
1

1.4 Arrays

Introduction to Programming in Java: An Interdisciplinary Approach · Rober t Sedgewick and Kevin Wayne · Copy right © 2002–2010 · 26 Feb 2012 14:30:16
2

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

any program you might want to write

conditionals and loops

Math text I/O

assignment statements primitive data types

store and manipulate
huge quantities of data

3

Arrays

This lecture. Store and manipulate huge quantities of data.

Array. Indexed sequence of values of the same type.

Examples.

 52 playing cards in a deck.

 10 thousand undergrads at Penn.

 1 million characters in a book.

 10 million audio samples in an MP3 file.

 4 billion nucleotides in a DNA strand.

 73 billion Google queries per year.

 50 trillion cells in the human body.

 6.02 1023 particles in a mole.

bjbrown 0

hawka 1

apathare 2

anann 3

catheriz 4

ericslee 5

fannliu 6

lilleyia 7

index value

4

Many Variables of the Same Type

Goal. 10 variables of the same type.

// tedious and error-prone

double a0, a1, a2, a3, a4, a5, a6, a7, a8, a9;

a0 = 0.0;

a1 = 0.0;

a2 = 0.0;

a3 = 0.0;

a4 = 0.0;

a5 = 0.0;

a6 = 0.0;

a7 = 0.0;

a8 = 0.0;

a9 = 0.0;

…

a4 = 3.0;

…

a8 = 8.0;

…

double x = a4 + a8;

5

Many Variables of the Same Type

Goal. 10 variables of the same type.

// easy alternative

double[] a = new double[10];

…

a[4] = 3.0;

…

a[8] = 8.0;

…

double x = a[4] + a[8];

declares, creates, and initializes
[stay tuned for details]

6

Many Variables of the Same Type

Goal. 1 million variables of the same type.

// scales to handle large arrays

double[] a = new double[1000000];

…

a[123456] = 3.0;

…

a[987654] = 8.0;

…

double x = a[123456] + a[987654];

declares, creates, and initializes
[stay tuned for details]

2

7

Arrays in Java

Java has special language support for arrays.

 To make an array: declare, create, and initialize it.

 To access entry i of array named a, use a[i].

 Array indices start at 0.

 int N = 10; // size of array

double[] a; // declare the array

a = new double[N]; // create the array

for (int i = 0; i < N; i++) // initialize the array

 a[i] = 0.0; // all to 0.0

8

Arrays in Java

Java has special language support for arrays.

 To make an array: declare, create, and initialize it.

 To access entry i of array named a, use a[i].

 Array indices start at 0.

Compact alternative.

 Declare, create, and initialize in one statement.

 Default initialization: all numbers automatically set to zero.

int N = 10; // size of array

double[] a = new double[N]; // declare, create, init

int N = 10; // size of array

double[] a; // declare the array

a = new double[N]; // create the array

for (int i = 0; i < N; i++) // initialize the array

 a[i] = 0.0; // all to 0.0

9

Vector Dot Product

Dot product. Given two vectors x[] and y[] of length N, their dot

product is the sum of the products of their corresponding components.

double[] x = { 0.3, 0.6, 0.1 };

double[] y = { 0.5, 0.1, 0.4 };

int N = x.length;

double sum = 0.0;

for (int i = 0; i < N; i++) {

 sum = sum + x[i]*y[i];

}

10

Array-Processing Examples

Shuffling a Deck

12

Setting Array Values at Compile Time

Ex. Print a random card.

String[] rank = {

 "2", "3", "4", "5", "6", "7", "8", "9",

 "10", "Jack", "Queen", "King", "Ace"

};

String[] suit = {

 "Clubs", "Diamonds", "Hearts", "Spades"

};

int i = (int) (Math.random() * 13); // between 0 and 12

int j = (int) (Math.random() * 4); // between 0 and 3

System.out.println(rank[i] + " of " + suit[j]);

3

13

Setting Array Values at Run Time

Ex. Create a deck of playing cards and print them out.

Q. In what order does it output them?

A. B.

String[] deck = new String[52];

for (int i = 0; i < 13; i++)

 for (int j = 0; j < 4; j++)

 deck[4*i + j] = rank[i] + " of " + suit[j];

for (int i = 0; i < 52; i++)

 System.out.println(deck[i]);

typical array-processing
code changes values

at runtime

two o f cl ubs

two o f di amon ds

two o f he arts

two o f sp ades

three of club s

...

two o f cl ubs

three of club s

four of c lubs

five of c lubs

six o f cl ubs

...

14

Shuffling

Goal. Given an array, rearrange its elements in random order.

Shuffling algorithm.

 In iteration i, pick random card from deck[i] through deck[N-1],

with each card equally likely.

 Exchange it with deck[i].

int N = deck.length;

for (int i = 0; i < N; i++) {

 int r = i + (int) (Math.random() * (N-i));

 String t = deck[r];

 deck[r] = deck[i];

 deck[i] = t;

}

between i and N-1 swap
idiom

15

Shuffling a Deck of Cards: Putting Everything Together

publi c cl ass Deck {

 pu blic sta tic void mai n(St ring [] args) {

 Str ing[] su it = { " Club s", "Di amon ds", "He arts ", " Spad es" };

 Str ing[] ra nk = { " 2", "3", "4 ", " 5", "6", "7" , "8 ", " 9",

 " 10", "Ja ck" , "Q ueen ", " King ", " Ace" };

 int SUI TS = sui t.le ngth ;

 int RAN KS = ran k.le ngth ;

 int N = SUI TS * RAN KS;

