
Object
Oriented
Programming:
Class Design

CIS 1100 Fall 2024 @ University of Pennsylvania 1

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 2

Today is October 18.

The semester started in August.

You've been living in Pennsylvania for at least a month.

any US Citizen who has been living in PA for at least a month prior to the election

can register to vote in PA.

you do not have to be registered to vote in the state that you came to Penn from.

you can continue to register to vote in PA until Monday, October 21

by several measures, a vote for president in PA is significantly more impactful than

a vote in nearly any other state. We also have a closeish Senate race.

not necessarily true for NV, WI

presidential elections are not the only ones; check your House races, too.

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 3

Did you know...

I Think You Should
Register To Vote Or
Check Your
Registration At
vote.org!

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 4

file:///Users/harrysmith/Documents/23sp/cis1100/slide_project/java_slides/vote.org/register-to-vote/pennsylvania

Learning Objectives

Create abstractions for entities you want programs to model

Use encapsulation to define safe ways of using objects you create

Recognize the public interface created by a class

Evaluate the effectiveness of a class' design choices

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 5

Creating Abstractions

Objects in Java know some things and they can do some stuff.

When designing an object (real or software) for someone to use, the object should

include only the properties & behaviors it needs for a given user to use it!

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 6

When you drive a car, you're shown information on speed, fuel, and RPMs. You have the

choice of actions like drive, park, reverse, etc.

As the driver of a car, you are not concerned with the crankshaft & spark plugs &

cylinders & valves &

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 7

Class Design as Abstraction

Decide what you want a user to be able to do with the objects that you are creating.

These will be the methods of the class

Identify all of the properties such an object must have to be able to implement

those desired behaviors

These will be the instance variables of the class

Some properties can be exposed to the user, some are only necessary for

internal use

Implement the public methods to expose important properties and perform

essential behaviors

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 8

Bank Account Example

We're tasked with designing a Bank Account object that a team at TD Bank will use

in their software systems.

What are the essential operations of a Bank Account object?

What information does a Bank Account need to store in order to perform

these operations?

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 9

Bank Account Operations

Name Inputs Outputs

check balance none amount

desposit amount none (?)

withdraw amount none (?)

Note: it's not that a Bank Account couldn't do more. But from our stated problem, this is

all a Bank Account must do at a minimum.

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 10

Core Operations Class Skeleton

public class BankAccount {
 public double checkBalance() {
 return 0.0; // TODO
 }

 public void deposit(double amount) {
 // TODO
 }

 public void withdraw(double amount) {
 // TODO
 }
}

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 11

Adding in the Instance Variables

To check an account's balance, make a deposit to the account, or withdraw an amount

from the account, we need to know:

the account balance

That's it! An account could store information about its owner, account type, interest

rates, withdrawal limits, etc. But all of that is extraneous for the operations we chose.

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 12

Adding in the Instance Variables & Constructor

public class BankAccount {
 public double balance; // public for now (bad), but will change!
 public BankAccount(double startingAmount) {
 // TODO
 }
 public double checkBalance() {
 return 0.0; // TODO
 }

 public void deposit(double amount) {
 // TODO
 }

 public void withdraw(double amount) {
 // TODO
 }
}

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 13

Implementing the Class: a First Pass

Now we can move to implement our methods!

An important first step is to formalize the requirements by writing some kind

of tests.

unit tests or just rudimentary main method tests are both OK

Writing the tests first requires us to understand what the expected behavior should

be before we implement the method.

Pretty important to know what you intend to do before doing it!

(Yes, the tests will fail at first because there is no implementation.)

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 14

Writing a User Story Test

A user story is a narrativized description of how a user will use the program

you're writing.

"Customers should be able to create a new Bank Account with an initial deposit of

$10. They should be able to deposit $20 and see the change reflected in the

account afterwards."

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 15

Writing a User Story Test (in main)

public static void main(String[] args) {
 BankAccount harrysAccount = new BankAccount(10.0);
 double startingBalance = harrysAccount.getBalance();
 System.out.println("Harry's new account has a balance of " + startingBalance);
 System.out.println("(Balance should be $10)");

 harrysAccount.deposit(20);
 double newBalance = harrysAccount.getBalance();
 System.out.println("Harry's account has a balance of " + newBalance);
 System.out.println("(Balance should be $30)");
}

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 16

Writing a User Story Test (in JUnit)

@Test
public void testUserStoryOne() {
 BankAccount harrysAccount = new BankAccount(10.0);
 double actualBalance = harrysAccount.getBalance();
 double expectedBalance = 10
 assertEquals(expectedBalance, actualBalance, 0.01);

 harrysAccount.deposit(20);
 actualBalance = harrysAccount.getBalance();
 expectedBalance = 30;
 assertEquals(expectedBalance, actualBalance, 0.01);
}

JUnit requires that double comparisons are made with a "DELTA" value that represents

an error tolerance.

