

CIS 110 — Introduction to Computer Programming

Fall 2018 — Final Midterm

 Name: __

 Recitation # (e.g., 201): __

 Pennkey (e.g., paulmcb): __

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this examination.

__ __________________________
Signature Date

 Instructions:
• When you turn in your exam, you may be required to  

show ID. If you forgot to bring your ID, talk to an
exam proctor immediately.

• Do not open this exam until told by the proctor.
You will have exactly 120 minutes to finish it.

• Make sure your phone is turned OFF (not to vibrate!)
before the exam starts.

• Food, gum, and drink are strictly forbidden.
• You may not use your phone or open your bag for

any reason, including to retrieve or put away pens or
pencils, until you have left the exam room.

• This exam is closed-book, closed-notes, and closed-  
computational devices.

• If you get stuck on a problem, it may be to your benefit  
to move on to another question and come back later.

• All code must be written out in proper Java format,  
including all curly braces and semicolons.

• Do not separate the pages. You may tear off the one
scratch page at the end of the exam. This scratch paper
must be turned in or you lose 3 points.

• Turn in all scratch paper to your exam. Do not take any
sheets of paper with you.

• If you require extra scratch paper, please use the backs of
the exam pages. Also, extra pages are provided at the end
of the exam. Only answers on the FRONT of pages
will be grading. The back is for scratch work only.

• Use a pencil, or blue or black pen to complete the exam.
• If you have any questions, raise your hand and a proctor
 will come to answer them.

• We wish you the best of luck.

Scores: [For instructor use only]

Question 0
 1 pt

Question 1
 12 pts

Question 2
 12 pts

Question 3
 10 pts

Question 4
 16 pts

Question 5
 9 pts

Question 6
 10 pts

Question 7
 17 pts

Question 8
 23 pts

Total:
 110 pts

 CIS 110 – Final Midterm – Fall 2018 Page 1

0) (1 point) The Easy One:
• Check that your exam has all 17 pages (excluding the cover sheet).
• Write your name, recitation number, and Pennkey (username) on the front of the exam.
• Sign the certification that you comply with the Penn Academic Integrity Code.

1.) MISC (12 pts total)

1.1) Addition

(4 points) Fill in the blank below for an unnecessarily complicated function that finds the value
of x + y using addition (i.e., repeatedly adding 1 y times). You can assume x and y are non-
negative integers.
public static int addition(int x, int y) {

 if (y == 0) { //base case //1 point

 return x; //1 point

 } else { // recursive step

 return 1+addition(x, y—1) OR addition(x+1, y-1) – both work;
 //2 points
 }
}
1.2) List (8 points – 1 point each)

For each, say if this applies to Java's built-in ArrayList, LinkedList, Neither, or Both.
Write one of the underlined choices in each box.
Elements of the List are stored sequentially in memory AL

Adding elements at the end of the List is fast Both (LL accepted because
of "expand array" operation,
but on average, it's just as
fast)

Removing elements from the front of the List is fast LL

Can contain multiple data types within the list Neither

Can be sorted using Comparator objects and the Collections.sort() method. Both

Can access and manipulate node objects in the underlying data of the List data structure Neither (you cannot access
the node class in LL)

Has fast access time for elements in the middle of the List (that is, the time it takes to access the
elements is not related to the size of the list)

AL

Must be imported using java.utility. Example:
"import java.utility.ArrayList;" and "import java.utility.LinkedList;"

Neither (it's java.util)

 CIS 110 – Final Midterm – Fall 2018 Page 2

2) RECURSION TRACING (12 points total)

Below is a mystery recursion function. Do not try to work out WHAT it's doing, as the
functionality is completely made up. It does nothing useful.

public int mystery(int x, int y) {
 System.out.println(x + ", " + y);
 if (x % 2 == 1 && y % 2 == 1) {
 return Math.min(x, y);
 } else if (x % 2 == 0 || y + x < 20) {
 return 1 + mystery(x + 1, y + 2);
 } else {
 return 2 * mystery(x / 2, y / 2);
 }
}

