

Arrays

This lecture. Store and manipulate huge quantities of data.

Array. Indexed sequence of values of the same type.

Examples.

52 playing cards in a deck.
. 10 thousand undergrads at Penn
. 1 million characters in a book
. 10 million audio samples in an MP3 file.
. 4 billion nucleotides in a DNA strand.
. 73 billion $G o o g l e ~ q u e r i e s ~ p e r ~ y e a r . ~$
. 50 trillion cells in the human body

- 6.02×10^{23} particles in a mole.

Many Variables of the Same Type

Goal. 10 variables of the same type.

Goal. 1 million variables of the same type.

Arrays in Java

Java has special language support for arrays.
. To make an array: declare, create, and initialize it.

- To access entry i of array named a, use a [i].
. Array indices start at 0.

int $\mathrm{N}=10$;	// size of array
double[] a ;	// declare the arr
$\mathrm{a}=$ new double [N];	// create the array
$\text { for (int } i=0 ; i<N ; i+1)$	// initialize the array
$a[i]=0.0 ;$	// all to 0.0

Vector Dot Product

Dot product. Given two vectors $\mathrm{x}[\mathrm{]}$ and $\mathrm{y}[\mathrm{]}$ of length n , their dot product is the sum of the products of their corresponding components.

```
double[] x = { 0.3, 0.6, 0.1 };
double[] y = { 0.5,0.1, 0.4};
int N = x.length;
louble sum = 0.0; 
    sum = sum + x[i]*y[i];
    }
```

i	$x[i]$	$y[i]$	$x[i] * y[i]$	sum
				0
0	.30	.50	.15	.15
1	.60	.10	.06	.21
2	.10	.40	.04	.25
				.25

Shuffling a Deck

Ex. Print a random card.

```
String[] rank = {
    "2", "3", "4", "5", "6", "7", "8", "9"
    "10", "Jack", "Queen", "King", "Ace"
};
String[] suit = {
    "Clubs", "Diamonds", "Hearts", "Spades"
};
int i= (int) (Math. random() * 13); // between 0 and 12
int j = (int) (Math.random() * 4); /| between 0 and 3
System.out.println(rank[i] + " of " + suit[j])
```


Setting Array Values at Run Time

Ex. Create a deck of playing cards and print them out.

Q. In what order does it output them?
A. two of clubs
two of di amonds
two of hearts
two of spades
three of clubs
B. two of clubs
three of club
four of clubs
five of clubs
six of clubs

Shuffling

Goal. Given an array, rearrange its elements in random order.
Shuffling algorithm.
. In iteration i, pick random card from deck [i] through deck [N-1], with each card equally likely
. Exchange it with deck [i].

D

Coupon Collector Problem

Coupon collector problem. Given n different card types, how many do you have to collect before you have (at least) one of each type?

Simulation algorithm. Repeatedly choose an integer i between 0 and $\mathrm{N}-1$. Stop when we have at least one card of every type.
Q. How to check if we've seen a card of type i?
A. Maintain a boolean array so that found [i] is true if we've already collected a card of type i.

Coupon Collector: Java Implementation
public class CouponCollector $\{$
public static void main(String[] args) \{
int $N=$ Integer. parseInt (args [0]);
int cardent $=0 ; \quad / /$ number of cards collected int valent $=0$; // number of distinct cards
// do simulation
boolean[] found = new boolean [N]
while (valcnt $<\mathbf{N}$) $\{$
int val $=($ int $) \quad($ Math. randam () * N) cardent++;
if (!found[val]) \{ valcnt++; found[val] = true;
,
1
// all N distinct cards found System.out.println(cardent);
\}
)

Coupon Collector: Debugging

Debugging. Add code to print contents of all variables.

val	found	valent	cardent
	012345		
	FFFFFF	0	0
2	FFTFFF	1	1
0	TFTFFF	2	2
4	TFTFTF	3	3
0	TFTFTF	3	4
1	TTTFTF	4	5
2	TTTFTF	4	6
5	TTTFTT	5	7
0	TTTFTT	5	8
1	TTTFTT	5	9
3	TTTTTT	6	10

Challenge. Debugging with arrays requires tracing many variables.

Coupon Collector: Mathematical Contex \dagger

Coupon collector problem. Given N different possible cards, how many do you have to collect before you have (at least) one of each type?

Fact. About $\mathrm{N}(1+1 / 2+1 / 3+\ldots+1 / \mathrm{N}) \sim \mathrm{N} \ln \mathrm{N}$.

Ex. $N=30$ baseball teams. Expect to wait ≈ 120 years before all teams win a World Series.
Q. Given a sequence from nature, does it have same characteristics as a random sequence?
A. No easy answer - many tests have been developed.

Coupon collector test. Compare number of elements that need to be examined before all values are found against the corresponding answer for a random sequence.

Multidimensional Arrays

Two-Dimensional Arrays

Two-dimensional arrays.

- Table of data for each experiment and outcome.
. Table of grades for each student and assignments.
- Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction. Matrix.
Java abstraction. 2D array.

Setting 2D Array Values at Compile Time

Initialize 2D array by listing values.

Matrix Multiplication

Matrix multiplication. Given two N-by-N matrices a and b, define c
to be the N -by- N matrix where $\mathrm{c}[\mathrm{i}][j]$ is the dot product of the $i^{\text {th }}$ row of $a[][]$ and the $j^{\text {th }}$ column of $b[][]$.

Array Challenge

Q. How many scalar multiplications multiply two N -by-N matrices?
A. N
B. N^{2}
C. N^{3}
D. N^{4}
double[][] $c=$ new double[N] [N]
for (int $i=0 ; i<N ; i++)$
for (int $j=0 ; j<N ; j++$)
\quad for (int $k=0 ; k<N ; k++)$
$c[i][j]+=a[i][k] * b[k][j]$;

Summary			
Arrays. - Organized way to store huge quantities of data. . Almost as easy to use as primitive types. . Can directly access an element given its index. Ahead. Reading in large quantities of data from a file into an array.			
	MW, Youki geins iubeserent 		

