, including a baseline condition representing existing
developer-AI interaction workflows. We observe a signifi-
cant reduction in cognitive effort reported by participants
using either variant of TICODER over existing interaction
mechanisms.

3) We further evaluate the performance of the TICODER
workflow at scale by simulating user feedback, using the
reference code solution as an idealized proxy. TICODER
is evaluated on on two Python datasets, MBPP and Hu-
manEval, and a mixture of four open and closed sourced
LLMs. We demonstrate that TICODER contributes to im-
proving the code generation accuracy of all LLMs con-
sidered. We observe an average absolute improvement of
45.73% in pass@1 code generation accuracy within 5 user
interactions across both benchmarks. In fact, we observe
TICODER can boost smaller model pass@1 accuracy
to levels comparable to much larger models, such as
GPT-4-32k, within just one user interaction.

II. RELATED WORK

1) Improving Code Generation Accuracy: Techniques for
improving code generation accuracy is a rapidly growing
field of work. Unlike the work proposed in this paper, these
techniques do not consider user feedback, or guide users in
clarifying their intent formally; we cover them briefly.

AlphaCode [21] and CodeT [22] both propose techniques
to improve code generation accuracy by generating tests using
LLMs, and then grouping code suggestions by the set of tests
that they satisfy. CodeT [22] refines the approach by scoring
tests and code suggestions simultaneously by prioritizing tests
that satisfy many code suggestions and prioritizing codes that
satisfy many tests. While there are similarities with CodeT
in using LLM generated tests to rerank generated code that
results in code generation accuracy on benchmarks, TICODER
is complementary as one can apply TICODER after CodeT.
But more importantly, we argue that a user cannot trust
the generated code from CodeT any more than using LLM
directly. This is because the user is still presented with a
set of code suggestions. In contrast, with TICODER, we first
formalize the user intent through tests allowing the user to
constrain the code that the user will need to eventually sample
from. TICODER also allows users to modify test output in one
setting, which is not possible in the CodeT approach, where
the tests are fixed throughout. As part of future work, we plan
to explore if our approach may benefit from code and test
ranking algorithms in CodeT.
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Similarly, work on program synthesis [23], [24] generates
code that satisfies a formal specification either expressed as
a logical specification or input-output tests [25]. Our work
differs in that we use LLMs to generate code from informal
specifications, i.e. natural language intent. However, it would
be interesting for future work to leverage user-provided tests
to improve the quality of code generation, as explored in
recent works [26], [27]. In this work, to evaluate our proposed
approach at scale, we simulate user feedback using the code
reference implementation as an idealized proxy, similar to
prior works in oracle-guided inductive synthesis [15], [28] and
interactive program synthesis [29], [30] where an an oracle
(reference implementation or users) is queried to identify the
output for a given input. However, prior works in this area
appeal to an automatic symbolic engine (such as a constraint
solver [30] or automata construction [17]) to generate dis-
tinguishing example inputs for a pair of programs, which
is inconceivable for general purpose imperative programming
languages such as Python.

2) Usability of AI Programming Assistants: There exists
several prior works exploring the usability of AI programming
assistants. In this section, we focus on recent work that
identifies challenges related to the expressing of intent and
control over the generation suggestions of AI assistants.

Liang et al. [8] identify that giving up on incorporating
generated code, and lack of ability to provide feedback, are
the most common usability issues encountered when using
completion-based AI programming assistants. This often oc-
curs because the code does not implement the desired function-
ality, participants do not know why certain code was generated
and had trouble controlling the output to be aligned with their
desired intent.

McNutt et al. [31] enumerate a design space of interactions
with code assistants, including how users should be able
to disambiguate candidate programs or refine their initial
specifications, echoing prior studies have indicated that dis-
ambiguation can be valuable in the context of assistants like
GitHub Copilot [32] and traditional program synthesis tools
[33]. Similarly, Xu et al. [9] explored challenges of IDE-based
AI assistants, including how well specified the queries that
users formulate are. They find that participants frequently have
trouble expressing intent in their natural language queries to
the assistant, and issues of under specification often relate to
ambiguous instructions, such as omitting variable names.

Mozannar et al. [34] identify 12 core activities associated
with using GitHub Copilot and find that programmers often
iterate on their prompts until they obtain the suggestion they
desire, and spend a significant amount of time verifying code
suggestions. In fact, recent work by Bird et al. [14] shows
that as result of AI-powered tools, developer roles are shifting
so that more time is spent time reviewing code than actually
writing code. Several recent works[35], [36], [37] identify
clear opportunities for improving the accuracy of LLM code
generation techniques. Our work builds upon observations of
previous studies, and explores mechanisms to support code
evaluation tasks.

III. RESEARCH QUESTIONS AND PAPER ORGANIZATION

We briefly introduce the research questions and discuss
paper organization. In the following Section IV-A we introduce
our proposed approach: TiCoder. Then we answer two distinct
research questions:

RQ1 How does TiCoder impact the performance of python
developers evaluating AI generated code, in terms of
task correctness, time, and cognitive load? To answer
RQ1, we conduct a user study, where participants use
AI assistants augmented with the TiCoder workflow. We
evaluate the cost benefit tradeoff of the proposed ap-
proach on developer effort when evaluating AI generated
code.

RQ2 Does the TiCoder workflow improve the accuracy
of generated code suggestions? To answer RQ2, we
explore the code generation accuracy of LLMs augmented
with the TiCoder workflow on two code generation
benchmarks in python.

The methodology, evaluation, and results of each research
question are organized in the following sections: Sections V
and VI describe the methodology and results for RQ1, and
Section VII describes the methodology and results for RQ2.
We separate methods and results of RQs into distinct sections
for clarity. We conclude with a Discussion (Sec. VIII) of the
implications of our work to the broader research community,
and the Limitations of the presented experiments (Sec. IX).

IV. PROPOSED APPROACH: TICODER

Fig. 1: TICODER workflow.

In this section, we outline a proposed workflow for leverag-
ing test generation and user feedback to clarify (i.e., partially
formalize) user intent. We refer to this approach as TICODER
(Test-Driven Interactive Code Generation), and define two
variants of the workflow and surface this interaction to users
in the following subsections.
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import re

def text_lowercase_underscore(text):

    """Write a function that returns true if the input string
    contains only lowercase letters joined with an underscore,
    and false otherwise."""

    pass

def test_text_lowercase_underscore():
    assert text_lowercase_underscore(

Prefix prfxp

Description sp

Header hp

Prompt Body b'p

Test Body t'p

Co
de

 P
ro

m
pt

Te
st

 P
ro

m
pt

Fig. 2: Example format, as well as code and test prompts for
the running example.
A. High-level Workflow

Figure 1 describes the high-level workflow of Test-Driven
Interactive Code Generation (TICODER).
1) The user requests the AI programming assistant to generate

a function, given optional code context including an exist-
ing prefix in a file, a natural language description, and the
function header containing method name, parameters and
returns.

2) The AI programming assistant internally generates a set of
candidate code and test suggestions by prompting an LLM.

3) The set of generated tests are executed for each candidate
code suggestion. The set of tests that pass or fail on each
code suggestion are stored.

4) Using execution information, the AI programming assistant
ranks (according to some heuristics) the set of generated
tests and then surfaces the top ranked test to the user as a
query; asking the user if a test is consistent with the user’s
intent.

