
Testing &
JUnit

CIS 1100 Spring 2024 @ University of Pennsylvania

Reference

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 1

"Units" of Code

Now that we have functions, we can write programs that consist of individual, atomic

units of logic.

In Caesar:

Encrypting requires converting to symbol array, shifting, and converting back

to String

Each step along the way represented by a function with well-defined inputs

and output.

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 2

Testing a Unit of Code

How do we test our code to determine if it’s right?

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 3

Testing a Unit of Code

How do we test our code to determine if it’s right?

Identify the INPUT

Generate, manually or through means OUTSIDE of your code an EXPECTED

OUTPUT

Execute your code to get an ACTUAL OUTPUT

Compare the expected and actual output

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 4

Unit Test Case

Comprised of:

An INPUT

An EXPECTED output (usually manually coded in)

An ACTUAL output (generated by the code we are testing)

A mechanism of comparing ACTUAL and EXPECTED

If an expected output doesn’t match the actual output, one of the two is wrong

Usually, hopefully, but not necessarily, the actual output is wrong

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 5

A Function to Test

public static int findMax(int a, int b, int c) {
 if (a > b) {
 if (a > c) {
 return a;
 } else {
 return c;
 }
 } else {
 if (b > c) {
 return b;
 } else {
 return a;
 }
 }
}

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 6

Generating Tests

int findMax(int a, int b, int c) is a function that should return the largest of

its three inputs.

input types: int , int , int

output type: int

What is the expected output for findMax when called on inputs 3, 2, 1?

What is the expected output for findMax when called on inputs 1, 2, 3?

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 7

Testing a unit of code

Is this a passing or failing test case?

Test Case #1: Input = {3,2,1} ; Expected output = 3 ; Actual output = 3

Is this a passing or failing test case?

Test Case #2: Input = {1,2,3} ; Expected output = 3 ; Actual output = 1

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 8

Testing a unit of code

Is this a passing or failing test case? PASSING!

Test Case #1: Input = {3,2,1} ; Expected output = 3 ; Actual output = 3

Is this a passing or failing test case? FAILING!

Test Case #2: Input = {1,2,3} ; Expected output = 3 ; Actual output = 1

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 9

Why does Test 1 pass and not Test 2?

Test 1 does not cover/execute the underlying fault in the code.

A fault is a particular defect in the code, or bug.

Test Case #1: Input = {3,2,1} ; Expected output = 3 ; Actual output = 3
Test Case #2: Input = {1,2,3} ; Expected output = 3 ; Actual output = 1

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 10

Testing is like potato chips

"They both contribute to my overall poor health. Also, you can’t have just one." -

Will McBurney

One test passing may have no bearing on another test passing! One test is not enough

to decide if your implementation is bug-free.

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 11

JUnit

An automatic testing tool that allows you to write tests once and continue to use them

again and again.

In this way, if you change something later that breaks code that worked previously, you

will immediately know because your tests fail

Technically not built into Java, so we have a bit of wrangling to do.

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 12

Writing a JUnit Test

@Test // This must be before every test function
public void testFindMax0() { // Notice – no static keyword
 // inputs
 int a = 3;
 int b = 2;
 int c = 1;
 // expected – generated manually
 int expected = 3;
 // actual – Execute the code with the above input
 int actual = findMax(a, b, c);
 // Assertion – if the two things below aren’t equal, the test fails.
 // Always put expected argument first.
 assertEquals(expected, actual);
}

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 13

Writing a JUnit Test

This is the same as before, but we print an error message now that explains what

happens when assertEquals does not receive matching inputs.

@Test // This must be before every test function
public void testFindMax0() { // Notice – no static keyword
 // inputs
 int a = 3;
 int b = 2;
 int c = 1;
 String message = "findMax(3, 2, 1) returns the wrong value";
 // expected – generated manually
 int expected = 3;
 // actual – Execute the code with the above input
 int actual = findMax(a, b, c);
 // Assertion – if the two things below aren’t equal, the test fails.
 // Always put expected argument first.
 assertEquals(message, expected, actual);
}

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 14

Import Statements

Start all Test files with the two important statements below:

import static org.junit.Assert.*;
import org.junit.*;

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 15

Writing JUnit (Demo)

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 16

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 17

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 18

Drag Files with Test Cases to "Add test case" Field

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 19

Run Tests by Clicking "EXECUTE ALL"

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 20

A Failing
Test

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 21

A Passing
Test!

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 22

What a test failing means

A test failing doesn’t always mean the code has a bug

The test could be written wrong (that is, the test writer came up with the wrong

expected output)

A test passing doesn’t mean there is no bug

The test could not execute a buggy statement

The test could execute a buggy statement in a way that a failure doesn’t manifest

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 23

Consider These Test Cases

Test Case #3: Input = {4,5,6} ; Expected output = 4 ; Actual output = 4 ;

Test Case #4: Input = {9,8,7} ; Expected output = 7 ; Actual output = 9 ;

#3 is an incorrectly written test that passes when it should fail.

#4 is another incorrectly written test that fails when it should pass.

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 24

Edge Cases

Test Case #5: Input = {1,1,1} ; Expected output = 1 ; Actual output = 1 ;

#5 is an edge case: a set of inputs and output that represent a valid but

atypical or unorthodox use case of the function

at the "edge" of what is a valid way to use the program

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 25

Testing Strategies

Exhaustive Testing

Attempt a test with every possible input

Not even remotely feasible in most cases

Random Testing

Select random inputs

Likely to miss narrow inputs that are special cases (example, dividing by zero)

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 26

Testing Strategies

Black-box Testing

Select inputs based on the specification space

“Assume the code can’t be seen”

We focus on this one

White-box Testing

Select inputs based on the code itself

Have every line of code covered by at least one test

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 27

The need for automatic testing

Automatic testing (such as JUnit) allows for testing rapidly after each update

If an update breaks a test, a commit can be rejected

Ensure you don’t break something that already worked

Not fool proof

TESTING

CIS 1100 Spring 2024 @ University of Pennsylvania 28