In the boxes below, write whatever prints when the function is called with the given arguments
in order. At the bottom of each box, say what the function call ultimately returns.

a) mystery(21,18) b) mystery(15,38) c) mystery(13,24)

21, 18 15, 38 13, 24
10, 9 7, 19 6, 12
11, 11 7, 14
 3, 7

Returns: 24

Returns: 14

Returns: 14

 CIS 110 – Final Midterm – Fall 2018 Page 3

3) USING OBJECTS (10 points total)

A recent outbreak of E. coli infections linked to romaine lettuce has forced many restaurants and
stores to stop offering romaine lettuce. The CDC has decided to enlist your help in designing a
Java Class called RomaineLettuce that would aid in the process of discovering contaminated
lettuce producers. This class will track every instance of RomaineLettuce created by adding that
instance to a list. This is so that the CDC can test all the lettuces in the market and announce
which producers and lettuce types are contaminated. Each source of lettuce is identified by a
producer and id. The CDC provided you with a function called testSample that can be used
to determine if a sample is contaminated.

public class RomaineLettuce {

 private String producer; //The farm that produced this head of lettuce
 private int id; //A unique ID for this head of lettuce
 private int ecoli_cpg; //The number of ecoli cells per gram of this head
 /**
 * The outbreak variable is True for all lettuce objects if
 * ANY one created lettuce is over 110 E. Coli cells per gram.
 */
 private boolean outbreak = false;

 private List<RomaineLettuce> lettuces = new ArrayList<RomaineLettuce>();
 /**
 * Constructor
 */
 public RomaineLettuce(String producer, int id) {
 // TODO: part A

 this.producer = producer;

 this.id = id;
 this.ecoli_cpg = testSample();
 if(this.ecoli_cpg > 110) {
 outbreak = true;
 }

 lettuces.add(this);
 }
 /**
 * Standard toString() method
 */
 public String toString() {
 return producer + ": " + id;
 }
 /**
 * Getter for Producer name
 */
 public String getProducer() {
 return producer;
 }

 CIS 110 – Final Midterm – Fall 2018 Page 4

 /**
 * Prints out each contaminated lettuce, separated by a newline. Does not
 * re-test the samples.
 */
 public void announceResults() {
 if (!outbreak) {
 System.out.println("No outbreak, everything is fine!");
 return;
 }
 // TODO: part D
 }
 /**
 * Returns a number to represent the presence of E. coli cells per gram.
 * if this number is over 110, it is likely the sample is unsafe to eat.
 */
 private int testSample() {
 //You can assume the CDC has written this method correctly
 }
}
a) On the previous page, fill in the blank in the constructor that correctly assigns the producer
and id fields of the object and adds the newly created instance to lettuces. (3 points)
b) In the space below, list the VARIABLES (not methods) that should be static for the code to
work. (2 points)

lettuces, outbreak

c) In the space below, list the METHODS (not variables) that should be static for the code to
work. (2 points)

announceResults()

d) In the space below, write the rest of the function announceResults(). This function should
print out the contaminated lettuces, separated by a newline. The lines you add should be no
longer than 5 lines of code. If it is longer than 5 lines (not counting closing brackets and not
counting the lines we gave you), it will NOT be graded, and you will get zero points. (3 points)

for (RomaineLettuce lettuce : lettuces) {
 if (lettuce.ecoli_cpg > 110) {
 System.out.println(lettuce);
 }
} OR
for (int i = 0; i < lettuces.size(); i++) {
 if (lettuces.get(i).ecoli_cpg > 110) {
 System.out.println(lettuces.get(i));
 }
}