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 17

Other Potential Stories to Test

"Customers should be able to create a new Bank Account with an initial deposit of

$10. They should be able to withdraw $3, leaving a balance of $7."

"Customers should be able to create a new Bank Account with an initial deposit of

$10. They may attempt to withdraw an amount greater than their balance, but this

attempt should have no effect"

"Customers should be able to attempt to withdraw or deposit a negative amount,

but these attempts should have no effect on their account balances"

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 18

@Test
public void testUserStoryTwo() {
 BankAccount harrysAccount = new BankAccount(10.0);
 harrysAccount.withdraw(3);
 double actualBalance = harrysAccount.getBalance();
 double expectedBalance = 7;
 assertEquals(expectedBalance, actualBalance, 0.01);
}

@Test
public void testUserStoryThree() {
 BankAccount harrysAccount = new BankAccount(10.0);
 harrysAccount.withdraw(11);
 double actualBalance = harrysAccount.getBalance();
 double expectedBalance = 10;
 assertEquals(expectedBalance, actualBalance, 0.01);
}

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 19

@Test
public void testUserStoryFour() {
 BankAccount harrysAccount = new BankAccount(10.0);
 harrysAccount.withdraw(-3);
 double actualBalance = harrysAccount.getBalance();
 double expectedBalance = 10;
 assertEquals(expectedBalance, actualBalance, 0.01);

 harrysAccount.deposit(-1000);
 actualBalance = harrysAccount.getBalance();
 expectedBalance = 10;
 assertEquals(expectedBalance, actualBalance, 0.01);
}

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 20

Writing Methods

public class BankAccount {
 public double balance; // public for now (bad), but will change!
 public BankAccount(double startingAmount) {
 if (startingAmount < 0) {
 balance = 0;
 } else {
 balance = startingAmount;
 }
 }
 public double checkBalance() {
 return balance
 }

 ...
}

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 21

Writing Methods

public class BankAccount {
 ...

 public void deposit(double amount) {
 if (amount < 0) {
 return;
 }
 balance += amount;
 }

 public void withdraw(double amount) {
 if (amount < 0 || amount > balance) {
 return;
 }
 balance -= amount;
 }
}

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 22

Encapsulation

Encapsulation refers to the process of hiding the data from the user and using

methods to provide data access.

Why is this important?

public static void main(String[] args) {
 BankAccount harrysAccount = new BankAccount(10);
 BankAccount enemysAccount = new BankAccount(100);
 harrysAccount.balance = 10000000000
 enemysAccount.balance = -999999999
}

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 23

Public Instance Variables Violate Encapsulation

Make instance variables private in order to regulate access to important information!

Write getters & setters & other public methods that allow mediated access.

public static void main(String[] args) {
 BankAccount harrysAccount = new BankAccount(100);
 harrysAccount.withdraw(999999999); // refused!
}

Saved by a public method!

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 24

The Public Interface

An interface between two objects is the point at which they meet and interact.

In Java, we'll see that the word has another meaning later

A class' public interface refers to the sum of all public instance variables and methods

that can be interacted with in other classes.

Effective class design exposes all necessary behaviors in the public interface

Poor class design exposes unnecessary methods and sensitive data

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 25

Helper Methods & Public Interface

Sometimes it's helpful to write a helper method when implementing your class:

private boolean isInvalidAmount(double amount) {
 return amount < 0;
}

Keep helper methods private!

These are not intended for outside use, so nobody will miss them when using

your object

More public methods more clutter for people trying to understand your classes

CLASS DESIGN

CIS 1100 Fall 2024 @ University of Pennsylvania 26

	Object Oriented Programming: Class Design
	Today is October 18.
	The semester started in August.
	You've been living in Pennsylvania for at least a month.
	Did you know...

	I Think You Should Register To Vote Or Check Your Registration At vote.org!
	Learning Objectives
	Creating Abstractions
	Class Design as Abstraction
	Bank Account Example
	Bank Account Operations
	Core Operations Class Skeleton
	Adding in the Instance Variables
	Adding in the Instance Variables & Constructor
	Implementing the Class: a First Pass
	Writing a User Story Test
	Writing a User Story Test (in main)
	Writing a User Story Test (in JUnit)
	Other Potential Stories to Test
	Writing Methods
	Writing Methods
	Encapsulation
	Public Instance Variables Violate Encapsulation
	The Public Interface
	Helper Methods & Public Interface

