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ABSTRACT

Photopolymerizable and degradable biomaterials are finding widespread application in the field of tissue
engineering for the engineering of tissues such as bone, cartilage, and liver. The spatial and temporal
control afforded by photoinitiated polymerizations has allowed for the development of injectable ma-
terials that can deliver cells and growth factors, as well as for the fabrication of scaffolding with complex
structures. The materials developed for these applications range from entirely synthetic polymers (e.g.,
poly(ethylene glycol)) to purely natural polymers (e.g., hyaluronic acid) that are modified with photoreac-
tive groups, with degradation based on the hydrolytic or enzymatic degradation of bonds in the polymer
backbone or crosslinks. The degradation behavior also ranges from purely bulk to entirely surface de-
grading, based on the nature of the backbone chemistry and type of degradable units. The mechanical
properties of these polymers are primarily based on factors such as the network crosslinking density and
polymer concentration. As we better understand biological features necessary to control cellular behavior,
smarter materials are being developed that can incorporate and mimic many of these factors.

INTRODUCTION

POLYMERIC MATERIALS ARE BEING WIDELY USED and con-

tinuously developed for a variety of biomedical appli-

cations. The past few decades have seen an increase in the

development of degradable biomaterials for applications

such as tissue engineering and delivery of drugs and mol-

ecules.1–3 In tissue engineering, polymeric materials can

provide scaffolding for the controlled development and

evolution of 3-dimensional (3-D) tissues.1,4 When the ma-

terials are designed to be degradable, the growing tissue

eventually replaces them.1,4 In molecule delivery, degrad-

able polymers are used to entrap various molecules that are

released as the polymer degrades or through diffusion mech-

anisms. If growth factors are delivered, this approach can

lead to alterations in cellular differentiation and the type

and quality of tissue that forms.4

Numerous clinical applications benefit from the ability to

form biomaterials in situ. For example, poly(methyl meth-

acrylate) (PMMA) bone cements are commonly used to se-

cure various implant prostheses in orthopedics.5–7 In these

applications, methyl methacrylate monomer is mixed with

PMMA chains to form a viscous solution that can be in-

jected in vivo and polymerized via redox or thermal initi-

ation. In dentistry, dimethacrylate monomers with ceramic

fillers are polymerized in tooth caries via a photoinitiated

polymerization to form composite restorations in situ.8 These

materials have excellent properties with respect to mechan-

ics but are nondegradable.

With advances in synthetic chemistry, novel multifunc-

tional monomers and macromers have been synthesized that

form degradable polymers via polymerizations initiated by

free radicals and can potentially be used as injectable bio-

materials. Although these reactive groups can polymerize

using thermal or redox initiation mechanisms, there are ben-

efits to using photoinitiated polymerizations for polymer

formation.9 The primary advantage is the temporal and spatial

control that this polymerization mechanism affords, which

leads to control over polymerization exotherms and time

of gelation and can be used for the fabrication of complex
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structures (via systems of lasers or masks). This review pres-

ents information on the general polymerization and degra-

dation mechanisms and outlines the various monomers and

macromers that have been synthesized for the production

of photopolymerizable and degradable biomaterials for ap-

plications in tissue regeneration.

NETWORK FORMATION
AND DEGRADATION

Polymerization of multifunctional monomers

In general, the polymerization of multifunctional mono-

mers is a complex process. The reaction mechanism (i.e.,

initiation, propagation, and termination) for a radical chain

polymerization is outlined in Figure 1.10 Although thermal,

redox, and photoinitiated mechanisms can all be used to

create radicals from initiator molecules, the focus of this

review is on photopolymerized networks. The rate of initi-

ation (Ri) is dependent on parameters such as the initiator

efficiency, initiator concentration, and light intensity. During

polymerization, the radicals propagate through unreacted

double bonds to form long kinetic chains. Chain transfer or

radical termination stops the growth. The rate of termina-

tion (Rt) is a bimolecular reaction and depends on the con-

centration of radicals in the system, whereas the rate of

polymerization (Rp) is a measure of the rate at which double

bonds are consumed during the polymerization. Because the

bulk of this consumption occurs in the propagation steps, Rp

can be approximated as a second-order reaction that depends

on the double bond concentration and the radical concentra-

tion. If one assumes pseudo-steady state on the radical con-

centration (i.e., Ri ¼ Rt), Rp becomes a function of Ri, the

monomer concentration [M], and the propagation (kp) and

termination (kt) kinetic constants (Fig. 1). Although simple

in form, the polymerization behavior is complex, because kp

and kt are highly dependent on the conversion and evolving

network structure.

A typical plot of Rp versus time for a multifunctional

monomer homopolymerization is shown in Figure 2, along

with the integrated rate curve, which gives double bond

conversion. Changes in initiation conditions (e.g., light in-

tensity and initiator concentration) alter the magnitude of

the peak maximum and the time to reach this maximum

rate.11,12 From the onset of the reaction, the polymerization

rate increases with conversion, in a region termed autoac-

celeration.13,14 During this time, the 3-D crosslinked net-

work structure is evolving, and the mobility of terminating

macroradicals decreases, and consequently, the rate of ter-

mination decreases. This mobility restriction on termination

leads to a build-up in the concentration of radicals in the

system, and the rate of polymerization increases. In addition,

at some point during the period of autoacceleration, a re-

action diffusion mechanism controls termination as radicals

terminate by reacting through unreacted double bonds pres-

ent in the system.15,16 After the polymerization rate reaches

a maximum, autodeceleration occurs as propagating species

are now diffusion controlled.11,13 Understanding this com-

plex interplay of reaction- and diffusion-controlled mech-

anisms is critical for the design of biomaterials forming

in situ. For example, although autoacceleration helps de-

FIG. 1. Reaction mechanism for photoinitiated polymerizations.