5) The user responds either PASS, UNDEFINED, or FAIL sig-
nifying if the test is respectively: consistent, precondition-
violating1, or inconsistent with the user intent. Optionally,
in the case of FAIL, the user can provide the correct test
output OUTPUT.

6) The AI programming assistant leverages the user response
to prune, and rank the set of code and test suggestions.

7) Interaction steps 4-6 can be repeated for multiple iterations,
until a predefined termination criteria (e.g., fixed number
of steps, absence of tests) has been satisfied.

8) Once the interaction terminates, the AI programming as-
sistant outputs (a) a set of tests that the user has approved
or specified, and (b) a ranked list of code suggestions that
are consistent with the user responses.

We define two variants of the workflow: TICODER-
PASSFAIL and TICODER-OUTPUT. The first scenario rep-
resents the case where the user provides only a Boolean
PASS,FAIL response. The second scenario, TICODER-
OUTPUT, extends the first scenario and represents the case
where the user provides the expected output OUTPUT in the
case of a FAIL test.

We present both the scenarios as they enjoy comple-
mentary benefits. The TICODER-PASSFAIL scenario is more
lightweight, in terms of user feedback, as well as, generalizes
well for richer tests beyond input-output examples. For exam-
ple, tests for stateful APIs comprises of a test-prefix as input
and the output oracle consists of a non-trivial predicate (e.g.,
checking functional correctness of a stack object using the
predicate s.pop() == a on a stack object s and element

a) [19]. On the other hand, TICODER-OUTPUT puts less
burden on an LLM to create the correct output for a given test
input; relying instead on the user. However, it may require the
user to specify a possibly non-trivial test oracle when used
beyond input-output examples.

1A test violates a precondition if the function is undefined on the test input.
For example, the test assert SquareRoot(-4) == -2 undefined on
negative numbers.

B. TiCoder Implementation

In this section, we discuss one possible implementation of
the TICODER workflow. Specifically, we outline the approach
to generating code and test suggestions, ranking candidate tests
to surface to the user, pruning and ranking code suggestions
by user response. To simplify the presentation, we restrict
ourselves to the case of single function synthesis, where the
user input consists of a natural language comment sp, the
function header hp, as well as any optional prefix prfxp needed
to generate the body of the function p. Figure 2 shows an
example for our running example. In addition, we also assume
the presence of a set of hidden tests Tp (input-output pairs for
simplicity) to evaluate the correctness of the generated code,
as well as a hidden reference (oracle) implementation of p,
namely bp. Our workflow does not have access to either Tp or
bp.

1) Generating Code and Tests: We outline one possible
choice for implementing the prompt generation for generating
code and test suggestions for an example.

Figure 2 presents a possible code prompt (in the gray
boxes) that can be used to query an LLM to produce a set
of code suggestions for our running example. Querying a
LLM with the code generation prompt will result in a set
of code suggestions similar to ones shown in Figure 3. Code
suggestion c3 is a valid solution to the problem, while c1 is an
incorrect code suggestion (since it allows the first substring to
start with an uppercase letter) and c2 is also incorrect (since
it allows more than one sequence of lowercase letters joined
with an underscore). Similarly, the green boxes in Figure 2
shows one possible test prompt that augments the code prompt
with the statement pass as the method body (corresponding
to a placeholder implementation in Python) along with the
assertion to be completed within a test function. We use the
generated test suggestions (Figure 3) to present the user with
a set of tests. Some of these are consistent with the user intent
(t3); while others are inconsistent with the user intent (t1 and
t2).

2) Ranking test suggestions: After obtaining the set of
tests produced by an LLM, the user is presented with a
sequence of tests. The user response to these proposed tests in
both TICODER scenarios (TICODER-PASSFAIL, TICODER-
OUTPUT) are used to prune and rank code suggestions. To
minimize the number of user interactions, it is desirable
to prioritize tests that would result in the most number of
incorrect code suggestions being pruned away [15], [29]. To
achieve this, the set of tests are executed against the set of
possible code suggestions generated by the LLM.

Then, using this execution information, we adopt a
discriminative test ranking policy that prioritizes tests
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Fig. 3: Code and test suggestions for the running example in Figure 2 generated from a LLM. Code suggestion c3 and test
suggestion t3 are both correct, while code suggestions c1, c2 and test suggestions t1, t2 are incorrect (appear shaded), i.e. they
don’t satisfy the problem prompts in Figure 2.

that can discriminate best among the set of code suggestions
generated by the LLM. If a test t can discriminate between
code suggestions well (i.e., splits the set of code suggestions
into roughly equal halves), then it would prune away a
substantial fraction of the code suggestions irrespective of the
user response (either PASS or FAIL).

More precisely, let U be the set of test suggestions and G
be the set of code suggestions that have not been pruned away
after k ≥ 0 user interactions. For each test t ∈ U , we split the
set of code suggestions G into the sets G+

t and G−
t of code

suggestions that pass and fail the assertion in t, respectively.
Note that we ignore codes that results in a crash on a test t
instead of failing with an assertion failure. We treat these as
precondition violation. We then prioritize tests where the ratio
of the sizes of these two set is closest to 1. In other words, we
rank the tests in decreasing order using the following scoring
metric sdiscr:

sdiscr(t) =

0 if max(|G+
t |, |G−

t |) = 0,

min(|G+
t |,|G−

t |)
max(|G+

t |,|G−
t |) otherwise.

Note that the test ranking strategy is uniform for both the
scenarios, although the test output will be possibly mutated
by the user response in TICODER-OUTPUT.

Consider the example in Figure 3. Consider the two tests t1
and t2: Two code suggestions {c2, c3} FAIL on test suggestion
t1 while one suggestion {c1} PASS, making sdiscr(t1) =
min(1, 2)/max(1, 2) = 1/2. Similarly, two code suggestions
{c1, c2} PASS on test suggestion t2 while one suggestion
{c3} FAIL and sdiscr(t2) = 1/2. All code suggestions in this
example PASS on test t3 making sdiscr(t3) = 0.

3) Pruning and ranking code suggestions: TICODER re-
turns a ranked list of code suggestions, whose behavior is
consistent with all the user responses, and prunes the other
code suggestions generated by the LLM, whose execution

behavior on tests is contradictory to user expectation. Let us
first consider the case of code pruning. Let t .

= (i, o) be a test
in the form of an input-output example presented to the user.
If the user responds PASS, then we prune any code c ∈ G for
which executing c(i) ̸= o. Similarly, if the user responds FAIL,
then we prune any code c ∈ G for which executing c(i) = o.
In addition, for TICODER-OUTPUT if the user provides the
desired output o′ for the input i, then we can further prune any
code suggestion c for which c(i) ̸= o′. Note that we cannot
soundly prune any code if the user responds with UNDEFINED.

Finally, we define a simple code ranking strategy that uses
the tests in U to determine a ranking on code suggestions in G
as follows: Each generated code c ∈ G is executed with each
test t ∈ U and gets assigned as a score the number of passing
tests dc. The codes are then ranked based on the decreasing
order of dc.

Following from the example in the previous section, rep-
resented in Figure 3, code suggestion c1 passes on all tests
{t1, t2, t3}, code suggestion c2 passes on {t2, t3} and code
suggestion c3 passes on {t3}. Our ranking would therefore
rank c1 highest initially in the absence of any feedback from
the user.

