A Foundation for Programming

1.3 Conditionals and Loops

A Foundation for Programming

Control Flow

Control flow.

. Sequence of statements that are actually executed in a program.

. Conditionals and loops: enable us to choreograph control flow.

If Statement

The if statement. A common branching structure.

- . Evaluate a boolean expression. . If true, execute some statements.

Conditionals

1

If Statement

The if statement. A common branching structure.

- . Evaluate a boolean expression.
- . If true, execute some statements.
- If false, execute other statements.

max = x;

max = y;

9

11

If Statement

Ex. Take different action depending on value of variable.

8

If Statement Examples

absolute value	if $(x < 0) x = -x;$
put x and y into sorted order	<pre>if (x > y) { tr t = x; x = y; y = t; }</pre>
maximum of x and y	if (x > y) max = x; else max = y;
error check for division operation	<pre>if (den == 0) System.out.println("Division by zero"); else System.out.println("Quotient = " + num/den);</pre>
error check for quadratic formula	<pre>double discriminant = b*b - 4.0*c; if (discriminant < 0.0) { System.out.println("No real roots"); } else { System.out.println((-b + Math.sqrt(discriminant))/2.0); System.out.println((-b - Math.sqrt(discriminant))/2.0);</pre>

The For Loop

For Loops

Anatomy of a For Loop

Q. What does it print? Α

12

For Loop: Powers of Two

For Loops: Subdivisions of a Ruler

Create subdivision of a ruler.

- Initialize ruler to " ".
- For each value i from 1 to N:
- sandwich two copies of ruler on either side of i.

For Loops: Subdivisions of a Ruler

Observation. Loops can produce a huge amount of output!

While Loop

The while loop. Another common repetition structure.

- Evaluate a boolean expression.
- If true, execute some statements.
- . Repeat.

The While Loop

Ex. Print powers of 2 that are $\leq 2^{N}\!.$

. Increment 1 from 0 to N.

Powers of Two

java PowersOfTwo 3

% java PowersOfTwo 6

19

24 38

public class PowersOfTwo {
 public static void main(String[] args) {

// last power of two to print
int N = Integer.parseInt(args[0]);

int i = 0; // loop control counter int v = 1; // current power of two while (i <= N) {</pre>

i = i + 1; v = 2 * v;

} } }

}

System.out.println(i + " " + v);

 $\overline{}$ print i and ith power of two

While Loop Challenge

Q. Anything wrong with the following code for printing powers of 2?

<pre>int i = 0;</pre>
int $v = 1;$
while (i <= N)
<pre>System.out.println(i + " " + v);</pre>
i = i + 1;
v = 2 * v;

20

23

Technical conditions. f(x) is smooth; t_0 is good estimate.

24

Loop Examples

print largest power of two less than or equal to N	<pre>int v = 1; while (v <= N/2) v = 2*v; System.out.println(v);</pre>
compute a finite sum (1 + 2 + + N)	<pre>int sum = 0; for (int i = 1; i <= N; i++) sum += i; System.out.println(sum);</pre>
compute a finite product ($N! = 1 \times 2 \times \times N$)	<pre>int product = 1; for (int i = 1; i <= N; i++) product *= i; System.out.println(product);</pre>
print a table of function values	<pre>for (int i = 0; i <= N; i++) System.out.println(i + " " + 2*Math.PI*i/N);</pre>

Nesting

26

29

31

Nested If Statements

25

28

30

Ex. Pay a certain tax rate depending on income level.

graduated income tax calculation

Use **nested** if statements to handle multiple alternatives.

Nested If Statements

Need all those braces? Not always.

	<pre>if (income < 47450) rate = 0.22; else if (income < 114650) rate = 0.25; }</pre>		
	<pre>else if (income < 174700) rate = 0.28; else if (income < 311950) rate = 0.33;</pre>		
	else rate = 0.35;		
is shorthand for			
	if (income < 47450) rate = 0.22;		
	<pre>else { if (income < 114650) rate = 0.25;</pre>		
	else {		
	if (income < 174700) rate = 0.28;		
	<pre>else { if (income < 311950) rate = 0.33;</pre>		
	else rate = 0.35;		
	}		
	3		
	}		

but be careful when nesting if-else statements. [See Q+A on p. 75.]

Nested If Statement Challenge

Q. What's wrong with the following for income tax calculation?

	0 47 450	
	0 - 47,450	22%
	47,450 - 114,650	25%
	114,650 - 174,700	28%
	174,700 - 311,950	33%
	311,950 -	35%
double r	ate = 0.35;	

if (income <	47450)	rate = 0.22;
if (income <	114650)	rate = 0.25;
if (income <	: 174700)	rate = 0.28;
if (income <	311950)	rate = 0.33;

wrong graduated income tax calculation

Control Flow Summary

Control flow.

- Sequence of statements that are actually executed in a program.
- . Conditionals and loops: enable us to choreograph the control flow.

Control Flow	Description	Examples
straight-line programs	all statements are executed in the order given	
conditionals	certain statements are executed depending on the values of certain variables	if if-else
loops	certain statements are executed repeatedly until certain conditions are met	while for do-while

Extra Slides

Oblivious Sorting

```
Do-While Loop
```

Sort. Read in 3 integers and rearrange them in ascending order.

20

40

The do-while loop. A less common repetition structure. • Execute sequence of statements. • Check loop-continuation condition. • Repeat. do { statement 1; statement 2; } while (boolean expression); do-while loop syntax

Do-While Loop

- Ex. Find a point (x, y) that is uniformly distributed in unit disc.
- →• Pick a random point in unit square.
- Check if point is also in unit disc.
- __. Repeat.