Ia is a function of the initiating light intensity, initiator concen-

tration, and molar absorptivity coefficient. The polymerization rate

equation shown assumes pseudo–steady state conditions.
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FIG. 2. General polymerization rate and conversion during the

radical polymerization of multifunctional monomers.
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crease total polymerization time, autodeceleration limits the

maximum conversion.

In fact, with highly crosslinked glassy networks, a double

bond conversion of one is almost never reached because of

severe restrictions on the mobility of the reacting molecules.

Unreacted monomer can have significant effects on the me-

chanics and biocompatibility of the resultant network, with

severe implications for biological applications. For instance,

low conversions can decrease the mechanical properties of

the biomaterial, and unreacted and potentially toxic mono-

mer can leach from the network and have detrimental ef-

fects on the surrounding tissue. Thus, attaining conversions

approaching 100% is important and can be problematic.

However, the formation of hydrogel networks in an aqueous

environment can occur with high conversions because of the

high mobility of reacting species during gel formation.17

An additional concern with radical polymerization in vivo

is the temperature increase during polymerization. How-

ever, temporal control over the photoinitiation process can

be used to minimize temperature increases during the exo-

thermic radical polymerization. Burdick et al.18 showed

that, by changing initiation conditions and specifically the

initiating light intensity, the temperature increase is readily

controlled. For instance, when a sample was polymerized at

room temperature with ultraviolet light, the surface tem-

perature reached a maximum of approximately 468C when

polymerized with a light intensity of 100 mW/cm2, whereas

a sample polymerized with a light intensity of 25 mW/cm2

reached a maximum temperature of only approximately

338C. This control over the temperature increase during po-

lymerization, which is not possible with thermal or redox

initiations, could also influence the encapsulation of growth

factors, because protein stability can decrease with higher

temperatures. Another concern that should be addressed in

using photopolymerization to form thick biomaterials is the

attenuation of the initiating light source due to absorption

by the initiator molecules. However, this can be overcome

using systems such as photobleaching initiators, in which

the initiator radicals absorb light at a different wavelength

than the initiator molecules,18 or dual initiators, in which a

photoinitiation mechanism raises the sample temperature

high enough to initiate thermally. This process allows for

high conversions in areas where light does not reach.

Photopolymerization in the presence of cells

The delivery of cells to damaged tissues is often one of

the primary goals of tissue engineering. With photopoly-

merization, it may be necessary to polymerize networks

directly in the presence of cells. Because of the reaction

conditions, potentially harmful radicals and light will be

present during this polymerization process, and thus, it is

necessary to determine whether cells remain viable after

encapsulation. Cell encapsulation is only possible with cer-

tain types of macromers such as water-soluble macromers

that form highly hydrated polymers upon polymerization.

Thus, many of the materials addressed in this review are

not candidates for cell encapsulation and delivery because

of their hydrophobicity and, consequently, diffusion limi-

tations to entrapped cells.

To address toxicity during polymerization, several groups

have investigated initiation conditions that lead to viable

cells upon polymerization.19,20 One specific initiating sys-

tem that uses the water-soluble photoinitiator Irgacure 2959

(I2959, 2-hydroxy-1-[4-(hydroxyethoxy) phenyl]-2-methyl-

1-propanone) and low-intensity ultraviolet light has been

widely used for the encapsulation of multiple cell types in

photopolymerizable hydrogels.21–24

However, there are several examples of loss of cell viability

being attributed to the specific initiation system used,19,20 and

thus, it is essential to pick the appropriate conditions for cell

encapsulation to promote cell viability.

General degradation behavior

of crosslinked polymers

As detailed throughout this review, numerous monomers

and macromers have been synthesized that are photopoly-

merizable into degradable networks. Several general pos-

sibilities for the formed network structures are illustrated

in Figure 3. In the first example (Fig. 3A), a polymer or

FIG. 3. Schematic of structures, network formation, and degra-

dation for various photopolymerizable monomers and macromers.

Reactive groups are represented by =, whereas hydrolytically de-

gradable groups are represented by /\/\/\. Networks are produced

using free-radical polymerizations of the reactive groups (e.g.,

acrylates/methacrylates) into kinetic chains (dashed lines) that are

degraded via hydrolysis or enzymatic breakdown.
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oligomer is end-capped first with degradable units and then

photoreactive groups (e.g., acrylates or methacrylates). Upon

exposure to light and in the presence of a photoinitiator, this

tetrafunctional macromer forms a network with degradable

units found in the crosslinks. The hydrolytically or enzy-

matically degradable units are then cleaved in the presence

of an aqueous environment or an enzyme, respectively. This

leaves degradation products of the original core molecule,

the degradable units, and kinetic chains formed during the

free-radical polymerization of the photoreactive groups (e.g.,

poly(acrylic acid) (PAA) for acrylates).

In the next example (Fig. 3B), the photoreactive groups

are found along the polymer backbone linked through de-

gradable units. These pendant reactive groups then poly-

merize to form a network that eventually degrades into the

starting polymer, the degradable units, and kinetic chains.

If the number of pendant reactive groups is limited to 2,

the behavior reduces to the behavior shown in Figure 3A.

Additionally, the photoreactive group may be found along

the polymer backbone, as shown in Figure 3C. These net-

works degrade into the kinetic chains and segments of the

starting polymer depending on the nature and location of

the degradable groups. Finally, the pendant reactive groups

may be found along a polymer chain that is itself degrad-

able (Fig. 3D). In this situation, the network cleaves along

the backbone and releases kinetic chains that probably in-

corporate segments of the starting polymer. Although ad-

ditional examples can be suggested, these comprise the

majority of systems that are covered throughout the review.

