
1

4.1 Performance

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 13/2/2012 9:01:40
2

Running Time

Charles Babbage (1864)

“As soon as an Analytic Engine exists, it will necessarily

 guide the future course of the science. Whenever any result

 is sought by its aid, the question will arise —by what course

 of calculation can these results be arrived at by the machine

 in the shortest time?” – Charles Babbage

Analytic Engine

how many times do you
have to turn the crank?

3

The Challenge

Q. Will my program be able to solve a large practical problem?

Key insight. [Knuth 1970s]

Use the scientific method to understand performance.

compile debug solve problems
in practice

4

Scientific Method

Scientific method.

 Observe some feature of the natural world.

 Hypothesize a model that is consistent with the observations.

 Predict events using the hypothesis.

 Verify the predictions by making further observations.

 Validate by repeating until the hypothesis and observations agree.

Principles.

 Experiments must be reproducible.

 Hypothesis must be falsifiable.

5

Reasons to Analyze Algorithms

Predict performance.

 Will my program finish?

 When will my program finish?

Compare algorithms.

 Will this change make my program faster?

 How can I make my program faster?

Basis for inventing new ways to solve problems.

 Enables new technology.

 Enables new research.

6

Algorithmic Successes

Sorting.

 Rearrange array of N item in ascending order.

 Applications: databases, scheduling, statistics, genomics, …

 Brute force: N 2 steps.

 Mergesort: N log N steps, enables new technology.

John von Neumann

(1945)

2

7

Algorithmic Successes

Discrete Fourier transform.

 Break down waveform of N samples into periodic components.

 Applications: DVD, JPEG, MRI, astrophysics, ….

 Brute force: N 2 steps.

 FFT algorithm: N log N steps, enables new technology.

Freidrich Gauss
1805

8

Algorithmic Successes

N-body Simulation.

 Simulate gravitational interactions among N bodies.

 Application: cosmology, semiconductors, fluid dynamics, …

 Brute force: N 2 steps.

 Barnes-Hut algorithm: N log N steps, enables new research.

9

Three-Sum Problem

Three-sum problem. Given N integers, how many triples sum to 0 ?

Context. Deeply related to problems in computational geometry.

Q. How would you write a program to solve the problem?

% more 8ints.txt

30 -30 -20 -10 40 0 10 5

% java ThreeSum < 8ints.txt

 4

 30 -30 0

 30 -20 -10

-30 -10 40

-10 0 10

10

Three-Sum: Brute-Force Solution

public class ThreeSum {

 public static int count(int[] a) {

 int N = a.length;

 int cnt = 0;

 for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 for (int k = j+1; k < N; k++)

 if (a[i] + a[j] + a[k] == 0) cnt++;

 return cnt;

 }

 public static void main(String[] args) {

 int[] a = StdArrayIO.readInt1D();

 StdOut.println(count(a));

 }

}

all possible triples i < j < k
such that a[i] + a[j] + a[k] = 0

Empirical Analysis Empirical analysis. Run the program for various input sizes.

Caveat. If N is too small, you will measure mainly noise.

12

17.18 4,096

2.16 2,048

0.26 1,024

0.03 512

time † N

136.76 8,192

Empirical Analysis

† Running Linux on Sun-Fire-X4100 with 16GB RAM

http://redescolar.ilce.edu.mx/redescolar/act_permanentes/mate/gauss.jpg

3

13

Stopwatch

Q. How to time a program?

A. A stopwatch.

15

Stopwatch

Q. How to time a program?

A. System.currentTimeMillis() function

public static void main(String[] args) {

 int[] a = StdArrayIO.readInt1D();

 long start = System.currentTimeMillis();

 StdOut.println(count(a));

 StdOut.println((System.currentTimeMillis() - start) / 1000.0);

}

16

Data analysis. Plot running time vs. input size N.

Q. How fast does running time grow as a function of input size N ?

Empirical Analysis

Initial hypothesis. Running time approximately

obeys a power law T (N) = a N b.

Data analysis. Plot running time vs. input size N

on a log-log scale.

Consequence. Power law yields straight line.

Refined hypothesis. Running time grows

as cube of input size: a N 3.

17

Empirical Analysis

slope

slope = 3

slope = b

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Run program, doubling the size of the input?

Hypothesis. Running time is about a N b with b = lg c.

18

7.96 17.18 4,096

8.43 2.16 2,048

7.88 0.26 1,024

- 0.033 512

7.96

ratio time † N

136.76 8,192

Doubling Hypothesis

seems to converge to a constant c = 8

19

Performance Challenge 1

Let T(N) be running time of main() as a function of input size N.

Scenario 1. T(2N) / T(N) converges to about 4.

Q. What is order of growth of the running time?

 1 N N 2 N 3 N 4 2N

public static void main(String[] args) {

 ...

 int N = Integer.parseInt(args[0]);

 ...

}

4

20

Performance Challenge 2

Let T(N) be running time of main() as a function of input size N.

Scenario 2. T(2N) / T(N) converges to about 2.

Q. What is order of growth of the running time?

 1 N N 2 N 3 N 4 2N

public static void main(String[] args) {

 ...

 int N = Integer.parseInt(args[0]);

 ...

}

21

Prediction and Validation

Hypothesis. Running time is about a N 3 for input of size N.

Q. How to estimate a ?

A. Run the program!

Refined hypothesis. Running time is about 2.5 10 –10 N 3 seconds.

Prediction. 1,100 seconds for N = 16,384.

Observation.