V. RQ1: USER STUDY METHODOLOGY

We aim to understand how the TICODER workflow may
support software developers as they use AI-programming
assistants to generate and evaluate code suggestions. We are
seeking to answer the following research question:

RQ1 How does TiCoder impact the performance of python
developers evaluating AI generated code, in terms of
task correctness, time, and cognitive load?

To answer our research question we conduct a controlled
study with 15 participants consisting of 3 coding evaluation
tasks. To complete each task, participants are asked to interact
with one of the following AI assistants: Assistant 1 with no
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user intent refinement, Assistant 2 representing TICODER-
PASSFAIL workflow, or Assistant 3 representing TICODER-
OUTPUT workflow. Participants use each assistant to generate
and evaluate a set of code suggestions.

We recruit participants using a mix of distribution lists and
personal contacts. 3 of 18 participants were used as part of
the pilot study to inform our design, and the remaining 15
are used in the final experiment. Table I contains participant
demographic information. 8 participants are either professional
software engineers or researchers at Microsoft, and the re-
maining 10 participants are PhD students from academia. The
study was IRB approved with voluntary participation and paid
$15. All interviews were conducted over a video-conferencing
platform and lasted approximately 45-minutes.

Participants were asked to complete each code evaluation
tasks with one of the three different AI code generation
assistants. Each task had a time limit of 15 minutes. We use
a within subject design, such that each participant uses all
three assistants, i.e. a different assistant for each task. Each
AI assistant represents one treatment under study, which we
describe in the next subsection.

ID Python
Experience

Python
Frequency

AI Programming
Assistant Use Occupation

Pilot >5 years Daily Daily Industry
Pilot >5 years Monthly Monthly Industry
Pilot >5 years Daily Daily Industry
P1 >5 years Monthly Daily Industry
P2 >5 years Weekly Monthly Industry
P3 >5 years Rarely or never Rarely or never Industry
P4 >5 years Daily Daily Industry
P5 3 - 5 years Weekly Weekly Academia
P6 >5 years Weekly Weekly Academia
P7 >5 years Weekly Monthly Industry
P8 >5 years Monthly Rarely or never Academia
P9 >5 years Daily Monthly Academia
P10 1 - 2 years Weekly Daily Academia
P11 >5 years Daily Daily Academia
P12 3 - 5 years Weekly Rarely or never Academia
P13 >5 years Weekly Rarely or never Academia
P14 3 - 5 years Rarely or never Rarely or never Academia
P15 >5 years Daily Daily Industry

TABLE I: *Weekly denotes a few times a week, *Monthly
denotes a few times a month.
A. Treatments

The experiment includes one control condition and two
distinct treatment conditions, implemented as different AI pro-
gramming assistants. Each assistant differs in it’s interaction
mechanism with the developer and dictates the method in
which to surface the final set of code suggestions shown to
each user. To ensure that the same set of codes is shown to all
participants across treatments, we pre-select the prompt used
to generate code suggestions. Second, to ensure we measure
the impact of our dependent variables on only the process of
evaluating AI generated code, we also restrict the ability to edit
the AI generated code suggestions. The interaction framework
of each Assistant is described below:

1) Control condition: AI Programming Assistant 1:
Assistant 1 represents the control condition for the experiment.
Given the pre-selected prompt, Assistant 1 generates 5 code
suggestions for the user, surfaced in a random order. Partici-
pants using Assistant 1 always see 5 unique code suggestions.

We make this decision to reflect the current user experi-
ence scenario of several real-world AI code generation tools,
such as GitHub Copilot’s completion panel. For example, the
GitHub Copilot completion panel in VSCode shows the user
up to 10 possible code suggestions at a time. Our decision is
also informed by research pointing to the benefit of surfacing
multiple code suggestions[31], [33], [32], [8]. We limit the
maximum number of codes to 5 so as to allow the participant
to complete each task within 15 minutes.

2) Treatment condition: AI Programming Assistant 2:
Assistant 2 represents the TICODER-PASSFAIL (Sec. IV-A)
scenario, where a user provides instructions in the form of a
prompt, and then the Assistant generates test cases that the user
must validate. The user validates each test by indicating if the
test should pass or fail. Assistant 2 then uses the tests to prune
any of the 5 code suggestions that differ in behaviour validated
by the user. For example, if the user decides that the test should
pass, only codes that pass the test are retained. These retained
code suggestions are shown to the user, in random order.

3) Treatment condition: AI Programming Assistant
3: Assistant 3 represents the TICODER-OUTPUT scenario
(Sec. IV-A). Instead of indicating whether a test should
pass/fail (i.e. Assistant 2 interaction mechanism), users must
provide the expected output of the test. Assistant 3 then uses
the tests completed by the user to prune any of the 5 code
suggestions that do not generate an output consistent with what
the participant defined.

Both Assistants 2 and 3 use the tests to prune away
generated codes that do not match the behaviour specified by
the participant. We restrict the number of pruned codes in each
task so that a participant using Assistant 2 or 3 will always
see between 3-4 code suggestions if they correctly evaluate
the tests shown to them. We make this decision to reflect the
potential real-world scenario where TICODER is able to prune
away at least 1 of the candidate code suggestions generated
by an AI Assistant. However, a participant may see less than
3 code suggestions if they specify a contradictory or incorrect
program behaviour through their answers to the tests.

Participants interact with the assistants in an online survey
platform, but they are able to copy and paste the generated
code and tests into an IDE of their choice during the task.
All code is formatted so as to not introduce external factors
into the participants’ time. The interactive nature of the AI
Assistants in encoded into the survey logic, to mimic real-
world execution and pruning of code suggestions based on
a user’s answers. Participants can maintain their view of the
tests they validated in the survey throughout the task.

B. Task Design

We selected coding tasks that would satisfy the following
criteria, for each of the three tasks: (1) evaluating 5 AI-
generated code suggestions could be completed in fifteen
minutes, (2) there are syntactically valid but semantically
incorrect code completions given by the LLM (GPT-3.5)
with a diversity of error types across tasks (3) they varied
in problem domain and complexity, and (4) the LLM could
generate reasonable tests that capture the diverse error types.
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Task Task Name Description Treatments

T1 LOWERUNDERSCORE
Write a function that returns true if the input string consists of two sequences of lowercase letters joined
with a single underscore and false otherwise. A1, A2, A3

T2 FIRSTMISSING Write a function that finds the smallest missing number from a sorted list of integers, starting from 0. A1, A2, A3

T3 MAXPRODUCT
Write a function to find the maximum product formed by multiplying numbers
of an increasing contiguous subsequence of that array. The sequence may include negative numbers. A1, A2, A3

TABLE II: Tasks included in the user study, derived from the MBPP dataset. A1 represents the control treatment, A2 represents
the TICODER-PASSFAIL treatment, and A3 represents the TICODER-OUTPUT treatment.