As stated in these examples, one of the primary degrada-

tion products is the kinetic chains that are formed through

the free-radical polymerization of the reactive groups. These

kinetic chains are typically PMAA or PAA if the reactive

groups are methacrylates or acrylates, respectively. Meth-

ods to understand and control the kinetic chain lengths are

important for biomaterials applications because the molec-

ular weight of water soluble polymers influences their

compatibility.25 Furthermore, the kinetic chains will influ-

ence the final polymer structure, which can influence cer-

tain material properties. As a first approximation, the kinetic

chain lengths are controlled by varying the rate of poly-

merization relative to the rate of chain-terminating events.

If one assumes that Ri is equal to Rt, then Ri (a function of

the initiator concentration and initiating light intensity) can

be used to control the distribution of kinetic chain lengths.

Burkoth et al.26 used matrix-assisted laser desorption and

ionization time-of-flight mass spectrometry to analyze the

degradation products of crosslinked polyanhydrides, and

Burdick et al.27,28 used gel permeation chromatography to

assess kinetic chain lengths. These studies determined that

network conversion, the rate of initiation, and sample depth

heavily influence kinetic chain length distributions.27,28

It is difficult to predict network physical properties and

degradation behavior based entirely on macromer structure

(e.g., molecular weight, branching), because factors such as

backbone chemistry and hydrophobicity play a role in these

properties. However, an increase in the polymer crosslink-

ing density, due to an increase in macromer concentration or

a decrease in macromer molecular weight, typically leads to

enhanced mechanical properties and an increase in the time

for network degradation, due to a decrease in water diffu-

sion and an increase in the number of bonds that must be

cleaved to break the network into water-soluble compo-

nents. Likewise, an increase in the polymer crosslinking

density can be used to slow the delivery of entrapped drugs

or growth factors because diffusion becomes more limited.

These factors are also dependent on whether the system is a

highly swollen hydrogel or a highly crosslinked network.

SYNTHETIC POLYMERS

Photopolymerizable polyanhydrides

Anseth et al.29 originally modified polyanhydrides with

crosslinkable methacrylate groups to produce polymer net-

works with controlled degradation and mechanics with

degradation, as well as the added potential of network for-

mation directly in the body. The general structures for se-

lected dimethacrylated anhydride monomers are shown in

Figure 4. In general, the core of the molecule consists of

hydrophobic repeating units, such as sebacic acid, carboxy-

phenoxy propane, or carboxyphenoxy hexane but other an-

hydride monomers, including methacrylated tricarballylic

acid (MTCA, trimethacrylated) and methacrylated pyromel-

litylimidoalanine (MPMA-ala, amino-acid containing) have

FIG. 4. Photocrosslinkable polyanhydrides, typically synthesized

via the reaction of acids with methacrylic anhydride. The ‘‘R’’

groups allow for tailoring of the hydrophobicity of the crosslinks

and, consequently, polymer degradation.
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been synthesized to impart greater crosslinking density and

a biologically recognized component, respectively.30

Photocrosslinkable polyanhydrides have been extensively

characterized with respect to reaction behavior and mate-

rial properties. Even with mild initiation conditions (e.g.,

with 0.1 wt% initiator and 7 mW/cm2 ultraviolet light, po-

lymerization occurs within 3 minutes), polymerization times

are well within acceptable clinical time scales, allowing

for network formation intra-operatively.11 In general, the

densely crosslinked networks formed from multifunctional

anhydride monomers degrade via a surface erosion mecha-

nism, with mass loss only at the surface erosion zones on

the exposed areas of the polymer. These erosion zones al-

low only minimal penetration of water into the polymer,

so hydrolysis occurs exclusively near the polymer surface

and is dictated by the polymer chemistry. For example, a

disk (*1.7 mm thickness) composed entirely of methacry-

lated sebacic acid (MSA) degrades in approximately 3 days,

whereas a disk composed entirely of the more-hydrophobic

methacrylated carboxyphenoxy hexane (MCPH) takes more

than 1 year to completely degrade.31 Because erosion occurs

only at the polymer surface, structural integrity is maintained

for longer degradation periods than in polymers that degrade

throughout their bulk. For example, more than 90% of the

tensile modulus of poly(MSA) and poly(MCPH) networks

are maintained for up to 40% mass loss,31 whereas in bulk-

eroding systems, polymer chains are cleaved relatively ho-

mogeneously through the network, and mechanical proper-

ties can plummet even when little mass loss has occurred.32,33

Photocrosslinkable polyanhydrides have been explored

for several applications. Because they are injectable, they

can be formed directly in a bone defect through a photo-

initiated polymerization and, with time, degrade as new bone

fills the defect and replaces the degrading polymer. Histo-

logical sections shown in Figure 5 illustrate the dramatic

difference in the filling of defects between a prepolymerized

polymer implant and an implant forming in situ. In Figure

5A, good contact between the polymer implant and the

surrounding bone is seen; however, in Figure 5B, the pres-

ence of a large gap in the medullary canal of the rat tibia

indicates a lack of complete defect filling by the polymer

plug. This may be one of the most important benefits of

the photocurable polyanhydrides, because good contact be-

tween the biomaterial and bone tissue is essential in tissue

regeneration and in maintaining good mechanical proper-

ties with the polymer implant. Several studies have also

shown that polyanhydrides are biocompatible when degraded

in vivo.34–37 The controlled degradation and polymerization

behavior also make crosslinked polyanhydrides excellent

candidates as drug-releasing materials.34 Owens et al.38,39

developed a compressed antisolvent precipitation and pho-

topolymerization process, which enables photopolymeri-

zation of multifunctional monomers to form degradable

crosslinked particles and is applicable to forming micro-

particles from photocrosslinkable polyanhydrides.

