
13/6/2012

1

4.3 Stacks, Queues, and Linked Lists

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 13/6/2012 9:30:33
2

Data Types and Data Structures

Data types. Set of values and operations on those values.

 Some are built into the Java language: int, double[], String, …

 Most are not: Complex, Picture, Stack, Queue, ST, Graph, …

Data structures.

 Represent data or relationships among data.

 Some are built into Java language: arrays.

 Most are not: linked list, circular list, tree, sparse array, graph, …

this lecture TSP assignment

this lecture

3

Collections

Fundamental data types.

 Set of operations (add, remove, test if empty) on generic data.

 Intent is clear when we insert.

 Which item do we remove?

Stack. [LIFO = last in first out]

 Remove the item most recently added.

 Ex: cafeteria trays, Web surfing.

Queue. [FIFO = first in, first out]

 Remove the item least recently added.

 Ex: Line for help in TA office hours.

Symbol table.

 Remove the item with a given key.

 Ex: Phone book.

Guitar Hero Assignment

this lecture

4

Stacks

5

Stack API

pop

push

6

Stack Client Example 1: Reverse

public class Reverse {

 public static void main(String[] args) {

 StackOfStrings stack = new StackOfStrings();

 while (!StdIn.isEmpty()) {

 String s = StdIn.readString();

 stack.push(s);

 }

 while (!stack.isEmpty()) {

 String s = stack.pop();

 StdOut.println(s);

 }

 }

} % more tiny.txt

it was the best of times

% java Reverse < tiny.txt

times of best the was it

stack contents when standard input is empty

13/6/2012

2

8

Stack: Array Implementation

Array implementation of a stack.

 Use array a[] to store N items on stack.

 push() add new item at a[N].

 pop() remove item from a[N-1].

to be or not

0 1 2 3 4 5 6 7 8 9

a[]

N

public class ArrayStackOfStrings {

 private String[] a;

 private int N = 0;

 public ArrayStackOfStrings(int max) { a = new String[max]; }

 public boolean isEmpty() { return (N == 0); }

 public void push(String item) { a[N] = item; N++; }

 public String pop() { N--; return a[N + 1]; }

}

temporary solution: make client provide capacity

stack and array contents
after 4th push operation

how big to make array? [stay tuned]

11

Linked Lists

12

Sequential vs. Linked Allocation

Sequential allocation. Put items one after another.

 TOY: consecutive memory cells.

 Java: array of objects.

Linked allocation. Include in each object a link to the next one.

 TOY: link is memory address of next item.

 Java: link is reference to next item.

Key distinctions.

 Array: random access, fixed size.

 Linked list: sequential access, variable size.

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

value addr

"Alice"

"Bob"

B0

B1

"Carol"

-

B2

B3

-

-

B4

B5

-

-

B6

B7

-

-

B8

B9

-

-

BA

BB

value addr

array
(B0)

linked list
(C4)

get ith item

get next item

14

Linked list.

 A recursive data structure.

 An item plus a pointer to another linked list (or empty list).

 Unwind recursion: linked list is a sequence of items.

Node data type.

 A reference to a String.

 A reference to another Node.

Linked Lists

public class Node {

 public String item;

 public Node next;

}

Alice Bob Carol

first

item next

special pointer value null
terminates list

null

15

Building a Linked List

Node third = new Node();

third.item = "Carol";

third.next = null;

Node second = new Node();

second.item = "Bob";

second.next = third;

Node first = new Node();

first.item = "Alice";

first.next = second;

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

-

-

CC

CD

-

-

CE

CF

Value addr

Carol null

item next

third

C0 third

main memory

Bob

second

CA second

Alice

first

C4 first

16

Stack Push: Linked List Implementation

Node second = first;

first.item = "of";

first.next = second;

first = new Node();

best the was it

first

of

second

best the was it

first second

best the was it

first

second

best the was it

first

43demo-list.pptx

13/6/2012

3

17

Stack Pop: Linked List Implementation

first = first.next;

return item;

best the was it

first

of

best the was it

first

best the was it

first

of

garbage-collected

String item = first.item;

"of"

18

Stack: Linked List Implementation

public class LinkedStackOfStrings {

 private Node first = null;

 private class Node {

 private String item;

 private Node next;

 }

 public boolean isEmpty() { return first == null; }

 public void push(String item) {

 Node second = first;

 first = new Node();

 first.item = item;

 first.next = second;

 }

 public String pop() {

 String item = first.item;

 first = first.next;

 return item;

 }

}

"inner class"

stack and linked list contents
after 4th push operation

20

Stack Data Structures: Tradeoffs

Two data structures to implement Stack data type.

Array.

 Every push/pop operation take constant time.

 But… must fix maximum capacity of stack ahead of time.

Linked list.

 Every push/pop operation takes constant time.

 Memory is proportional to number of items on stack.

 But… uses extra space and time to deal with references.

to be or not

0 1 2 3 4 5 6 7 8 9

a[]

N

22

List Processing Challenge 2

Q. What does the following code fragment do?

Node last = new Node();

last.item = StdIn.readString();

last.next = null;

Node first = last;

while (!StdIn.isEmpty()) {

 last.next = new Node();

 last = last.next;

 last.item = StdIn.readString();

 last.next = null;

}

Alice Bob Carol null

item next

first

last