 Str ing[] de ck = new Str ing[N];

 for (in t i = 0; i < RAN KS; i++)

 for (int j = 0; j < SUIT S; j++)

 d eck[SUIT S*i + j] = r ank [i] + " of " + s uit[j];

 for (in t i = 0; i < N; i++) {

 int r = i + (int) (M ath. ran dom() * (N-i));

 Stri ng t = d eck[r];

 deck [r] = de ck[i];

 deck [i] = t;

 }

 for (in t i = 0; i < N; i++)

 Syst em.o ut.p rint ln(d eck[i]) ;

 }

}

avoid "hardwired" constants

build the deck

shuffle

print shuffled deck

16

Shuffling a Deck of Cards

% jav a De ck

5 of Club s

Jack of H eart s

9 of Spad es

10 of Spa des

9 of Club s

7 of Spad es

6 of Diam onds

7 of Hear ts

7 of Club s

4 of Spad es

Queen of Diam onds

10 of Hea rts

5 of Diam onds

Jack of C lubs

Ace o f He arts

...

5 of Spad es

% jav a De ck

10 of Dia mond s

King of S pade s

2 of Spad es

3 of Club s

4 of Spad es

Queen of Club s

2 of Hear ts

7 of Diam onds

6 of Spad es

Queen of Spad es

3 of Spad es

Jack of D iamo nds

6 of Diam onds

8 of Spad es

9 of Diam onds

...

10 of Spa des

17

War Story (PlanetPoker.com)

Texas hold 'em poker. Software must shuffle electronic deck of cards.

How we learned to cheat at online poker: a study in software security

http://itmanagement.earthweb.com/entdev/article.php/616221

Coupon Collector

14demo-shuffle.pptx

4

19

Coupon Collector Problem

Coupon collector problem. Given N different card types, how many

do you have to collect before you have (at least) one of each type?

Simulation algorithm. Repeatedly choose an integer i between 0 and N-1.

Stop when we have at least one card of every type.

Q. How to check if we've seen a card of type i?

A. Maintain a boolean array so that found[i] is true if we've already

 collected a card of type i.

assuming each possibility is equally
likely for each card that you collect

20

Coupon Collector: Java Implementation

public class CouponCollector {

 public static void main(String[] args) {

 int N = Integer.parseInt(args[0]);

 int cardcnt = 0; // number of cards collected

 int valcnt = 0; // number of distinct cards

 // do simulation

 boolean[] found = new boolean[N];

 while (valcnt < N) {

 int val = (int) (Math.random() * N);

 cardcnt++;

 if (!found[val]) {

 valcnt++;

 found[val] = true;

 }

 }

 // all N distinct cards found

 System.out.println(cardcnt);

 }

}

type of next card
(between 0 and N-1)

21

Coupon Collector: Debugging

Debugging. Add code to print contents of all variables.

Challenge. Debugging with arrays requires tracing many variables.

22

Coupon Collector: Mathematical Context

Coupon collector problem. Given N different possible cards, how many

do you have to collect before you have (at least) one of each type?

Fact. About N (1 + 1/2 + 1/3 + … + 1/N) ~ N ln N.

Ex. N = 30 baseball teams. Expect to wait 120 years before

all teams win a World Series.

under idealized assumptions

23

Coupon Collector: Scientific Context

Q. Given a sequence from nature, does it have same characteristics

as a random sequence?

A. No easy answer - many tests have been developed.

Coupon collector test. Compare number of elements that need to be

examined before all values are found against the corresponding answer

for a random sequence.

Multidimensional Arrays

5

25

Two-Dimensional Arrays

Two-dimensional arrays.

 Table of data for each experiment and outcome.

 Table of grades for each student and assignments.

 Table of grayscale values for each pixel in a 2D image.

Mathematical abstraction. Matrix.

Java abstraction. 2D array.

Reference: Botstein & Brown group

Gene 1

Gene n

gene expressed
gene not expressed

26

Two-Dimensional Arrays in Java

Array access. Use a[i][j] to access entry in row i and column j.

Zero-based indexing. Row and column indices start at 0.

int M = 10;

int N = 3;

double[][] a = new double[M][N];
for (int i = 0; i < M; i++) {

 for (int j = 0; j < N; j++) {

 a[i][j] = 0.0;

 }

}

27

Setting 2D Array Values at Compile Time

Initialize 2D array by listing values.

 double[][] p = {

 { .02, .92, .02, .02, .02 },

 { .02, .02, .32, .32, .32 },

 { .02, .02, .02, .92, .02 },

 { .92, .02, .02, .02, .02 },

 { .47, .02, .47, .02, .02 },

 };

28

Matrix Addition

Matrix addition. Given two N-by-N matrices a and b, define c

to be the N-by-N matrix where c[i][j] is the sum a[i][j] + b[i][j].

double[][] c = new double[N][N];

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 c[i][j] = a[i][j] + b[i][j];

29

Matrix Multiplication

Matrix multiplication. Given two N-by-N matrices a and b, define c

to be the N-by-N matrix where c[i][j] is the dot product of

the ith row of a[][] and the jth column of b[][].

double[][] c = new double[N][N];

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)

 c[i][j] += a[i][k] * b[k][j];

all values initialized to 0

dot product of row i of a[][]
and column j of b[][]

30

Array Challenge

Q. How many scalar multiplications multiply two N-by-N matrices?

A. N B. N2 C. N3 D. N4

double[][] c = new double[N][N];

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 for (int k = 0; k < N; k++)

 c[i][j] += a[i][k] * b[k][j];

6

31

Summary

Arrays.

 Organized way to store huge quantities of data.

 Almost as easy to use as primitive types.

 Can directly access an element given its index.

Ahead. Reading in large quantities of data from a file into an array.

http://imgs.xkcd.com/comics/donald_knuth.png