Photocrosslinkable poly(ethylene glycol)

Poly(ethylene glycol) (PEG), a water-soluble polymer, has

a long history of use in biomaterials. This is primarily be-

cause of the extreme hydrophilicity of PEG, which decreases

the adsorption of proteins and can be used to alter the inter-

action between materials and tissues and cells. Additionally,

the end groups on PEG are easily modified through a variety

of synthetic reactions. For instance, the reaction of PEG with

acryloyl chloride or methacryloyl chloride in the presence

of triethylamine is a simple technique for adding photore-

active vinyl groups.40 Photopolymerizable PEG hydrogels

have been used for numerous applications, including as mem-

branes for the encapsulation of islets of Langerhans,40–42 as

barriers to reduce intimal thickening after balloon angio-

plasty,43 as matrices for chondrocyte encapsulation in carti-

lage regeneration,44–48 for osteoblast encapsulation in bone

FIG. 5. Histological sections of in vivo photopolymerized

(A) and prefabricated (B) polyanhydride implants in a tibial defect

in rats. These images illustrate the filling of the defect that is pos-

sible with injectable and photopolymerizable materials.
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regeneration,21 for the encapsulation of mesenchymal stem

cells,49 and for the delivery of nitric oxide to reduce platelet

adhesion and smooth muscle cell proliferation.50 Addition-

ally, Elbert and Hubbell51 used diacrylated PEG macromers

to fabricate hydrogels incorporating various peptides by first

reacting the macromer with a cysteine-containing peptide via

a conjugate addition reaction and subsequent photopolymer-

ization into a network.

Sawhney et al.52 added oligomers of a-hydroxy acids

between the PEG and photoreactive groups to produce de-

gradable macromers. The general synthesis scheme for this

reaction is illustrated in Figure 6. PEG was first mixed with

dl-lactide (or glycolide) in the presence of stannous octoate

and reacted under vacuum. In the second step, the inter-

mediate product was redissolved in dichloromethane and

reacted on ice with triethylamine and acryloyl chloride. The

final product was obtained by filtration and subsequent

precipitation in dry diethyl ether. Metters et al.53 followed

up this study by characterizing the swelling and mechanical

behavior of the PEG-b-poly(lactic acid) (PEG-b-PLA) hy-

drogels with degradation. They showed that the volumetric

swelling ratio of the networks exponentially increased and

the compressive modulus exponentially decreased with deg-

radation. Altering the crosslinking density (i.e., initial mac-

romer concentration) of the hydrogels modulated the timing

of this behavior. A statistical kinetic model predicting the

degradation behavior of these hydrogels was also devel-

oped54,55 that accurately predicts the cleavage of crosslinks

in the PEG-b-PLA networks. A second-generation model

incorporating network non-idealities was also introduced.56

For tissue-engineering applications, the acrylated PEG-

b-PLA macromers have been primarily explored for the

regeneration of musculoskeletal tissues. For cartilage regen-

eration,57–60 hydrogels were fabricated from non-degradable

PEG macromers, degradable PEG-b-PLA macromers, and

copolymers of these two macromers. The overall conclusion

of the work is that the copolymers support the most ideal

cartilaginous tissue formation. Specifically, the neocartilage

formed in the non-degrading hydrogels was not as spatially

distributed as the cartilage formed in the copolymer gels and

did not maintain the proper phenotype. Additionally, the

crosslinking density of the hydrogels influenced the amount,

type, and distribution of cartilage tissue that was engineered.

The histological images in Figure 6 show the distribution of

one extracellular matrix component (collagen) produced

by osteoblasts photoencapsulated in degradable PEG hy-

drogels fabricated from macromers with various ratios of

lactic acid and caprolactone as the degradable component

(unpublished data). The lactic acid crosslinks are more rap-

idly hydrolyzed from the networks than the caprolactone

crosslinks, and thus, can be used to temporally control the

network degradation. After 12 weeks of implantation sub-

cutaneously in the dorsum of nude mice, the histology indi-

cates that the initial hydrogel chemistry plays a large role in

controlling extracellular matrix distribution. For the hydro-

gel composed entirely of the more slowly degrading mac-

romer, there is little distribution of collagen, whereas for the

50:50 ratio of macromers, there is even distribution of col-

lagen matrix throughout the construct.

Degradable PEG hydrogels have also been extensively

investigated as matrices for drug-delivery applications. West

and Hubbell61,62 photoencapsulated model drugs of various

molecular weights in the hydrogels and showed that re-

lease rofiles were altered by changing the drug molecular

weight, the number of degradable units in the macromer, and

the PEG molecular weight. Burdick et al.63 and Piantino

et al.64 used PEG hydrogels for the delivery of osteoinduc-

tive growth factors and neurotrophic factors to stimulate

mineralized tissue formation and neurite outgrowth, respec-

tively. This work illustrated the activity of growth factors

released from the hydrogels through the stimulation of ec-

topic bone formation subcutaneously and in behavioral and

anatomical outcomes in spinal cord injuries. Finally, Quick

and Anseth65–67 photoencapsulated deoxyribonucleic acid

(DNA) in PEG hydrogels and used several techniques to

preserve the integrity of the DNA during the encapsulation

process. Various models68,69 have been developed that the-

oretically predict release behavior from the photopoly-

merizable and degradable PEG hydrogels.

Other PEG-based synthetic macromers have also been

developed. Wang et al.70 synthesized PEG hydrogels that

contain phosphate groups. The PEG-di-[ethylphosphatidyl

(ethylene glycol) methacrylate] macromers were water sol-

uble and formed hydrogels upon exposure to ultraviolet

light in the presence of a photoinitiator. The hydrogels lost

mass continuously over a 9-week period and supported the
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FIG. 6. Left. Synthesis of photopolymerizable and hydrolyti-

cally degradable poly(ethylene glycol) (PEG) macromers. Right.