1) Identifying Task Candidates: We select task candidates
from the MBPP dataset [38], a popular code generation bench-
mark, consisting of short Python functions designed to be
solved by entry-level programmers. MBPP provides a natural
language instruction, a set of tests, and a ground truth code
implementation for each problem. We cluster functions from
MBPP based on problem domain, complexity as measured
by cyclomatic complexity and size of the function in terms
of lines of code. From each cluster we identified a set
of candidate functions for which we generated a code and
test completions for using a LLM. We finally selected 3
problems for the code completion tasks that best satisfied
the selection criteria. These problems represent three dis-
tinct styles: MAXPRODUCT is an algorithmic task involving
dynamic programming, LOWERUNDERSCORE involves using
regex for string manipulation, and FIRSTMISSING involves a
recursive binary search. The tasks are detailed in Table II.

2) Generating Code and Test Suggestions: To generate
the code and test candidates, we give the natural language
instructions from the MBPP dataset as a prompt to the OpenAI
GPT-3.5-turbo chat completion endpoint with the default
API parameters (temperature = 1.0). We then sample a set of
5 incorrect codes using the tests from the MBPP dataset, to
identify buggy programs. We also run the set of generated
tests against the set of codes to make sure at least 1 and at
most 2 code suggestions are caught by the test, to restrict
the number of codes that would be pruned away. Rather than
manually inject bugs into the ground truth program, we choose
to sample the set of buggy codes from the LLM to reflect the
nature of bugs users may encounter in AI generated code.

The final set of tests and codes are fixed per task, regardless
of the treatment used. For each task there are 5 suggestions: 4
buggy codes and 1 code that is extracted as the ground truth
from the MBPP dataset. If the ground truth program extracted
from MBPP does not handle certain pre-condition violations,
we augment the code to match the task intent. For Assistants
2 and 3, we show exactly 2 of the AI generated tests for each
task. The final set of codes are either directly shown to the user
by Assistant 1, or first pruned based on the user’s evaluation
of the tests for Assistants 2 and 3.
C. Study Protocol

At the start of the study, participants are given general
instructions around how to interact with each AI assistant,
the differences between them, and how to validate generated
tests. Participants are also given time to set up their Python
interpreter or environment before the start of the study. The
survey interface used to interact with the AI assistants is shown

in Figure 4. Participants are able to view the coding task
description, and depending on the treatment received, they can
answer the AI Assistant’s question, around the validation of
a test case, directly in the survey. Once code suggestions are
surfaced by the Assistant, participants are allowed to copy the
code and run it for debugging, along with the set of provided
tests, depending on the treatment. For each task, participants
were asked to identify if the AI Assistant had returned a correct
code suggestion, and if yes, which one.

We employ a Latin Square Design to systematically vary the
pairing of tasks and AI assistants. Each participant completes
three tasks (T1, T2, and T3), each with a different AI assistant
(Assistant 1, Assistant 2, Assistant 3). The order in which the
participants use the AI assistants for each task is randomized to
account for learning effects. This design ensures that each AI
assistant is used an equal number of times across all tasks and
positions, thus balancing potential order effects and providing
a robust comparison of the AI assistants

For each task, participants are encouraged to ask any ques-
tions around the task instructions. Our aim is to approximate
the scenario where the user clearly understands what they
want the AI Assistant to generate, such that they would query
the AI Assistant with the same or similar prompt originally
used to generate code and test suggestions. Although the real
world usage of the workflow would differ, as developers often
edit their prompts, we choose to fix the prompt to control for
the generated code and tests across participants. Furthermore,
we are not interested in the task of code generation, rather
code validation, i.e. not if the user can edit the prompt to get
different suggestions, but rather how the TICODER workflow
can help refine user provided natural language specification
through tests, and how it may impact a developer’s ability to
validate code, and locate a correct suggestion out of a set of
generated codes. While TICODER may help reduce the number
of times a user must edit their original prompt, we save this
exploration for future work.

D. Measured Variables

From the study recordings and user-submitted survey data,
we collect a set of metrics on each task completed by the
participants:

Time. We measured time taken to complete each task from
the recordings of each participant interview. Time for each task
includes time taken to evaluate any tests. We measure time on
task to determine if the TICODER workflow adds significant
time overhead due to validation of tests, as compared to the
control condition.
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Fig. 4: From left to right: Examples of different interaction sequences invoked by Assistant 1 on task T1 (directly display all
code suggestions), Assistant 2 on T2 (validate the test output on a given input), and Assistant 3 on T3 (specify the output for
a given input).

Correctness. The correctness is dependant on 1) the correct
evaluation of the generated tests, relative to the oracle code
implementation and 2) the correct selection of the code sug-
gestion whose behaviour reflects the intent of the prompt. Each
task has at most 1 correct answer: either one of the generated
code suggestions is correct or none of suggestions are correct.

Cognitive Load. The TICODER workflow aims to improve
code generation accuracy and reduce the number of candidate
code snippets that a user needs to review, ultimately reducing
the cognitive effort of code evaluation. However, TICODER
may also add additional cognitive effort, stemming from the
effort required to validate tests. To test the impact of the
workflow on cognitive effort, after each task we measure
participants’ self-reported cognitive load via their responses
to five NASA TLX questions [39], a standardized approach
to measuring self-reported cognitive load used widely across
disciplines [40]. We measure the following metrics using the
standard 20 point scale: mental demand, effort, perceived
success, pace, and stress.

E. Evaluation of Measured Variables
For each measured variable, time, correctness, and dimen-

sions of cognitive load, we run a mixed-effects regression
model. We use with either linear or logistic models depending
on the data type. We use the treatment condition as the fix-
effects independent variable, and participant ID and coding
task as the random-effects variables.

We conduct an omnibus test using ANOVA to calculate the
p-value of the treatment condition (the assistant used) against
the measured metrics. To correct for multiple comparisons
and conduct False Discovery Rate (FDR) correction[41] for
significant pairs of conditions. We only report Omnibus p-
values for pairs of conditions for which the results are statis-
tically significant, and the direction of significance. We chose
mixed-effects models to account for individual variability
(participants) and hierarchical data structures (task treatment
pairs), using ANOVA for omnibus to test the significance
of fixed effects (the assistant used), and conducted FDR to
provide a comprehensive assessment of treatment effects while
controlling for Type I errors.

VI. RQ1: USER STUDY RESULTS

Our key quantitative results are summarized in Table III.
The last column of Table III provides Omnibus p-values

for pairs of conditions for which the results are statistically
significant.

Metric Assistant 1
(mean)

Assistant 2
(mean)

Assistant 3
(mean)

Pairwise
Significance

Correctness* (0,1) 0.40 0.84 0.64 a1<a2(p = 0.001)

Time (seconds) 327.7 284.15 253.88 -

Cognitive
Load* (0-100) 45.46 28.00 29.52 a1>a2(p = 0.007)

a1>a3(p = 0.012)

Mental
Demand* (0-20) 12.5 7.50 7.6 a1>a2(p = 0.001)

a1>a3(p = 0.004)

Stress* (0-20) 8.26 3.84 6.35 a1>a2(p = 0.02)

Pace* (0-20) 8.13 5.38 4.70 a1>a3(p = 0.04)

Confidence (0-20) 13.5 15.92 15.88 -

Effort* (0-20) 11.00 7.15 6.7 a1>a2(p = 0.02)
a1>a3(p = 0.014)

TABLE III: Mixed-effects model analysis results for control
(Assistant 1) and treatment (Assistant 2, 3) conditions. (*
denotes a significant observation. – indicates no significance.)

