

The Challenge
Q. Will my program be able to solve a large practical problem?

Key insight. [Knuth 1970s]
Use the scientific method to understand performance.

Scientific Method

Scientific method.

- Observe some feature of the natural world.
- Hypothesize a model that is consistent with the observations.
. Predict events using the hypothesis.
- Verify the predictions by making further observations.
. Validate by repeating until the hypothesis and observations agree.

Principles.

- Experiments must be reproducible.
- Hypothesis must be falsifiable.

Algorithmic Successes
Sorting. - Rearrange array of N item in ascending order. - Applications: databases, scheduling, statistics, genomics, ... - Brute force: N^{2} steps. - Mergesort: $N \log N$ steps, enables new technology.

Algorithmic Successes

N -body Simulation

- Simulate gravitational interactions among N bodies.
- Application: cosmology, semiconductors, fluid dynamics, ...
- Brute force: N^{2} steps
- Barnes-Hut algorithm: $N \log N$ steps, enables new research.

Three-Sum Problem

Three-sum problem. Given N integers, how many triples sum to 0 ? Context. Deeply related to problems in computational geometry.

Q. How would you write a program to solve the problem?

Three-Sum: Brute-Force Solution
public class ThreeSum \{
public static int count (int[] a) $\{$ all possible triples $i<j<k$ int $\mathrm{N}=\mathrm{a}$. length;
int cnt $=0$
for (int $i=0 ; i<N ; i++$)
for (int $j=i+1 ; j<N ; j++$)
for (int $\mathbf{k}=\mathbf{j}+1 ; \mathrm{k}<\mathrm{N} ; \mathbf{k + +}$)
if (a[i] $+a[j]+a[k]==0)$ cnt++;
return cnt;
\}
public static void main(String[] args) \{
int[] a = StdArrayIO. readInt1D();
StdOut.println(count(a)) ;
\}
3^{1}

Empirical Analysis

Empirical analysis. Run the program for various input sizes.

N	time $^{+}$
512	0.03
1,024	0.26
2,048	2.16
4,096	17.18
8,192	136.76

\dagger Running Linux on Sun-Fire-X4100 with 16GB RAM

Caveat. If N is too small, you will measure mainly noise.

Data analysis. Plot running time vs. input size N.

Empirical Analysis
Initial hypothesis. Running time approximately obeys a power law $T(N)=a N^{b}$. Data analysis. Plot running time vs. input size N on a log-log scale. Consequence. Power law yields straight line. Refined hypothesis. Running time grows as cube of input size: $a N^{3}$. slope $=\mathrm{b}$

Doubling Hypothesis

Doubling hypothesis. Quick way to estimate b in a power law hypothesis.

Performance Challenge 1

Let $T(N)$ be running time of main() as a function of input size N.
Run program, doubling the size of the input?

N	time †	ratio
512	0.033	-
1,024	0.26	7.88
2,048	2.16	8.43
4,096	17.18	7.96
8,192	136.76	7.96
		\uparrow

Hypothesis. Running time is about $a N^{b}$ with $b=\lg c$.

Performance Challenge 2

Let $T(N)$ be running time of $\operatorname{main}()$ as a function of input size N.
public static void main(String[] args)
int $\mathrm{N}=$ Integer. parseInt(args [0]);

1

Scenario 2. $T(2 N) / T(N)$ converges to about 2.
Q. What is order of growth of the running time?
$\begin{array}{llllll}1 & N & N^{2} & N^{3} & N^{4} & 2^{N}\end{array}$

Prediction and Validation

Hypothesis. Running time is about $a N^{3}$ for input of size N.
Q. How to estimate a ?
A. Run the program!

N	time †		
4,096	17.18	$17.17=a 4096^{3}$ 4,096	
4,096	17.15		

Refined hypothesis. Running time is about $2.5 \times 10^{-10} \times N^{3}$ seconds.

Prediction. 1,100 seconds for $N=16,384$.

Observation.