Collagen staining for osteoblasts photoencapsulated in degradable

PEG hydrogels, in which the degradable unit is a slowly degrading

caprolactone (A) or a 50:50 mixture of macromers containing ei-

ther caprolactone or lactic acid (B). These alterations in degrada-

tion can be used to control the distribution of extracellular matrix

by entrapped cells.
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encapsulation of viable human mesenchymal stem cells.

Finally, Li et al.71 synthesized a new biodegradable and

photocrosslinkable macromer with a polyphosphoester back-

bone containing PEG spacers followed by acrylate groups.

Properties such as the swelling ratio and mass loss were

found to decrease as the amount of macromer increased. No

cytotoxicity was observed when bone marrow stem cells

isolated from goat (GMSCs) were cultured in media con-

taining macromer up to concentrations of 10 mg/mL. Fur-

thermore, it was shown that GMSCs retained their viability

when encapsulated in these photopolymerized gels.71

As an alternative to hydrolytically degradable hydrogels,

West and Hubbell72 developed networks that were proteo-

lytically degradable by enzymes present near a cell surface

during cell migration. The hydrogels were collagenase or

plasmin sensitive, depending on the peptide incorporated.

The synthesized hydrogels degraded specifically in the pres-

ence of the various proteases. Mann et al.73 used an alternate

procedure to synthesize proteolytically degradable hydro-

gels. Adhesive peptides were grafted to the hydrogels, and

the hydrogels supported the viability, proliferation, and pro-

duction of extracellular matrix components by encapsulated

smooth muscle cells. Gobin and West74 continued this work

to control the migration of fibroblasts through collagenase

and plasmin degradable hydrogels. Their work illustrated

the importance of the hydrogel design (i.e., tethered ligand

density) on cell migration and showed that proteolytically

degradable sites and adhesive tethers were necessary for cell

migration.

Finally, PEG-based macromers have been used to fabri-

cate complex 3-D structures, taking advantage of the spatial

resolution that is afforded during photoinitiated polymeri-

zations. Although non-degradable PEG was used, Tsang

et al.75 and Arcaute et al.76 developed systems of photo-

patterning and sterolithography to fabricate complex struc-

tures that incorporate living cells. These techniques are

useful in the development of multicellular scaffolds with

complex architectures for the engineering of a variety of

tissues.

Photocrosslinkable poly(propylene fumarates)

Poly(propylene fumarate)s (PPFs) are linear polyesters

consisting of repeat units with multiple ester groups and

unsaturated carbon–carbon double bonds. The general struc-

tures of PPFs are shown in Figure 7. Networks are formed

using covalent crosslinking through the carbon–carbon

double bonds using thermal- or photoinitiators and hydro-

lyzed into primarily fumaric acid and propylene glycol,

which are cleared from the body via metabolic path-

ways.77–86 Fisher et al.80 were the first to investigate the

photoinitiated crosslinking mechanism of PPF networks

with variations in initiator concentrations. This work dem-

onstrates the importance of initiator type and concentration

on network properties such as sol fraction and tensile mod-

ulus.80 Timmer et al.87 also investigated the importance of

initiator type by comparing the mechanical properties and

average molecular weight between crosslinks of PPF-based

networks formed via thermal- and photoinitiation. In gen-

eral, networks formed using photoinitiation had greater

compressive moduli and strength, reaction conversions, and

crosslinking densities than networks formed using thermal

initiation.87

PPF-based networks are attractive for orthopedic applica-

tions because of their high compressive strengths.87,88 Var-

ious techniques such as polymerization in silicone molds,88

stereolithography,89 and porogen leaching78,79,81,84,86 have

been used to develop PPF scaffolds for implantation. Scaf-

folds implanted into rabbit cranial defects demonstrated

bone ingrowth,81,84 especially when the scaffolds were coated

with transforming growth factor-b1.84 Various copolymers

containing PPF-based macromers have also been developed.

For example, Jo et al.90,91 and Temenoff et al.92 developed

oligo(poly(ethylene glycol) fumarate) (OPF) macromers

containing alternating blocks of fumaric acid and PEG

(Fig. 7). Photocrosslinked hydrogels based on these macro-

mers exhibit a range of bulk properties, such as mesh size

and percentage elongation at fracture, depending on the

molecular weight of the PEG block.92 Further functionali-

zation of these networks was demonstrated using OPFs

modified with the addition of glycine-arginine-glycine-

aspartic acid groups and crosslinked with PPF to form

biodegradable scaffolds.90 In addition, networks with com-

pressive and diametrical tensile strengths ranging from 1.8 to

146.0 MPa and 2.5 to 9.3 MPa, respectively, have been

prepared using the crosslinking of methacrylated propylene

fumarate and acrylated poly(e-caprolactone) (PCL) oligo-

mers.93 Moreover, Wang et al.85,94 have developed multi-

block copolymers consisting of PPF and PCL, as well as

PPF, PCL, and PEG, for tissue engineering applications.

Photocrosslinkable poly(a-hydroxy esters)

Poly(a-hydroxy esters), such as PLA, PGA, and PCL are

among the most thoroughly investigated synthetic bioma-

terials.52,95–101 However, poly(a-hydroxy esters) are highly

crystalline polyesters that lack modifiable side groups, which

could be used to facilitate better material–cell interac-

tions.96–101 Several investigators have combined degradable

PLA and photopolymerization technology to manipulate the

backbone with amino acids to allow for further functiona-

lization.100,101 PLA films have also been surface grafted
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FIG. 7. Examples of photocrosslinkable poly(propylene fuma-

rates) for generating highly crosslinked networks (A) and hydro-

gels (B).
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with PAA and poly(acrylamide) using photopolymerizat-