 CIS 110 – Final Midterm – Fall 2018 Page 5

4) Object Tracing (16 points)
Dr. McBurney wrote some code by making random noises with his mouth and adding Java
syntax. Write the values of the variables at each point in the table below. (1 point per blank)
public class Blarg {
 public String sproing;
 public int pang;
 public Blarg(String s, int i) {
 sproing = s;
 pang = i;
 }
 public void sprang(int pang) {
 pang = this.pang;
 }
 public void poing(String sproing) {
 this.sproing = sproing;
 }
}
public class BlargDemo {
 public static Blarg temp;
 public static Blarg woop(Blarg neep, int spam) {
 Blarg steve = new Blarg(neep.sproing, neep.pang);
 neep.sprang(spam);
 neep.poing("Steve");
 //Point 2
 temp = steve;
 temp.pang++;
 temp.sproing.toUpperCase();
 //Point 3
 return steve;
 }

 public static void main(String[] args) {
 Blarg neep = new Blarg("Ping", 5);
 Blarg steve = neep;
 neep = new Blarg("Bang", -3);
 //Point 1
 neep = woop(steve, 14);
 steve.sproing = temp.sproing;
 //Point 4
 }
}
Point neep.sproing neep.pang steve.sproing steve.pang
1 "Bang" -3 "Ping" 5

2 "Steve" 5 "Ping" 5

3 "Steve" 5 "Ping" 6

4 "Ping" 6 "Ping" 5

 CIS 110 – Final Midterm – Fall 2018 Page 6

5) Comparator vs. Comparable (9 points)
a) Between a Comparator and a Comparable, which of the two must exist as its own class,
separate from the object being sorted? (1 point)

Compator

b) The Dean of Admissions at McBurney University (go Fightin' Baldies) thinks that students
who do well with regards to high school GPA also do well on the SAT exam. In order to test
their hypothesis, they choose to sort applications received this year in two different ways: SAT
scores and high school GPA. Using your answer to question a) write classes that assist in sorting
a list of students (List<Student>)

public class Student {
 public double highSchoolGPA;
 public int satScore;
}

public class StudentSATComparer implements Comparator <Student>{ //3 points

public int compare(Student s0, Student s1) {
 return s0.satScore - s1.satScore
}

//you could also use the if/else if/else model below

public class StudentGPAComparer implements Comparator <Student>{ //3 points
 if (s0.highSchoolGPA > s1.highSchoolGPA) {
 return 1;
 } else if (s0.highSchoolGPA < s1.highSchoolGPA) {
 return -1;
 } else {
 return 0;
 }
}
//you cannot use the subtraction model above since GPA is a
double, not an int

 CIS 110 – Final Midterm – Fall 2018 Page 7

c) If you had a variable called students that was a LinkedList<Student>, how would
you sort it using the StudentGPAComparer(hint: you should not need more space than you are
given). You can assume you have imported all necessary libraries. (2 point)

 Collections.sort(students, new StudentGPAComparator());

6) SORTING (10 points)
Mamma Mia! Ms. Mills, a Masterful TA but a horrible chef, enrolled in a cooking class to
improve her cooking abilities. She decided to throw a huge party at her house and invited all the
CIS TAs to try out her latest dish she learned to create: Pasta sorted in order from shortest length
to longest length! This works because every piece of Pasta is a Java Object with a getLength()
method that allows us to see the length of a Pasta. Unfortunately, Ms. Mills accidently sorted her
sorting algorithms instead of her pasta by accident!

Help Ms. Mills put the lines of code for both insertionSort and selectionSort in order, so she can
sort her pasta and impress her friends! Some notes:

• Watch out, though, Ms. Mills added some extra ingredients for flavors, so three lines of
code here will not be used.

• You may add as many closing brackets as you need, but no other lines of code.
• Finally, keep in mind that the variable names are not just as simple as i, j, temp, etc. as

Ms. Mills got a bit creative.
• Each line can only be used once

[DO NOT RIP OFF THIS PAGE!!!]