A. Impact on Task Correctness
Using the mixed-effects regression model with the cor-

rectness of the task (coded as 0 or 1), as the dependent
variable: The mean correctness was 0.40 for participants using
Assistant 1, 0.84 Assistant 2, and 0.64 Assistant 3. Although
the mean is higher in Assistant 2 and 3, the effect is significant
for Assistant 2 only with (p=0.001). Looking at the set of
mistakes made by participants, we notice several interesting
observations. In general, participants using Assistant 1 are less
likely to identify the correct code suggestion from the set of
5 suggestions.

For example, for Task 1, 3/4 participants that failed to
identify the correct suggestion were using Assistant 1. Looking
at their responses, all 3 participants identified different sug-
gestions as correct. One participant, P7 chose to not execute
any of the code suggestions, while the other two participants
P3, P5 did write tests to evaluate the code suggestions,
they were not able to find a test to characterize the bug.
Similarly, for task 3, 2/4 participants that failed to identify
the correct suggestion were using Assistant 1, and chose
different candidate suggestions. Interestingly, both participants
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also only tested a subset of the codes, based on an initial guess
of the correct suggestion.

Looking at the differences between Assistant 2 and 3, we
notice that mistakes stem from both incorrect evaluations of
the surfaced tests and incorrect evaluation of the code sugges-
tions. For example, in Task 2 FIRSTMISSING, the first test case
surfaced to participants by Assistant 2 is shown shown in Fig-
ure 2.b: assert find_First_Missing([1,2,4,6])==0.
All participants shown this test correctly answered that this test
should pass. However, when the output == 0 is obfuscated on
the same test by Assistant 3, 50% of the participants indicated
that the test should evaluate to 0, and the other 50% indicated
that it should (incorrectly) evaluate to 3. It is interesting to note
that given a correct test by Assistant 2, participants are able
to correctly evaluate it, however, if Assistant 2 had generated
an incorrect test output ( == 3) it may not always be the case
that participants are able to catch this bug.

However, not all tests surfaced by Assistant 2 are correct.
In Task 1, both tests surfaced by Assistant 2 had incorrect test
outputs; testing edge case scenarios that should fail. For exam-
ple text_lowercase_underscore("Hello_world") ==

True. For Assistant 2, all participants were able to correctly
identify that the test should fail. For participants using Assis-
tant 2, 4/5 indicated that it should evaluate to ’False’ while
one participant indicated that it should (incorrectly) evaluate
to ’True’.

In Task 3, all participants using Assistant 2 and Assistant
3 were able to correctly evaluate the tests surfaced by the
Assistants. However, 2 of the participants using Assistant 3
were not able to identify the correct code suggestion, whereas
all participants using Assistant 2 were successful.

By construction, upon the erroneous evaluation of a test case
by a user, the TiCoder workflow will prune all valid programs
that pass on the test. Therefore, participants that incorrectly
evaluate a test case will no longer see any valid AI-generated
programs and cannot correctly complete the task, unless they
specify that none of the code suggestions are correct. In
the TiCoder workflow, noisy user response guarantees that
generated code does not match the ’ground truth’ user intended
specifications. Therefore, in practice, the option to skip a test
evaluation is imperative to the usability of the workflow, and
to reduce uncertainty as the source of noisy input by the user.
Though TiCoder may significantly support users in correctly
evaluating code suggestions, the potential for noisy feedback
is a critical risk to consider.
Key Findings Participants using TiCoder Assistant 2 are
significantly more likely to correctly evaluate AI generated
code. Participants using Assistant 3 were, on average, more
likely to correctly evaluate code suggestions compared to
participants that were not using TiCoder. However, par-
ticipants were also more prone to making mistakes while
providing test outputs that dealt with edge cases.

B. Impact on Task Time
To test the effect of each Assistant on time, we used a

mixed-effects regression model, with time as the dependent
variable. The mean time taken by participants using Assistant

1 is 327.7 seconds, 284.15 for Assistant 2, and 253.88 for
Assistant 3. Although the means differ slightly across Assis-
tants, on average participants using TiCoder take less time to
complete the code evaluation tasks. However, this effect is not
significant.

This indicates that the additional overhead of requesting
participants to verify or provide the output for a test case
does not add significantly to the time taken to complete the
task. The time taken to evaluate code suggestions may be
tempered by the number of code suggestions pruned, and the
fact that Assistants 2 and 3 provide test cases to support
the code evaluation process. One indicator of how long a
participant takes to complete a task may be tied to their code
evaluation strategy. We notice that, regardless of the treatment,
participants that choose to execute and test every single code
suggestion, take much longer than participants that scan the
code suggestions and selectively execute and test candidate
suggestions that ’look’ correct to them.

For example, (P2) had relatively longer task times when
using all 3 assistants, and chose to mentally execute every
suggestion, identify the bug in each suggestion, and then pro-
ceeded to programmatically execute and test their hypothesis.
Due to their thorough evaluation strategy, P2 was correct on
all tasks. However, we do not observe a correlation between
time on task and correctness, both within, and across tasks
(Pearson’s Correlation Coefficient r = 0.016, p = 0.911).

Key Findings The time taken to validate test cases,
introduced by TiCoder, does not introduce significant over-
head to total task time. Participants using TiCoder take, on
average, less time to complete the code evaluation tasks,
however, this effect is not significant.

C. Impact on Task Induced Cognitive Load
We analyze the self-reported cognitive load of participants

across 5 dimensions, outlined by the NASA TLX: mental
demand, effort, pace, stress, and confidence of the task correct-
ness. Cognitive load is reported as the cumulative sum across
all 5 dimensions. Using a mixed-effects regression model
with the cognitive load as the dependent variable, we observe
that participants using Assistants 2 and 3 report significantly
less cognitive load. Looking more closely at the different
dimensions, for Assistant 2 participants report significantly
less mental demand, stress, and effort required to complete
the task. For Assistant 3 participants report significantly less
mental demand, effort, and better pace.

Overall, we posit that this effect might be observed due
to the the reduced number of code suggestions that the user
must evaluate, and that tests serve as concrete mechanisms
for which to reason about the code; as well as provide a
starting point for more extensive testing of the candidate
functions, making it easier to get the task started. For example,
when asking clarifying questions about the prompt used in
a task, participants using Assistant 1 struggle to articulate
their question before coming up with an illustrative test case.
For Task 3 MAXPRODUCT, participants using Assistant 1
had difficulty conceptualizing ’increasing contiguous subse-
quence’. The interviewer made sure to answer any questions
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the participant had, but took care to not give concrete examples
to not bias the participant. For example, P19 first asked
”so you’re multiplying just two numbers, but it has to be
next to each other?”. When the interviewer clarified that it
could be more than two numbers, given that the sequence is
increasing, the participant articulated their question with an
example ”...so if I have, 1 2 4 1, it would be 1 by 2 by 4?”.
In contrast, participants that had similar questions, but were
using Assistants 2 or 3, were able to more easily articulate
their questions using test cases generated by the AI Assistant.

Key Findings Participants using TiCoder, in both Assistant
2 and 3 settings, report significantly less task-induced cog-
nitive load while evaluating AI generated code. This effect
may be explained by the code pruning and test clarification
mechanisms offered by TiCoder.