ion in an attempt to generate a bioactive surface with rapid

degradation.99

Various copolymers containing blocks of poly(a-hydroxy

esters) and other synthetic polymers have been prepared. For

example, PCL-b-PEG-b-PCL networks have been synthe-

sized and exhibit a greater compressive modulus and degra-

dation rate than PCL alone.102 Networks based on adipic

acid, 4-hydroxycinnamic acid, and PCL diols with elas-

tomeric properties have also been prepared.103,104 PCL

has also been combined with trimethylene carbonate, and

the reaction behavior and bulk properties have been char-

acterized.105–113 Furthermore, star-PCL-b-PLA macromers

have been synthesized.114,115 These networks show depen-

dence in physical properties and degradation on the length

of the copolymer block.114,115 Han and Hubbel96,97 and Ju

et al.98 prepared lactide-based PEG networks emanating

from glycerol centers. The ratio of the lactide and PEG in-

corporated controlled the degradation rates of these net-

works.96,98

Diethylene glycol has also been used as an initiator

for the ring-opening polymerization of d,l-lactide and e-

caprolactone, which were subsequently methacrylated to

allow for crosslinking.12,116–118 Alterations in the oligomer

chemistry led to changes in mechanical properties and deg-

radation behavior. In particular, a decrease in loss of bulk-

eroding mass, as well as an increase in protein adsorption,

osteoblast viability, and other indications of bone forma-

tion, corresponded to an increase in network hydropho-

bicity.12,116–118 Porous scaffolds of one of the more

hydrophobic oligomers were prepared using salt leaching

and implanted into critical-sized cranial defects in a murine

model, which demonstrated the potential of this material as

an in situ synthetic graft for large bone defects.119 Similar

triblock polymers were synthesized and prepared as scaf-

folds using micro-patterning.120

Photocrosslinkable poly(vinyl alcohol)

Poly(vinyl alcohol) (PVA) has been used in a variety of

biomedical applications, such as contact lenses, tendon re-

pair, and drug delivery and as scaffolds for a wide variety

of tissue-engineering applications, including bone, cartilage,

and heart valves.121,122 Hydrogels prepared from this syn-

thetic polymer are of particular interest because of its bio-

compatibility, high water content, tissue-like elasticity, and

ease of fabrication and sterilization.17,122–125 Perhaps the

most attractive feature of using PVA is the abundance of

pendant hydroxy groups along the backbone which allow

for various chemical modifications such as the introduction

of methacrylate groups or biological molecules like fibro-

nectin.17,121–129

Previously, PVA hydrogels have been crosslinked using

chemical means such as aldehydes128 and physical mecha-

nisms such as repeated freeze–thaw cycles to induce crys-

tallinity.125,128 Limitations to these methods include toxicity

of the aldehydes and stability of physical crosslinks. Muhle-

bach et al.130 were the first to use photopolymerization to

crosslink PVA by modification of the aforementioned pen-

dant hydroxy groups with acrylic acid and methacrylic acid

for contact lens applications.125,130 Several other groups have

been successful in introducing various functional groups

for photopolymerization by reaction with various reagents

such as glycidyl acrylate,127 methacrylamidoacetaldehyde

dimethyl acetal,121 and 2-isocyanatoethyl methacrylate.17

A wide range of mechanical properties and degradation

times are obtainable by varying the concentration of reactive

groups and number and type of degradable groups.121,123,128

These hydrogels degrade via hydrolysis of ester bonds un-

til reverse gelation occurs when there is no longer an in-

finite network present but only branched, soluble chains.124

Nuttelman et al.125 engineered a hydrogel scaffold by pre-

paring PLA capped with hydroxyethyl methacrylate, which

was subsequently grafted onto PVA. This copolymer dem-

onstrated control over degradation and greater cell adhe-

sion based on the number of lactide repeat units per side

chain.125 Copolymers of PVA and PEG, as well as PVA

and chondroitin sulfate (CS), have been created and used to

encapsulate chondrocytes for cartilage tissue engineering

applications.17,129

Photocrosslinkable poly(b-amino ester)s

Poly(b-amino ester)s are a class of materials that were

originally developed for such biomedical applications as

nonviral gene delivery vehicles, because of lower toxicity

than other cationic polymers used for the same applica-

tion.131,132 Anderson et al.133 synthesized and characterized

a large library of poly(b-amino ester)s with acrylate end

groups using various amines and diacrylates and a simple

synthetic process with no byproducts. The general structure

of these macromers is shown in Figure 8. The various re-

agents were chosen to introduce chemical diversity and

variations in hydrophobicity within the macromer library,

and an excess of diacrylates (i.e., diacrylate:amine >1) was

used to ensure reactive end groups. The macromers can be

photopolymerized into networks with hydrolysis resulting

in small molecule bis(b-amino acid)s, diols, and PAA ki-

netic chains as degradation products.133 The macromers

formed polymers that exhibited a wide range of degradation

behaviors and times (an example of one time point is shown

in Fig. 8), and it was observed that mass loss was slower

when more hydrophobic amines were incorporated into the

macromers. In addition, a wide range of mechanical prop-

erties (E ¼ 4-350 MPa) was obtained through variations in

macromers. The stiffness of these materials did not neces-

sarily correlate to degradation time. Therefore, materials

exhibiting the optimal mechanical properties and degrada-

tion rates can be prepared for a variety of tissue engineering

applications.133 Brey et al.134 further illustrated the ability

to use macromer molecular weight to control the network

properties and cellular interactions.
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Other synthetic and photocrosslinkable polymers

Other systems of synthetic polymers have been prepared

using various modifications and processing techniques.

For example, Carnahan et al.,135 Grinstaff et al.,136 Luman

et al.137 and Sontjens et al.138 synthesized photocrosslink-

able dendrimers based on PEG, glycerol, and succinic acid.