The lines of code are also copied on page 16 which you can rip off

1. arr[z] = redSauce;
2. arr[q] = arr[q+1];
3. arr[q+1] = whiteSauce;
4. arr[q+1] = arr[q];
5. arr[noodle] = arr[z];
6. else{
7. for (int q = z + 1; q < arr.length; q++) {
8. for (int q = z - 1; q >= 0; q--) {
9. for (int z = 0; z < arr.length; z++) {
10. for (int z = 1; z < arr.length; z++) {
11. if (arr[q].getLength() < arr[noodle].getLength()) {
12. if (arr[q].getLength() > arr[noodle].getLength()) {
13. if (arr[q].getLength() > arr[q+1].getLength()) {
14. int noodle = z;
15. q = -1;
16. noodle = q;
17. noodle = z;
18. Pasta whiteSauce = arr[q];
19. Pasta redSauce = arr[noodle];

 CIS 110 – Final Midterm – Fall 2018 Page 8

a) Write out the full lines of code for insertion sort, not just the line numbers(5 points)

public static void insertionSort(Pasta[] arr) {

 for(int z = 1; z < arr.length; z++) {
 for (int q = z-1; q>= 0; q--) {
 if (arr[q].getLength() > arr[q+1}.getLength()) {
 Pasta whiteSauce = arr[q];
 arr[q] = arr[q+1];
 arr[q+1] = whiteSauce;
 } else {
 q = -1;
 }
 }
 }
}

b) Write out the full lines of code for selection sort, not just the lines numbers (5 points)

public static void selectionSort(Pasta[] arr) {

 for(int z = 0; z < arr.length; z++) {
 int noodle = z;
 for (int q = z+1; q < arr.length; q++) {
 if (arr[q].getLength() < arr[noodle].getLength()) {
 noodle = q;
 }
 }
 Pasta redSauce = arr[noodle];
 arr[noodle] = arr[z];
 arr[z] = redSauce;
 }
 }
}

 CIS 110 – Final Midterm – Fall 2018 Page 9

7) Linked List (17 points)

Joe went to the casino and sat down at the table to play a card game. After a few rounds, he
realizes that there is something fishy going on with the dealer. Joe discovers two very interesting
sneaky moves:

Sneaky Move 1: In the beginning of the game, the dealer would deal a card, and would sneak an
identical card into the exact middle of the deck (If there are an odd numbers of the cards in the
deck after the card is removed, the dealer inserts it after the smaller half)

Sneaky Move 2: Towards the end of the game, the dealers lays out all of the cards on the table,
quickly remembers the deck order, and writes on a piece of paper the value of the largest card in
the odd numbered indices (that is, every other card starting with card 1, then card 3, then card 5,
etc.) The deck begins at index 0, and cards are of positive integer values. Example, if the deck
contained, in order, values 2, 5, 7, 3, 10, 6, 8, the dealer will write down 10 (as it is the largest
even indexed card, where the even indexed cards are bolded). If there are no odd indexed cards,
the dealer writes down the number 0.

Fill in the blank for the two functions below within the Dealer class.

public class Dealer {
 private class Card {
 public int value;
 public Card next;

 public Card(int value, Card next) { //2 points total

 this.value = value; //1 point

 this.next = next//1 point
 }
 }

 private Card topOfDeck; //the top card on the deck

 public Dealer() {
 //dealer constructs a deck of cards
 //you don't need to do anything here
 }

 public void sneakyMove1() { //8 points total
 //if there are no cards

 if (topOfDeck == null) { //1 point
 return;
 }
 Card c = this.topOfDeck;
 //continued on the next page

 CIS 110 – Final Midterm – Fall 2018 Page 10

 //remove the first card

 this.topOfDeck = topOfDeck.next; //1 point
 if (topOfDeck != null) {
 int length = 0;

 for (for(Card t = topOfDeck; t != null; t = t.next)){
 //2 points
 length++;
 }
 int midIdx = length/2; //1 point
 Card i = this.topOfDeck;
 for (int counter = 0; counter < midIdx - 1; counter++) {

 i = i.next; //1 point
 }

 c.next = i.next; //1 point

 i.next = c; //1 point

 } //end of sneakyMove1()