VII. RQ2: BENCHMARK EVALUATION

Results from our user study, Section 5, indicate that TiCoder
can significantly improve correctness of participants evaluating
AI generated code, and that the workflow helps to reduce
task-induced cognitive load. However, it is unclear if the
proposed workflow is able to effectively generate tests that,
once validated, can prune and rank a set of code suggestions
with higher accuracy, on a large set of problems. To eval-
uate the potential utility of the TiCoder workflow at scale,
we implement TICODER-PASSFAIL and TICODER-OUTPUT,
and conduct an empirical evaluation on two state-of-the-art
benchmarks for code generation in python. We aim to answer
the following research question:

RQ2 Does the TiCoder workflow improve the accuracy of
generated code suggestions?

A. Datasets

We use two Python programming datasets for our evalua-
tion, including the sanitized version of the MBPP dataset [38],
dataset from Google, and the HumanEval dataset, introduced
in the Codex paper [1], to answer the research questions.
MBPP consists of 427 and HumanEval of 164 examples in
the format described in Sec IV-B, along with the hidden
tests and reference implementations. We modify the original
HumanEval dataset to remove any (non-hidden) input-output
examples that are included in the docstring to avoid making
the test generation task trivial.

B. Evaluation metric

For evaluating the correctness of the generated code sug-
gestions, we use the popular metric pass@k for evaluating
the accuracy of code-generation by LLMs with respect to the
hidden tests provided by each dataset [1]. A code suggestion
is correct if it passes all the hidden tests, and pass@k
determines the mean expected value of an arbitrary sample
of size k to contain at least one correct solution. To evaluate
TiCoder, we define the metric pass@k@m to denote the ranked
pass@k for the code suggestions after m ≥ 1 user queries.
Recall that TiCoder outputs a ranked list of code suggestions,
so pass@k@m measures if any of the top k code suggestions

is correct. Given that the list of code suggestions from TiCoder
are ordered, our metric pass@k@m is not a statistical measure
(unlike pass@k which measures the statistical odds of any
sample of size k containing a correct code solution), but
deterministically check if any one of the top k ranked code
suggestions is correct.

C. Models and Baselines

TICODER augments AI assistant workflows to improve the
code generation accuracy of the underlying LLM. To assess
TICODER’s benefits across various LLMs, we’ve chosen four
state-of-the-art completion models, which include a mix of
closed-source and open-source models. We provide a brief
description of each model next.

• OpenAI code-davinci-002, text-davinci-003 [1]
is a closed source LLM specifically designed for code
completion tasks. It is based on the GPT-3 architecture
containing 175B parameters.2 text-davinci-003 is
also a closed source model of size 175B parameters,
however, it is based on the GPT-3.5 architecture and
InstructGPT [11] and can be used for a variety of nat-
ural language tasks. Compared to other non-chat based
completion models, text-davinci-003 demonstrates
highly competitive performance on a number of tasks.

• OpenAI GPT-3.5-turbo, GPT-4-turbo, GPT-4-32k
The OpenAI chat models are based on the pre-trained
GPT-3 model, which is fine-tuned using Reinforcement
Learning with Human Feedback (RLHF) [11]. While
these models are not explicitly fine-tuned for code gen-
eration, they have demonstrated strong capabilities on
several related tasks [42], [43]. We use OpenAI APIs for
the gpt-3.5-turbo, gpt-4-32k, and gpt-4-turbo

endpoints.
• Salesforce CodeGen-6B, CodeGen2.5-7B [3] is an

open source LLM, with 6B parameters, trained specif-
ically to translate natural language instructions to
code. CodeGen2.5-7B [44] is an improvement on
CodeGen-6B and is slightly larger, with 7B parameters.
Currently, this model is the state-of-the-art for code
generation compared to other models of similar parameter
size.

Our aim is to understand how TiCoder can help improve
code generation accuracy across different LLMs, and not to
identify the best performing model. Therefore, we use default
configurations for each model, and only alter temperature.
We experimented with different temperature configurations to
optimize performance and diversity of generated code and
test suggestions. Intuitively, a temperature closer to 1 allows
LLMs to provide a more diverse set of solutions, whereas a
temperature closer to 0 forces LLMs to only generate fewer
solutions with the highest confidence. Following [1], [45],
[46] for all models we settle on a temperature of 0.8, as it
maximizes the number of examples for which at least one
correct code is produced within 100 suggestions for k > 1
in pass@k. To account for the non-determinism of the LLM

2Access to this model was removed to the public by OpenAI in March 2023,
but continues to be made free and available to researchers upon request.
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Dataset Model
Baseline TICODER-PASSFAIL TICODER-OUTPUT
pass@k pass@1@m pass@1@m

1 100 1 2 3 4 5 1 2 3 4 5

MBPP

text-davinci-003 49.16 86.88 68.04 75.26 77.33 77.88 78.08 77.00 82.20 83.38 83.59 83.75
code-davinci-002 48.25 89.75 68.42 76.21 79.37 81.18 81.97 76.97 85.51 87.10 87.56 87.71

CodeGen-6B 14.85 69.55 28.62 37.91 45.18 49.97 53.67 39.64 54.01 62.34 65.30 66.56
CodeGen2.5-7B 28.32 84.74 50.27 59.70 65.02 67.84 69.58 62.78 73.84 78.10 79.52 80.42
GPT-3.5-turbo 61.91 84.77 75.12 77.31 78.21 79.04 79.03 78.24 80.86 81.06 81.76 81.78
GPT-4-turbo 69.80 86.88 80.71 81.90 82.38 83.20 83.12 83.91 84.63 84.97 85.65 85.65
GPT-4-32k 67.13 87.35 81.56 82.62 82.97 83.11 83.70 84.78 85.28 85.31 85.40 85.79

HumanEval

text-davinci-003 44.13 87.80 60.70 67.54 71.41 72.18 72.81 65.02 75.48 78.04 79.34 80.18
code-davinci-002 30.49 91.49 51.66 62.65 70.30 73.11 74.37 57.25 74.5 81.99 83.70 84.50

CodeGen-6B 11.41 43.55 15.32 19.29 24.64 28.11 29.56 26.34 32.81 39.08 44.23 48.12
CodeGen2.5-7B 21.39 76.21 32.82 41.03 46.51 49.47 52.33 35.86 51.60 61.54 65.02 68.25
GPT-3.5-turbo 59.45 89.02 73.16 76.48 77.01 77.75 79.22 73.44 76.60 78.45 78.45 79.51
GPT-4-turbo 62.62 89.63 78.36 80.42 80.92 80.84 81.34 82.22 83.17 83.42 83.62 83.84
GPT-4-32k 60.72 89.02 76.10 78.43 79.07 79.48 79.49 81.37 82.46 82.49 82.49 82.54

TABLE IV: Model baseline and TiCoder results for two python datasets: MBPP and HumanEval. User interaction results are
simulated for up to m=5 test evaluation interactions. We highlight, in blue, the highest accuracy in each column.

generations, for each dataset, we only query each model once
to generate an initial set of 100 code and 50 test suggestions
into a cache of responses. We use the same cache across all
experiments that involve the specific LLM.

D. Simulating User Response
Our proposed workflow requires real-time user response to

determine if a generated test is consistent with the user’s intent.
Therefore, in order to evaluate TICODER offline with large-
scale benchmark datasets, we define a proxy to simulate real-
time user response.