These systems have been applied as scaffolds for cartilage

tissue engineering and corneal tissue repair.135,136,138 Thiol-

acrylate photopolymers, which are capable of photopolymer-

ization with or without the addition of photoinitiators, have

been polymerized using a mixed-mode chain and step-growth

mechanism between the diacrylate (e.g., PEG-PLA) mono-

mer and a multifunctional thiol (e.g., pentaerythritol tetrakis

(3-mercaptopropionate)). A wide range of bulk properties139

and degradation rates are offered through the versatility of the

chemistry involved in this system.139–141 Furthermore, one

significant benefit of these networks is that curing depths may

exceed 10 cm with initiator-free systems.139

NATURAL POLYMERS

Photocrosslinkable collagen and gelatin

Gelatin, or denatured collagen, has several desirable

properties for use as a biomaterial, including its biological

interaction capabilities and numerous side groups for mod-

ification.142 Previously, chemical crosslinking was initiated

using various bifunctional reagents such as glutaraldehyde,

but these gels resulted in cases of local cytotoxicity and

calicification.142,143 Van Den Bulcke et al.142 derivatized

gelatin by reacting it with methacrylic anhydride to in-

troduce photocrosslinkable moieties. They noted that the

degree of substitution of the gelatin and the storage condi-

tions controlled the overall strength of the gel.142 Brinkman

et al.144 also used methacrylic anhydride to incorporate an

acrylate moiety onto the lysine and hydroxylysine residues

of the collagen backbone (Fig. 9). Photocrosslinking of the

macromer using visible light irradiation and in the presence

of rat aortic smooth muscle cells was used to prepare

gels.144 A significant increase in the mechanical integrity of

the construct was observed, although it was still sufficiently

less than the tensile strength required for in vivo applica-

tions, such as vascular grafts. They showed that the triple

helical conformation, as well as cell viability, were main-

tained during the crosslinking process.144

In addition to reaction with methacrylic anhydride, col-

lagen has been derivatized using an 1-ethyl-3-(3-dimethyl

aminopropyl) carbodiimide/N-hydroxysuccinimide (EDC/

NHS) conjugation method to add photosensitive cinnamate

moieties.143 This method produced photocrosslinked gels

with mechanical properties comparable with those cross-

linked using glutaraldehyde.143 Moreover, collagen and

gelatin have been reacted with other reagents to facilitate

light-induced chemical crosslinking. For example, gelatin

has been modified with benzophenone and xanthene dyes

and has been reacted in the presence of PEG diacrylate

for the production of tissue adhesives.145 Gelatin has also

been modified with styrene groups by reaction with 4-

vinylbenzoic acid. This modified gelatin has also been

reacted with PEG diacrylate and investigated as a tissue

adhesive glue for arterial repair.146 The release rate of albu-

min from these gels is indirectly related to the gelatin con-

centration and degree of modification, and the adhesivity

of the gel was greater than that of fibrin glue.147 Styrene-

derivatized gelatin has also been investigated for applica-

tions such as delivery vehicles,148–150 nerve guides,151,152

and cell carriers for chondrocyte transplantation.153

Photocrosslinkable polysaccharides

Hyaluronic acid. Hyaluronic acid (HA) is a naturally

derived nonimmunogenic, nonadhesive glycosaminoglycan

composed of D-glucuronic acid and N-acetyl-D-glucosamine

and is found in many connective tissues.154–162 HA under-

goes enzymatic degradation154,156–160,162,163 and plays roles

in the promotion of cell motility and proliferation,154,156,160,163

wound healing,154,157,158,163 angiogenesis,157–159 and the re-

duction of long-term inflammation.154,157–159 It is attractive

for biomaterial applications because it can be modified with

various functional groups such that covalent crosslinking

reactions are possible.154–169 Smeds et al.162 modified HA

FIG. 8. The general chemical structure of poly(b-amino ester)s

and an example of mass loss at one time point (99 days); R1 de-

pends on the diacrylate (A–J) used, and R2 depends on the amine

(1–12) used. These results illustrate the diversity available in the

macromer library.
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for photopolymerization with the addition of a methacrylate

group by reaction with methacrylic anhydride (Fig. 9).162

They investigated the influence of the degree of methacry-

lation on bulk mechanical properties such as swelling,

compression, and creep compliance. It was demonstrated

that the hydrogels prepared from methacrylated HA (HA-

MA) are capable of swelling up to 14 times their dry weight

and are stronger and more resilient than corresponding al-

ginate gels.161

Because of its role in cardiac morphogenesis, HA-MA

has been studied as a scaffold for heart valve tissue engi-

neering.163,167 Masters et al.163 investigated the spreading

and proliferation of valvular interstitial cells (VICs) on HA-

MA–based gels. VICs encapsulated within the gels remained

viable, and the scaffold degradation products increased VIC

proliferation.163 Burdick et al.22 systematically studied the

effect of HA molecular weight, degree of methacrylation,

and macromer concentration on the bulk properties of the

resulting HA-MA gels. Volumetric swelling ratios varied

from approximately 8 to 42, and the compressive modulus

ranged from approximately 2 to more than 100 kPa when

the macromer concentration was varied from 2% to 20%.

