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4.3  Stacks, Queues, and Linked Lists 
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Data Types and Data Structures 

Data types.  Set of values and operations on those values. 

 Some are built into the Java language: int, double[], String, … 

 Most are not:  Complex, Picture, Stack, Queue, ST, Graph, … 

 

 

 

Data structures. 

 Represent data or relationships among data. 

 Some are built into Java language: arrays. 

 Most are not: linked list, circular list, tree, sparse array, graph, … 

 

this lecture TSP assignment 

this lecture 
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Collections 

Fundamental data types. 

 Set of operations (add, remove, test if empty) on generic data. 

 Intent is clear when we insert. 

 Which item do we remove? 

 

Stack.  [LIFO = last in first out] 

 Remove the item most recently added.  

 Ex:  cafeteria trays, Web surfing. 

 

Queue.  [FIFO = first in, first out] 

 Remove the item least recently added. 

 Ex:  Line for help in TA office hours. 

 

Symbol table. 

 Remove the item with a given key. 

 Ex:  Phone book. 

 

 

Guitar Hero Assignment 

this lecture 
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Stacks 
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Stack API 

pop 

push 
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Stack Client Example 1:  Reverse 

public class Reverse { 

   public static void main(String[] args) { 

      StackOfStrings stack = new StackOfStrings(); 

      while (!StdIn.isEmpty()) { 

         String s = StdIn.readString(); 

         stack.push(s); 

      } 

      while (!stack.isEmpty()) { 

         String s = stack.pop(); 

         StdOut.println(s); 

      } 

   } 

} % more tiny.txt 

it was the best of times 

 

% java Reverse < tiny.txt 

times of best the was it 

stack contents when standard input is empty 
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Stack:  Array Implementation 

Array implementation of a stack. 

 Use array a[] to store N items on stack. 

 push()  add new item at a[N]. 

 pop()    remove item from a[N-1]. 

 

 

 

 

 

 

 

to be or not 

0 1 2 3 4 5 6 7 8 9 

a[] 

N 

public class ArrayStackOfStrings { 

   private String[] a; 

   private int N = 0; 
 
   public ArrayStackOfStrings(int max) { a = new String[max]; }  

   public boolean isEmpty()      { return (N == 0); } 

   public void push(String item) { a[N] = item; N++; } 

   public String pop()           { N--; return a[N + 1]; } 

} 

temporary solution:  make client provide capacity 

stack and array contents 
after 4th push operation 

how big to make array?  [stay tuned] 
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Linked Lists 
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Sequential vs. Linked Allocation 

Sequential allocation.  Put items one after another. 

 TOY:  consecutive memory cells. 

 Java:  array of objects. 

 

Linked allocation.  Include in each object a link to the next one. 

 TOY:  link is memory address of next item. 

 Java:  link is reference to next item. 

 

 

Key distinctions. 

 Array:  random access, fixed size. 

 Linked list:  sequential access, variable size. 
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Linked list. 

 A recursive data structure. 

 An item plus a pointer to another linked list (or empty list). 

 Unwind recursion:  linked list is a sequence of items. 

 

 

Node data type. 

 A reference to a String. 

 A reference to another Node. 

Linked Lists 

public class Node { 

  public String item; 

  public Node next; 

} 

Alice Bob Carol 

first 

item next 

special pointer value null 
terminates list 

null 
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Building a Linked List 

Node third  = new Node(); 

third.item  = "Carol"; 

third.next  = null; 
 

Node second = new Node(); 

second.item = "Bob"; 

second.next = third; 
 

Node first  = new Node(); 

first.item  = "Alice"; 

first.next  = second; 
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Stack Push:  Linked List Implementation 

Node second = first; 

first.item = "of"; 

first.next = second; 

first = new Node(); 
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Stack Pop:  Linked List Implementation 

first = first.next; 

return item; 

best the was it 
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garbage-collected 

String item = first.item; 

"of" 
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Stack:  Linked List Implementation 

public class LinkedStackOfStrings { 

   private Node first = null; 

    

   private class Node { 

      private String item; 

      private Node next; 

   } 

 

   public boolean isEmpty() { return first == null; } 

 

   public void push(String item) { 

      Node second = first; 

      first = new Node(); 

      first.item = item; 

      first.next = second; 

   } 

 

   public String pop() { 

      String item = first.item; 

      first = first.next; 

      return item; 

   }  

} 

"inner class" 

stack and linked list contents 
after 4th push operation 
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Stack Data Structures:  Tradeoffs 

Two data structures to implement Stack data type. 

 

Array. 

 Every push/pop operation take constant time. 

 But…  must fix maximum capacity of stack ahead of time. 

 

Linked list. 

 Every push/pop operation takes constant time. 

 Memory is proportional to number of items on stack. 

 But…  uses extra space and time to deal with references. 

to be or not 
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List Processing Challenge 2 

Q.  What does the following code fragment do? 

Node last = new Node(); 

last.item = StdIn.readString(); 

last.next = null; 

Node first = last; 

while (!StdIn.isEmpty()) { 

   last.next = new Node(); 

   last = last.next; 

   last.item = StdIn.readString(); 

   last.next = null; 

} 

Alice Bob Carol null 

item next 

first 
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