N	time $^{+}$
16,384	1118.86

Mathematical Analysis

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```
int count = 0;
int count = 0; 
        if (a[i] == 0) count++;
```

operation	frequency
variable declaration	2
variable assignment	2
less than comparison	$N+1$
equal to comparison	N
array access	N
increment	$\leq 2 N$

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

```
int count = 0;
```

 for (int \(i=0 ; i<N ; i++)\)
 for (int \(j=i+1 ; j<N ; j++\))
 if \((a[i]+a[j]=0)\) count++;
 | operation | frequency |
| :---: | :---: |
| variable declaration | $N+2$ |
| variable assignment | $N+1)+\ldots+2+1+0=1 / 2 N(N-1)$ |
| less than comparison | $1 / 2(N+1)(N+2)$ |
| equal to comparison | $1 / 2 N(N-1)$ |
| array access | $N(N-1)$ |
| increment | $\leq N^{2}$ |
| | |

Tilde notation.

- Estimate running time as a function of input size N.
- Ignore lower order terms.
- when N is large, terms are negligible
- when N is small, we don't care

Ex 1. $\quad 6 N^{3}+17 N^{2}+56 \sim 6 N^{3}$
Ex 2. $6 N^{3}+100 N^{4 / 3}+56 \sim 6 N^{3}$
Ex 3. $6 N^{3}+17 N^{2} \log N \sim 6 N^{3}$
discard lower-order terms
(e.g., $N=1000: 6$ trillion vs. 169 millio

Technical definition. $f(N) \sim g(N)$ means $\lim _{N \rightarrow \infty} \frac{f(N)}{g(N)}=1$

Mathematical Analysis

Running time. Count up frequency of execution of each instruction and weight by its execution time.

Inner loop. Focus on instructions in "inner loop."

Power law. Running time of a typical program is $\sim a N^{b}$.
Exponent b depends on: algorithm.
Leading constant a depends on:
. Algorithm. $\}$ system independent effects

- Input data.
- Caching.
- Machine.
- Compiler
- Garbage collection.
- Just-in-time compilation.
- CPU use by other applications.

Our approach. Use doubling hypothesis (or mathematical analysis) to estimate exponent b, run experiments to estimate a.

Analysis: Empirical vs. Mathematical

Empirical analysis.

- Measure running times, plot, and fit curve.
. Easy to perform experiments.
- Model useful for predicting, but not for explaining.

Mathematical analysis.

- Analyze algorithm to estimate \# ops as a function of input size.
- May require advanced mathematics.
- Model useful for predicting and explaining.

Critical difference. Mathematical analysis is independent of a particular machine or compiler; applies to machines not yet built.

Order of Growth Classifications

Observation. A small subset of mathematical functions suffice to describe running time of many fundamental algorithms.

Binary Search: Java Implementation

Invariant. If key appears in the array, then a[10] \leq key $\leq \mathrm{a}[\mathrm{hi}]$.

```
// precondition: array a[] is sorted
public static int search(int key, int [] a) {
    int lo = 0
    int hi = a.length -
    while (lo <= hi) ,
        int mid = 10 + (hi - 10) / 2;
            if (key < a[mid]) hi = mid - 1;
            else if (key > a[mid]) lo = mid + 1;
            else return mid
    }
    return -1; // not found
}
```

Java library implementation. Arrays .binarySearch ().

Sequential Search vs. Binary Search

Sequential search in an unordered array

- Examine each entry until finding a match (or reaching the end).
- Takes time proportional to length of array in worst case.

Binary search in an ordered array.

- Examine the middle entry.
- If equal, return index.
- If too large, search in left half (recursively).
- If too small, search in right half (recursively)

Binary Search: Mathematical Analysis

Proposition. Binary search in an ordered array of size N takes at most $1+\log _{2} N$ 3-way compares.

Pf. After each 3-way compare, problem size decreases by a factor of 2.
$N \rightarrow N / 2 \rightarrow N / 4 \rightarrow N / 8 \rightarrow \ldots \rightarrow 1$
Q. How many times can you divide N by 2 until you reach 1?
A. About $\log _{2} N$.

$\xrightarrow[16 \rightarrow 8 \rightarrow 4 \rightarrow 2]{8 \rightarrow 4}$
$32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2$
$\rightarrow 32 \rightarrow 1$
$\rightarrow 8$
$64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
$128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow$
$128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2$$\rightarrow^{1}$
$\begin{aligned} & 256 \rightarrow 128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow^{8} \rightarrow 4 \rightarrow 2 \rightarrow 1 \\ & 512 \rightarrow 256 \rightarrow 128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2\end{aligned}$
$1024 \rightarrow 512 \rightarrow 256 \rightarrow 128 \rightarrow 64 \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$

Searching Challenge 1
Q. A credit card company needs to whitelist 100 million customer account numbers, processing 10,000 transactions per second.

Using sequential search, what kind of computer is needed?
A. Toaster.
B. Cell phone.
C. Your laptop.
D. Supercomputer.
E. Google server farm

Searching Challenge 2
Q. A credit card company needs to whitelist 100 million customer account numbers, processing 10,000 transactions per second.

Using binary search, what kind of computer is needed?
A. Toaster.
B. Cell phone.
C. Your laptop.
D. Supercomputer.
E. Google server farm