Similar to oracle-guided inductive synthesis [15], [29], [28],
we use the reference implementation bp as an oracle to answer
if a test (i, o) is consistent with the user intent, and provide the
expected output bp(i) when the test output o does not match
the user intent (for TICODER-OUTPUT). In other words, we
assume that the intent of the user is precisely captured by the
semantics of the (hidden) reference implementation. Further,
if a test input crashes the reference code, we treat the user
response as UNDEFINED to model a precondition violation.
However, this models an idealized user interaction because, in
practice, users may sometimes be unable to answer a test query
in a reasonable amount of time (say, when asked about the
value of the 100th prime number). As observed in the results
of the user study, unlike an idealized user, real participants
may sometimes provide noisy input. For example, we observe
that participants are more prone to making mistakes while
providing test outputs that dealt with edge cases. Therefore,
using the oracle as a proxy indicates that our empirical
evaluation represents an upper bound on the improvement that
TiCoder can have on the benchmarks with real users.
E. Results

To answer RQ2, we evaluate the performance of four
different models, with and without TiCoder in the TICODER-
PASSFAIL and TICODER-OUTPUT settings on MBPP and
HumanEval datasets. Table IV contains all results for each
model.

The first column contains the baseline pass@1 and
pass@100 for each model on MBPP and HumanEval
datasets. Note that pass@100 denotes the fraction of ex-
amples for which an LLM generates at least one correct

code suggestion within 100 suggestions. The second and
third columns contain the results for each model, augmented
with TiCoder in TICODER-PASSFAIL and TICODER-OUTPUT
settings respectively. We report the pass@1@m metric, with
m, the number of test-validation user interactions, ranging
from 1 to 5. We report pass@k@m only for the case of
k = 1 as it is the strictest setting for assessing the impact
of TiCoder. TiCoder improves the accuracy of pass@k@m for
higher values of k as well, but we do not present them in the
interest of space.

All three chat models, GPT-3.5-turbo, GPT-4-turbo and
GPT-4-32k demonstrate the highest accuracy for pass@1
with comparable performance across datasets. As expected,
text-davinci-003 and code-davinci-002, the two
largest completion models, achieve the fourth and fifth baseline
performance on both datasets. However, code-davinci-002

achieves the highest pass@100 across all models and both
datasets.

Overall, we observe that both TiCoder in the TICODER-
PASSFAIL and TICODER-OUTPUT settings significantly im-
prove pass@1 performance, across all models. As the number
of test validation queries increase from m = 1 to m = 5 we
also observe consistent improvement in pass@1 performance.
Although the improvement is most pronounced at m = 1,
compared to baseline.

For example, on MBPP, TICODER-PASSFAIL improves
pass@1 baseline performance of text-davinci-003 from
49.16% to 68.04%, an absolute improvement of 18.88% within
one user query. TICODER-OUTPUT improves performance
to 77.00%, which is an absolute pass@1 improvement of
27.84% within one user query. This increases to 38.55%
with 5 queries. While smaller models achieve lower pass@1
and pass@100 accuracy, TiCoder still provides modest boosts
in accuracy. For the worst performing model, CodeGen-6B
on HumanEval, TICODER-PASSFAIL provides an absolute
pass@1 improvement of 3.91% within one interaction, and
TICODER-OUTPUT provides an absolute improvement of
14.93%.

In fact, we observe that TICODER can boost code generation
accuracy of smaller models to comparable performance of
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much larger SOTA LLMs. For example, after just one user
interaction code-davinci-002 on MBPP achieves 68.42%
accuracy in the TICODER-PASSFAIL setting, which is in fact
higher than the pass@1 accuracy of all three SOTA chat
models: GPT-4-32k, GPT-4-turbo, and GPT-3.5-turbo.

Finally, as expected TICODER-OUTPUT consistently pro-
vides higher accuracy compared to TICODER-PASSFAIL,
since the former allows users to fix the incorrect test output.
TICODER-OUTPUT achieves an average absolute improve-
ment of 45.73% in the code generation accuracy for both
datasets and across all LLMs within 5 user interactions.
However, it is worth noting that TICODER-PASSFAIL, even
with its lightweight feedback (that generalizes to richer tests
or specifications), always stays within 9% of the benefits of
TICODER-OUTPUT. This demonstrates the power of LLMs to
generate test cases that satisfy user intent.

Key Findings TiCoder significantly improves pass@1
performance for all studied LLMs on both benchmarks, with
performance improvements increasing with every test val-
idation interaction. TiCoder can boost small model perfor-
mance within one user interaction, outperforming pass@1
accuracy of larger models like GPT-4-32k. Additionally,
the lightweight TICODER-PASSFAIL scenario always stays
within 9% of the performance of TICODER-OUTPUT even
in this idealized simulated user setting.

VIII. DISCUSSION

A. Tests as a developer-AI disambiguation mechanism
Results of our user study indicate that using tests as an

interactive mechanism to formalize user intent, and then prune
and rank AI generated code suggestions, can meaningfully
improve programmer performance. Results show that both As-
sistant 2 (TICODER-PASSFAIL) and Assistant 3 (TICODER-
OUTPUT) are statistically distinguishable from Assistant 1 (the
control condition without TICODER), where no interactive
test case verification or code pruning is used. Participants
using Assistant 2 are significantly more likely to correctly
evaluate AI generated code suggestions, and report reduced
task induced cognitive load, without negative impact on time
to complete each task. However, compared to Assistant 2,
participants made more mistakes when validating tests with
Assistant 3.

Further research to explore a trade-off between the ap-
proaches, in practice, should be considered. However, we find
that surfacing test cases in both forms might serve as a helpful
mechanism for which to reason about generated code. While
it is true that correctness likely depends on the evaluation
strategies used by each participant, participants that were
shown test cases by the AI Assistants performed significantly
better.

Recent work has shown that current developer-AI inter-
action workflows, as simulated by Assistant 1 in our study,
have raised new issues in the way that developers write code.
Results suggest a need for interaction mechanisms that can
support disambiguation; a critical feature of the usability of
AI-Assistants [31], [32]. We observed how TICODER can
surface a ranked list of tests that delineate the space of

possible code suggestions, providing a concrete mechanism
for identifying potential ambiguities in natural language used
to prompt LLMs. Furthermore, recent work has shown that
developers spend significant amount of time verifying code
suggestions [34][14]. While we do not observe a statistically
significant impact on the time taken to evaluate AI-generated
code suggestions when using TICODER, we do observe a
significant reduction in the amount of cognitive effort required.
We hypothesize that tests, which provide tangible artifacts
for developers to reason about the code, can serve as a
facilitating mechanism for constructing mental models of code
functionality. Ultimately, this supports developers in the task
of code evaluation. Future work should explore this in more
detail.

B. Improving LLM code generation capabilities with verified
test cases

Results of our benchmark evaluation indicate that, across
all models studied, both implementations of TICODER,
TICODER-PASSFAIL and TICODER-OUTPUT, can be used to
augment the accuracy of an LLM through improved ranking
and pruning. Specifically, we observe that using tests to better
constrain the space of possible code suggestions can improve
pass@k accuracy. This highlights the fact that current LLM ca-
pabilities may not be fully realized in practice: when prompted
for multiple code suggestions, LLMs often are capable of
generating a correct answer, but mechanisms to better rank
the set of suggestions is needed. However, the performance
boost provided by TICODER is contingent on a set of high
quality tests used by discriminative test ranking policy
(Sec. IV).