 /**
 * returns the number the dealer writes down on the piece of paper
 */
 public int sneakyMove2() {// 3 points total

 if (topOfDeck == null || topOfDeck.next == null) {//2 points
 return 0;
 }

 return sneakyMove2Helper(topOfDeck.next.next);//1 point
 }

 private int sneakyMove2Helper(Card c) { //4 points total

 if (c == null) {//1 point
 return 0;

 } else if (c.next == null) {//1 point
 return c.value;
 }

 return Math.max (c.value, sneakyMove2Helper(c.next.next));
 //1 point each
 }
}

 CIS 110 – Final Midterm – Fall 2018 Page 11

8) Object Writing (23 points)

Imagine that we have the following interface that represents a student at Penn.

The interface is copied onto the page 16 of the exam which can be ripped off.
DO NOT RIP OFF THIS PAGE

public interface PennStudent {
 /**
 * returns the name of the student
 */
 public String getName(); //1 point

 /**
 * returns the class year of the student. For example, if the
 * student was a senior, then this should return 2019
 */
 public int getClassYear(); //1 point

 /**
 * adds the homework grade to the student’s record. These grades
 * are a number from 0-100 (you do not need to error check this)
 */
 public void addAssignmentGrade(int grade); //2 points

 /**
 * adds several homework grades to the student’s record. These
 * grades are a number from 0-100 (again, don't error check this)
 */
 public void addAssignmentGrade(int[] grades); //3 points

 /**
 * returns the average of all the grades the student has
 * received in the class. All assignments are out of 100
 * There is not an exam or participation component in this object
 */
 public double getClassGrade(); //3 points
}

a) In the space provided on the next page, please write the code for a Cis110Student class
that implements the PennStudent interface. Remember to import any libraries you use that
require importing. You may not add additional public methods or fields. Additionally, add a
meaningful constructor. You do not need to comment your code, we realize this is a timed exam.
(12 points total)

 CIS 110 – Final Midterm – Fall 2018 Page 12

import java.util.ArrayList;

public class Cis110Student implements PennStudent {
 private String name;
 private int classYear;
 private ArrayList<Integer> grades;

 public Cis110Student(String name, int classYear) {
 this.name = name;
 this.classYear = classYear;
 grades = new ArrayList<Integer>();
 }
 public String getName() {
 return name;
 }

 public int getClassYear() {
 return classYear;
 }
 public void addAssignmentGrade(int grade) {
 grades.add(grade);
 }

 public void addAssignmentGrade(int[] grades) {
 for (int i = 0; i < grades.length; i++) {
 this.grades.add(grades[i]);
 }
 }
 public double getClassGrade() {
 double sum = 0.0;
 for (int grade : grades) {
 sum += grade;
 }
 return sum / grades.size();
 }
}

 CIS 110 – Final Midterm – Fall 2018 Page 13

b) President Amy Gutmann wants a way to keep track of student statistics for the students in CIS 110.
Using your newfound programming skills, you decide to help her by creating a Cis110Course class
that will keep track of the students enrolled in the course. Your Cis110Course class will manage
multiple instances of your Cis110Student class.The instances must be stored in an ArrayList.
Your class must include a constructor that takes in an array of Cis110Student objects as a parameter.
You must also implement ALL of the following methods in your code: (11 points total)

ArrayList<String> getStudentNames() - returns a list containing the names of every student
in the course (these do not need to be in any particular order). (2 points)
int countSeniors() - return the number of seniors (that is, every student in the class of 2019)
currently enrolled in the class (2 points)
boolean dropStudent(String name) - removes student from CIS110 with the given name. If
the student exists to be removed, return true. If that student doesn't exist, return false and do nothing. (3
points)
double getMaxGrade() - returns the highest class grade out of all of the students in the course (2
points)

import java.util.ArrayList;

public class Cis110Course {
 private ArrayList<Cis110Student> students;

