2.3 Recursion
Programming
\%\% 0
comont

Greatest Common Divisor

Gcd. Find largest integer that evenly divides into p and q.
Ex. $\operatorname{gcd}(4032,1272)=24$.
$4032=2^{6} \times 3^{2} \times 7^{1}$
$1272=2^{3} \times 3^{1} \times 53^{1}$
gcd $=2^{3} \times 3^{1}=24$

Applications.
. Simplify fractions: 1272/4032 $=53 / 168$.
. RSA cryptosystem.

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Overview

What is recursion? When one function calls itself directly or indirectly.

Why learn recursion?
. New mode of thinking.
. Powerful programming paradigm.
Many computations are naturally self referential.
. Mergesort, FFT, gcd, depth-first search.

- Linked data structures.
. A folder contains files and other folders.
Closely related to mathematical induction.

Greatest Common Divisor
Gcd. Find largest integer that evenly divides into p and q .
Ex. gcd $(4032,1272)=24$.
$4032=2^{6} \times 3^{2} \times 7^{1}$
$1272=2^{3} \times 3^{1} \times 53^{1}$
$g c d=2^{3} \times 3^{1}=24$
Applications.
- Simplify fractions: $1272 / 4032=53 / 168$.
RSA cryptosystem.

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.
Euclid's algorithm. [Euclid 300 BCE]

Greatest Common Divisor

Gcd. Find largest integer d that evenly divides into p and q.

Java implementation.

Δ

Htree in Java

Towers of Hanoi Legend

Q. Is world going to end (according to legend)?
. 64 golden discs on 3 diamond pegs.

- World ends when certain group of monks accomplish task.
Q. Will computer algorithms help?

Towers of Hanoi: Properties of Solution

Remarkable properties of recursive solution

- Takes $2^{n}-1$ moves to solve n disc problem.
. Sequence of discs is same as subdivisions of ruler.
. Every other move involves smallest disc.

Recursive algorithm yields non-recursive solution!

- Alternate between two moves:
- move smallest disc to right if n is even
- make only legal move not involving smallest disc

Recursive algorithm may reveal fate of world.

- Takes 585 billion years for $n=64$ (at rate of 1 disc per second)
- Reassuring fact: any solution takes at least this long!

Fibonacci Numbers
\square

Fibonacci Numbers and Nature

Fibonacci numbers. $0,1,1,2,3,5,8,13,21,34, \ldots$

pinecone

Recursion Challenge 1 (difficult but important)
Q. Is this an efficient way to compute $F(50)$?

A. No, no, no! This code is spectacularly inefficient.

$F(50)$ is called once
$F(50)$ is called once
$F(49)$ is called once
$F(49)$ is called once
$F(48)$ is called 2 times
$F(47)$ is called 3 time $F(46)$ is called 5 times. $F(45)$ is called 8 times.
$F(1)$ is called $12,586,269,025$ times.
\}

Recursion Challenge 2 (easy and also important)
Q. Is this a more efficient way to compute $F(50)$?

$F(n)=\frac{\phi^{n}-(1-\phi)^{n}}{\sqrt{5}}$
$=\left\lfloor\phi^{n \prime} / \sqrt{5}\right\rfloor$
$\phi=$ golden ratio ≈ 1.618
A. Yes. This code does it with 50 additions.

Lesson. Don't use recursion to engage in exponential waste.

Context. This is a special case of an important programming technique known as dynamic programming (stay tuned).

Summary

How to write simple recursive programs?

- Base case, reduction step.
- Trace the execution of a recursive program.
- Use pictures.

Why learn recursion?
. New mode of thinking
. Powerful programming tool.

Extra Slides

Fractional Brownian Motion

Fractional Brownian Motion

Physical process which models many natural and artificial phenomenon.
. Price of stocks.
. Dispersion of ink flowing in water.

- Rugged shapes of mountains and clouds.
. Fractal landscapes and textures for computer graphics.

Simulating Brownian Motion

Midpoint displacement method.

- Maintain an interval with endpoints (x_{0}, y_{0}) and (x_{1}, y_{1}).
. Divide the interval in half.
- Choose δ at random from Gaussian distribution.
- Set $x_{m}=\left(x_{0}+x_{1}\right) / 2$ and $y_{m}=\left(y_{0}+y_{1}\right) / 2+\delta$.
- Recur on the left and right intervals.

Simulating Brownian Motion: Java Implementation

Midpoint displacement method.

- Maintain an interval with endpoints (x_{0}, y_{0}) and (x_{1}, y_{1}).
- Divide the interval in half.
- Choose δ at random from Gaussian distribution.
- Set $x_{m}=\left(x_{0}+x_{1}\right) / 2$ and $y_{m}=\left(y_{0}+y_{1}\right) / 2+\delta$.
- Recur on the left and right intervals.
public static void curve (double x0, double yo
if ($x 1-x 0<0.01$) double $x 1$, double $y 1$, double var) Stabraw. line ($\mathbf{x} 0, y^{0}, \mathbf{x} 1, y^{1}$): return;
double $\mathrm{xm}=(\mathrm{x} 0+\mathrm{x} 1) / 2$;
double $\mathrm{ym}=\left(\mathrm{y}^{0}+\mathrm{y}^{1}\right) / 2$;
ym $+=$ StdRandom.gaussian(0, Math.sqrt(var)) ;
curve ($\mathbf{x} 0, \mathrm{y} 0, \mathrm{xm}, \mathrm{ym}, \mathrm{var} / 2$) ; variance halves ateach level:
curve $\left(\mathbf{x m}, \mathbf{y m}, \mathbf{x} 1, \mathbf{y}^{1}, \mathbf{v a r} / 2\right)$; - $\begin{aligned} & \text { variance halves ateach level: } \\ & \text { change factor to getdif ferent shapes }\end{aligned}$