If the underlying LLM is unable to generate high quality
tests, the ranking and pruning mechanism may not be as
helpful. Future work should explore more sophisticated mech-
anisms for generating high quality tests that capture important
specifications about the code. In this work, we explore the
user study scenario where TICODER prunes away some, but
not all of the AI generated code suggestions.

It is worth noting that if the code suggestions generated
by the underlying LLM predominantly exhibit consistent be-
havior, TICODER can still be valuable to a user by providing
meaningful tests alongside the code suggestions. For example,
in a scenario where all of the suggestions are correct with
respect to the user’s intent, TICODER may not prune away
any of the code suggestions, but provides some guarantees
about program behaviour to the user.

C. The Value of Execution Based Pruning

Dataset Model
TICODER- Tests in prompt

PASSFAIL Single (pass@k) All (pass@k)

pass@1@1 k = 1 k = 5 k = 1 k = 5

MBPP GPT-4-32k 81.56 78.26 87.81 80.88 91.58
HumanEval GPT-4-32k 76.10 65.25 81.37 70.39 86.99

TABLE V: Results of prompting GPT-4 with validation tests
in the prompt



13

The TICODER workflow helps users by automatically gen-
erating and ranking interesting test cases, instead of requiring
the user to manually write them. However, users may have
a set of test cases already in mind when querying a LLM.
We explore how such a scenario compares to the TICODER
workflow by adding the set of validation tests, i.e. the ground
truth test set provided in each dataset, to the code generation
prompt. We instruct GPT-4-32k to generate a code suggestion
that passes on the set of validation tests provided in the
prompt. We then evaluate the pass@k accuracy at k = 1 and
k = 5 and compare to the TICODER pass@1@m accuracy
from Table IV. Table V contains the result of this experiment,
showing both experiments where a single test is added in the
prompt, as well as an experiment where all available validation
tests are added in the prompt, the exact number of tests varies
across both datasets.

On both MBPP and HumanEval we observe a boost in
pass@k accuracy over the baseline prompt used Table IV.
For example, on MBPP GPT-4-32k achieves a pass@1 of
67.13% with the baseline prompt (no tests) and 78.26% when
including a single test in the prompt. This increases to a
pass@1 of 80.88% when all tests are added in the prompt.
As expected, this demonstrates that adding tests in the prompt
does help improve model performance. However, recalling the
pass@1@1 accuracy of the TICODER-PASSFAIL, within one
user feedback loop, accuracy reaches 81.56%, out performing
the pass@1 accuracy where a single test is included in the
prompt by 3.31%. TICODER even performs slightly better
(0.68%) compared to the case when all tests are in the prompt.

This indicates that even if the user supplies all test, there
is no guarantee that the underlying LLM will fulfill the
user intent and generate a code suggestion that passes on
the tests. Conversely, with only one user interaction on a
highly distinguishing test, obtained by ranking LLM generated
tests, code generation accuracy greatly improves, matching the
scenario where several tests are provided to the LLM without
the added burden on the user to manually come up with test
cases.

D. Considerations for AI-Generated Tests: Precondition Vio-
lations

Tests generated by LLMs may contain pre-condition vio-
lating inputs that would cause the reference implementation
to crash or fail, and would result in a UNDEFINED response
from the user, resulting in no pruning of code.

As an illustrative case, consider from MBPP, the example
of a reference implementation with (implicit) precondition
that the argument nums array is non-empty, and throws a
divisionByZero at the return statement for an empty
nums array.

1 from array import array
2 def zero_count(nums):
3 """Write a function to find the ratio of zeroes

to non-zeroes in an array of integers."""
4 n = len(nums)
5 n1 = 0
6 for x in nums:
7 if x == 0:
8 n1 += 1

9 else:
10 None
11 return n1/(n-n1)

The following test is ranked highest by the discriminative
ranking strategy:

1 assert zero_count([]) == 0, "Empty List"

For this test, out of the (deduplicated) 80 code suggestions
from code-davinci-002, 8 suggestions pass the test, 11
suggestions fail the test and 61 suggestions crash on this
test. The score for this test is 8/11 = 0.73, which is the
highest among all tests. However, this test does not lead to
any code pruning as the user responds UNDEFINED in both
the TICODER-PASSFAIL and TICODER-OUTPUT scenarios
since the empty array causes the reference implementation
above to fail. Thus, our results in RQ2 account for tests
with UNDEFINED responses, reflecting the possible real world
impact of pre-condition violating tests on the accuracy boost
provided by TiCoder.

IX. LIMITATIONS AND THREATS

Generalizability of user study results. We evaluate
TICODER under highly controlled experimental conditions,
and the ability of developers to validate tests in more com-
plex code generation scenarios may not scale. Our study
explores two distinct test validation mechanisms surfaced in
the TICODER workflow: TICODER-PASSFAIL and TICODER-
OUTPUT. On the selected tasks, we observe that, in general,
participants were able to successfully evaluate tests in both
interaction scenarios. However, in practice specifying the out-
put of generated tests may not always be a straightforward or
simple task. In addition, we restrict participants abilities to edit
the code prompt and code suggestions, to control for variables
across participants. However, this is not a true reflection of
real-world interaction behaviours. Future work should explore
the impact of TICODER on developer productivity in real-
world code settings, with broader audiences. In addition,
we only explored how TICODER impacts the correctness of
code evaluation, i.e. how well users can disambiguate code
suggestions. For example, a future experiment might examine
how TICODER impacts online metrics such as code acceptance
rates, or the total proportion of code contributed by the
AI system, accommodating for solutions that provide partial
correctness.

Generalization of benchmark evaluation results. We also
empirically evaluate TICODER using two popular and state-of-
the-art research Python benchmarks for code generation tasks:
MBPP and HumanEval. While both benchmarks exercise
common programming patterns, they may not be representative
of real-world software development. Our findings may not
generalize to a different set of programs across different
languages and problem domains.

Test execution overhead. The proposed TICODER work-
flow incurs the cost of additional LLM inference, to generate
candidate tests, as well as resource costs related to execut-
ing tests for generated code suggestions. Cost of execution
may be non-trivial, and might not scale in scenarios where
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users wish to use an AI assistant to generate complex code.
Nevertheless, the potential reliability guarantees and reduced
effort for code verification represent a valuable trade-off when
weighed against the costs of inference and execution in real-
world scenarios. Future work should examine practical use of
TICODER at scale.

X. CONCLUSION

In this work, we propose the workflow of test-driven interac-
tive code generation using LLMs, and study it’s effectiveness
through a user study and empirical evaluation on code gen-
eration benchmarks. Our findings provide encouraging results
around guiding user intent clarification for generating more
correct programs.

In future work, we plan to extend and evaluate our im-
plementation reflecting real-world scenarios including: more
complex programs, an in-situ user study for various software
development tasks, and an empirical evaluation on realistic
benchmarks such as CoderEval [47] and NL2Fix [43]. Finally,
we plan to explore if TICODER can be extended to richer
forms of formal specifications beyond tests, such as property
based tests or pre- and post-conditions generated from user-
defined prompts [48].
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