 public Cis110Course(Cis110Student[] allStudents) {
 students = new ArrayList<Cis110Student>();
 for (Cis110Student s : allStudents) {
 students.add(s);
 }
 }
 public ArrayList<String> getStudentNames() {
 ArrayList<String> out = new ArrayList<String>();
 //could use index for loop as well
 for (Cis110Student s : students) {
 out.add(s.getName());
 }
 return out;
 }

 public int countSeniors() {
 int count = 0;
 //could use enhanced for loop as well
 for (int i = 0; i < students.size(); i++) {
 if (students.get(i).getClassYear() == 2019) {
 count++;
 }
 }
 return count;
 }

 CIS 110 – Final Midterm – Fall 2018 Page 14

 public boolean dropStudent(String name) {
 //this is the only one you had to use an index loop,
 //not enhanced for loop. This is because you need
 //the INDEX of the element to remove
 for (int i = 0; i < students.size(); i++) {
 if (name == students.get(i).getName()) {
 students.remove(i);
 return true;
 }
 }
 return false;
 }

 public double getMaxGrade() {
 double max = 0.0;
 //could use either for loop here;
 for (Cis110Student s : students) {
 if (max < s.getClassGrade()) {
 max = s.getClassGrade();
 }
 }
 return max;
 }
}

 CIS 110 – Final Midterm – Fall 2018 Page 15

EXTRA ANSWER SPACE: You may NOT rip this page off, but work written on the
FRONT of this page may be graded.

List interface methods you may use for a List<E> where E is the object type the list is
storing. We've covered these in class, so it is expected you know what they do. You are
allowed to use these on this exam when using the List<E> interface in java.

boolean add(E e);
void add(int index, E e);
boolean remove(E e);
boolean contains(E e);
int size();
boolean isEmpty();
E get(int index);

 CIS 110 – Final Midterm – Fall 2018 Page 16

REFERENCE PAGE: You may rip this page off but nothing on this page will be graded.
YOU MUST TURN THIS PAGE IN WITH YOUR EXAM OR YOU LOSE ALL POINTS FOR SORTING

QUESTION OR THE INTERFACE QUESTION
Copy of lines of code from sorting question

1. arr[z] = redSauce;
2. arr[q] = arr[q+1];
3. arr[q+1] = whiteSauce;
4. arr[q+1] = arr[q];
5. arr[noodle] = arr[z];
6. else{
7. for (int q = z + 1; q < arr.length; q++) {
8. for (int q = z - 1; q >= 0; q--) {
9. for (int z = 0; z < arr.length; z++) {
10. for (int z = 1; z < arr.length; z++) {
11. if (arr[q].getLength() < arr[noodle].getLength()) {
12. if (arr[q].getLength() > arr[noodle].getLength()) {
13. if (arr[q].getLength() > arr[q+1].getLength()) {
14. int noodle = z;
15. q = -1;
16. noodle = q;
17. noodle = z;
18. Pasta whiteSauce = arr[q];
19. Pasta redSauce = arr[noodle];

Copy of interface
public interface PennStudent {
 /**
 * returns the name of the student
 */
 public String getName(); //1 point

 /**
 * returns the class year of the student. For example, if the
 * student was a senior, then this should return 2019
 */
 public int getClassYear(); //1 point

 /**
 * adds the homework grade to the student’s record. These grades
 * are a number from 0-100 (you do not need to error check this)
 */
 public void addAssignmentGrade(int grade); //2 points

 /**
 * adds several homework grades to the student’s record. These
 * grades are a number from 0-100 (again, don't error check this)
 */
 public void addAssignmentGrade(int[] grades); //3 points

 /**
 * returns the average of all the grades the student has
 * received in the class. All assignments are out of 100
 * There is not an exam or participation component in this object
 */
 public double getClassGrade(); //3 points
}

 CIS 110 – Final Midterm – Fall 2018 Page 17

SCRATCH PAGE: You may use this as scratch page and rip it off, but nothing on this
page will be graded.