The viability of fibroblasts seeded within these gels de-

creased as the macromer concentration increased. Neocar-

tilage was observed in gels seeded with swine auricular

chondrocytes.154 Further study of this system for cartilage-

engineering applications demonstrated optimal neocartilage

production in hydrogels fabricated with 2 wt% of 50 kDa

HA-MA macromer and early passaged chondrocytes.164,165

HA-MA has also been investigated for corneal regenera-

tion168 and for micromolding of cellular microarrays.156,166

HA was also modified with N-3-aminopropyl methacry-

lamide160 and glycidyl methacrylate (GMHA). 155,157–159

GMHA was further modified with acrylated forms of PEG,

and EDC/NHS was used to conjugate the model peptide

hexaglycine to GMHA.157 Stable hydrogels with high pep-

tide conjugation efficiencies (�80%) and defined physio-

chemical properties were formed by controlling the reactant

ratios.157 GMHA was also partially oxidized to reduce chain

rigidity and was examined for vocal fold regeneration.155

Moreover, protein release from GMHA scaffolds has been

investigated in an effort to create a combinatorial scaffold

and delivery device.159

Dextran. Dextran is a biodegradable bacterial polysac-

charide consisting of a-1,6 D-glucopyranosyl residues with

approximately 5% to 10% a-1,3 linked side chains.170–172 It

has previously been studied for delivery of pharmaceutical

drugs, peptides, and proteins.170,172,173 Repeat units in dex-

tran have 3 free hydroxy groups that allow for further

functionalization with various reactive moieties and allow

for covalent crosslinking.171–173 For example, dextran has

been modified by reaction with methacrylic anhydride to

incorporate an acrylate functional group onto one of the

A
H
N

0

0H 0H

H0

H0

0H

0H

H0 H0 H0

NH
2

NAc

NH

m

0

0

0

0

0

0

0

0

0

0H0

H0

0

0

NH

0H
0S0

3

00C

n

0H

0H

0

0

0

0

0

0

0

0
0

00C

0

0

n

n

n

0

1

NH

N
3

0

B

E

C

D

FIG. 9. Examples of various photopolymerizable natural polymers including (A) collagen, (B) hyaluronic acid, (C) chitosan,

(D) dextran, and (E) chondroitin sulfate.
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hydroxy groups (Fig. 9).170,174 A wide range of swelling

properties can be obtained by altering the degree of meth-

acrylate substitution. Hydrogels based on this system were

loaded with different drugs, such as doxorubicin, and their

release profiles were investigated. It was observed that a

higher degree of substitution led to a delay in drug release

time; the quantity of drug released also decreased as the

molecular weight of the drug increased.174 Hydrolytic deg-

radation of dextran-based hydrogels was induced by the ad-

dition of PLA subunits onto the backbone.172,173,175 This

system was further modified by reacting dextran with allyl

isocyanate and PLA such that a wider range of physical

properties could be obtained because of the greater degree of

substitution.172,175 Drug release from these gels was found to

be dependent on the rate and formulation of the 3-D porous

scaffold in the gel, the hydrolytic degradation of PLA, and

the hydrophobic interaction between PLA and the drug.175

Chitosan. Chitosan is a partially deacetylated form of chi-

tin, a natural linear homopolymer of b-1,4-linked N-acetyl-

D-glucosamine.176–178 Useful advantages of chitosan include

its hemostatic activity,176 immunological activity, and abil-

ity to accelerate wound healing.176,178 It has been modified

by reaction with N,N,N’,N’-tetramethylethylenediamine,

EDC, and 4-O-b-D-galactopyranosyl-(1,4)-D-gluconic acid

to introduce azide and lactose moieties for photocrosslink-

ing (Fig. 9). This modified chitosan (AZ-CH-LA) has pri-

marily been investigated as a tissue adhesive,176,178,179 and

it has been shown that AZ-CH-LA demonstrates binding

strengths stronger than fibrin glue and is effective at sealing

punctures in thoracic aorta and lungs in rabbit models.179

Azide-modified chitosans have also been investigated as

matrices for drug delivery177,180 and as a cell-seeded mate-

rial for micromolding181 and photolithography.182 More-

over, chitosan has also been modified by reaction with

4-vinylbenzoic acid, which has further been used to create

tubular structures upon irradiation with visible light.183

Chondroitin sulfate. Chondroitin sulfate is an enzymat-

ically degradable proteoglycan composed of repeating

units of glucuronic acid and N-acetylgalactosamine with a

sulfate and carboxyl group located on each disaccharide

unit.184–186 It is one of the major components of native

cartilage tissue aggrecans, is capable of absorbing large

quantities of water, and is thus regarded as being respon-

sible for the great compressive strength of the tissue.186

Chondroitin sulfate has been modified for photocrosslink-

ing (Fig. 9) by reaction with glycidyl methacrylate to form

glycidyl methacrylate (GMA)-CS,184,186 and an inversely

proportional relationship between degree of methacrylate

substitution, as well as crosslinking density and water con-

tent, was found.186 GMA-CS was combined with polyeth-

ylene oxide diacrylate to form hydrogels, which had a

greater water content than hydrogels composed of polyeth-

ylene oxide diacrylate alone. The viability of chondrocytes

loaded into these gels was also maintained.184 Similar re-

sults were obtained with CS modified with methacrylic an-

hydride and copolymerized with PEG185 and PVA.17

SUMMARY AND FUTURE DIRECTIONS

In summary, a wide range of different precursor mol-

ecules are being developed that form networks via

photoinitiated polymerizations for tissue-engineering and

molecule-delivery applications. The diversity in polymer

properties, ranging from highly crosslinked, hydrophobic

networks to loosely crosslinked, swollen hydrophilic hy-

drogels, expands the applicability of these biomaterials.

As more knowledge and understanding of biological events

such as tissue healing and cell–material interactions be-

comes available, the materials used in these applications

will become smarter and more complex. Particularly, there

is great interest in designing biological function into poly-

mers, such as enzymatically degrading crosslinks and ad-

hesion sites, to better control the interactions between cells

and materials. Also, as advances are made in the area of

polymer synthesis, it is becoming easier to tailor polymer

properties and structure as desired. Novel materials may

be able to open up avenues for unique material behavior

such as externally triggered properties (e.g., temperature

induced), shape-memory polymers, and the patterning of

structures 3-dimensionally. The next decade is bound to pro-

duce previously unimaginable biomaterials that use photo-

polymerization technology and can help to overcome our

shortage of tissue available for transplantation to patients.
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