17.17 = a 4096 3

 a = 2.5 10 –10

17.17 4,096

17.15 4,096

17.18 4,096

time † N

1118.86 16,384

time † N

validates hypothesis

Mathematical Analysis

Donald Knuth
Turing award '74

23

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and

weight by its execution time.

int count = 0;

for (int i = 0; i < N; i++)

 if (a[i] == 0) count++;

N equal to comparison

N + 1 less than comparison

2 variable assignment

2 variable declaration

frequency operation

N array access

between N (no zeros)
and 2N (all zeros)

 2 N increment

24

int count = 0;

 for (int i = 0; i < N; i++)

 for (int j = i+1; j < N; j++)

 if (a[i] + a[j] == 0) count++;

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and

weight by its execution time.

becoming very tedious to count 1/2 N (N – 1) equal to comparison

1/2 (N + 1) (N + 2) less than comparison

N + 2 variable assignment

N + 2 variable declaration

frequency operation

N (N – 1) array access

 N 2 increment

(N 1) ... 2 1 0 1/2 N(N 1)

25

Tilde Notation

Tilde notation.

 Estimate running time as a function of input size N.

 Ignore lower order terms.

– when N is large, terms are negligible

– when N is small, we don't care

Ex 1. 6 N 3 + 17 N 2 + 56 ~ 6 N 3

Ex 2. 6 N 3 + 100 N 4/3 + 56 ~ 6 N 3

Ex 3. 6 N 3 + 17 N 2 log N ~ 6 N 3

Technical definition. f(N) ~ g(N) means

lim
N

f (N)

g(N)
 1

discard lower-order terms
(e.g., N = 1000: 6 trillion vs. 169 million)

5

26

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and

weight by its execution time.

Inner loop. Focus on instructions in "inner loop."

27

Constants in Power Law

Power law. Running time of a typical program is ~ a N b.

Exponent b depends on: algorithm.

Leading constant a depends on:

 Algorithm.

 Input data.

 Caching.

 Machine.

 Compiler.

 Garbage collection.

 Just-in-time compilation.

 CPU use by other applications.

Our approach. Use doubling hypothesis (or mathematical analysis)

to estimate exponent b, run experiments to estimate a.

system dependent effects

system independent effects

28

Analysis: Empirical vs. Mathematical

Empirical analysis.

 Measure running times, plot, and fit curve.

 Easy to perform experiments.

 Model useful for predicting, but not for explaining.

Mathematical analysis.

 Analyze algorithm to estimate # ops as a function of input size.

 May require advanced mathematics.

 Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a

particular machine or compiler; applies to machines not yet built.

29

Order of Growth Classifications

Observation. A small subset of mathematical functions suffice to

describe running time of many fundamental algorithms.

for (int i = 0; i < N; i++)

 ...

N (linear)

for (int i = 0; i < N; i++)

 for (int j = 0; j < N; j++)

 ...

N 2 (quadratic)

while (N > 1) {

 N = N / 2;

 ...

}

lg N (logarithmic)

public static void f(int N) {

 if (N == 0) return;

 f(N-1);

 f(N-1);

 ...

}

2N (exponential)

public static void g(int N) {

 if (N == 0) return;

 g(N/2);

 g(N/2);

 for (int i = 0; i < N; i++)

 ...

}

N lg N (linearithmic)

lg N = log 2 N

30

Order of Growth Classifications

31

Order of Growth: Consequences

6

Binary Search

33

Sequential Search vs. Binary Search

Sequential search in an unordered array.

 Examine each entry until finding a match (or reaching the end).

 Takes time proportional to length of array in worst case.

Binary search in an ordered array.

 Examine the middle entry.

 If equal, return index.

 If too large, search in left half (recursively).

 If too small, search in right half (recursively).

8 2 1 3 4 6 5 7 10 9 11 12 14 13 0

64 14 13 25 33 51 43 53 84 72 93 95 97 96 6

6 13 72 84 64 97 33 51 95 25 96 53 93 14 43

34

Binary Search: Java Implementation

Invariant. If key appears in the array, then a[lo] ≤ key ≤ a[hi].

Java library implementation. Arrays.binarySearch().

// precondition: array a[] is sorted

public static int search(int key, int [] a) {

 int lo = 0;

 int hi = a.length - 1;

 while (lo <= hi) {

 int mid = lo + (hi - lo) / 2;

 if (key < a[mid]) hi = mid - 1;

 else if (key > a[mid]) lo = mid + 1;

 else return mid;

 }

 return -1; // not found

}

35

Binary Search: Mathematical Analysis

Proposition. Binary search in an ordered array of size N takes

at most 1 + log2 N 3-way compares.

Pf. After each 3-way compare, problem size decreases by a factor of 2.

 N N / 2 N / 4 N / 8 … 1

Q. How many times can you divide N by 2 until you reach 1?

A. About log2 N.

1

2 1

4 2 1

8 4 2 1

16 8 4 2 1

32 16 8 4 2 1

64 32 16 8 4 2 1

128 64 32 16 8 4 2 1

256 128 64 32 16 8 4 2 1

 512 256 128 64 32 16 8 4 2 1

1024 512 256 128 64 32 16 8 4 2 1

36

Searching Challenge 1

Q. A credit card company needs to whitelist 100 million customer

account numbers, processing 10,000 transactions per second.

Using sequential search, what kind of computer is needed?

A. Toaster.

B. Cell phone.

C. Your laptop.

D. Supercomputer.

E. Google server farm.

37

Searching Challenge 2

Q. A credit card company needs to whitelist 100 million customer

account numbers, processing 10,000 transactions per second.

Using binary search, what kind of computer is needed?

A. Toaster.

B. Cell phone.

C. Your laptop.

D. Supercomputer.

E. Google server farm.

42demo-bsearch.pptx

