
3.1 Objects

Introduction to Programming in Java: An Interdisciplinary Approach · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2010 · 7/28/2015 3:46:55PM

A Foundation for Programming

objects

functions and modules

graphics, sound, and image I/O

arrays

any program you might want to write

conditionals and loops

Math text I/O

primitive data types assignment statements

create your own
data types

2

Data Types

3

Data Types: set of values and associated operations

Primitive Types:
• values map directly to the machine representation
• ops map directly to machine instructions

We want to write programs that handle other data types
 colors, pictures, strings, input streams, …
 complex numbers, vectors, matrices, polynomials, …
 points, polygons, charged particles, celestial bodies, …

Data Type Set of Values Operations

boolean true, false not, and, or, xor

int -231 to 231 - 1 add, subtract, multiply

double any of 264 possible reals add, subtract, multiply

Objects

Objects: represent values and operations for more
complex data types

– Object variables are called fields
– Object operations are called methods
Data Type Set of Values Operations

Color 24 bits get red component, brighten

Picture 2D array of colors get/set color of pixel (i, j)

String sequence of characters length, substring, compare

Objects can be created and referenced with variables

4

Programming paradigm that views a program as a
collection of interacting objects
 In contrast, the conventional model views the program as a list

of tasks (subroutines or functions)

We'll talk about how to:
 Create your own data types (set of values and operations)
 Use objects in your programs (e.g., manipulate objects)

Why would I want to use objects in my programs?
 Simplify your code
 Make your code easier to modify
 Share an object with a friend

5

Object-Oriented Programming

Defining Your Own Objects with Classes

• Classes are blueprints or prototypes for new objects

• Classes define all field and method declarations
… which are repeated for each new object created

• Using a class to create a new object is called
instantiating an object

… creating a new object instance of the class

• Classes often model real-world items

The String Object

Fields:
???

Methods:
 boolean equals(String anotherString)
 int length()
 String substring(int beginIdx, int endIdx)
 String toLowerCase()
 String toUpperCase()
 ...

http://download.oracle.com/javase/1.4.2/docs/api/

http://download.oracle.com/javase/1.4.2/docs/api/

7

Constructors and Methods

To construct a new object:
 Use keyword new (to invoke constructor)
 Use name of data type (to specify which type of object)

with associated parameters for the constructor

To apply an operation:
 Use name of object (to specify which object)
 Use the dot operator (to access a member of the object)
 Use the name of the method (to specify which operation)

Constructors
• A special method that is used in order to instantiate

an object
String s = new String("Hello World");

• If we made a Person class where you could create
people with different names then you create a new
person object by doing
Person p = new Person("Arvind");

• Rule – Constructor has the same name as the name
of the class.

Encapsulation

10

Objects are said to encapsulate (hide) their details
– How an object is implemented is not important
– What it does is important

Access Control

11

• Encapsulation is implemented using access
control.
– Separates interface from implementation
– Provides a boundary for the client programmer

• Visible parts of the class (the interface)
– can be used and/or changed by the client

programmer.

• Hidden parts of the class (the implementation)
– Can be changed by the class creator without

impacting any of the client programmer’s code
– Can’t be corrupted by the client programmer

Access Control in Java

12

• Visibility modifiers provide access
control to instance variables and methods.
– public visibility - accessible by everyone, in

particular the client programmer
• A class’ interface is defined by its public methods.

– private visibility - accessible only by the
methods within the class

– Two others—protected and package—
outside the scope of this course

Good Programming Practice

13

• Combine methods and data in a single class
• Label all instance variables as private for

information hiding
– The class has complete control over how/when/if

the instance variables are changed
– Fields primarily support class behavior
• Minimize the class’ public interface
• Public interface should offer only those

methods that a client needs in order to
‘interact’ with the class

Using this
You can think of this as an implicit private reference to
the current instance.

Note that b1.year and b1.this.year refer to the same field

Date
=== public ====
Date()
int getYear()

...
=== private ===
int month
int day
int year
Datethis
...

main memory
(64-bit machine)

C0

C1

C2

C3

C4

C5

C6

registers

C0

addr valueb1

1 month
1 day

1900 year
C0 this
?

?

?

14

Date b1 = new Date();

int
int
float
float[]
String
String
Ball

i;
j
f
f2
s1
s2
b

=
=
=
=
=
=

3;
0.1;
new float[20];
"abc";
new String("abc");
new Ball();

Ball[] b2 = new Ball[20];

Comparing Declarations and Initializers

for (int i =0; i < b2.length; i++) {
b2[i]= new Ball();

}

Where to Write Your Class

16

• Generally put each class in a separate file
• A class named MyClass is expected to be found in

a file named MyClass.java
• Declare the class to be public
• This class can now be used as a 'data type' in your

other programs

Bouncing Ball Object
• What do we want to have the ball do?

(i.e., what methods should it have?)

• What initial parameters should we
specify in the constructor?

17

Bouncing Ball Object
• What do we want to have the ball do?

(i.e., what methods should it have?)
– void draw() : "Ball, draw thyself!"
– void update() : simulate the ball's motion

• What initial parameters should we
specify in the constructor?

18

Bouncing Ball Object
• What do we want to have the ball do?

(i.e., what methods should it have?)
– void draw() : "Ball, draw thyself!"
– void update() : simulate the ball's motion

• What initial parameters should we
specify in the constructor?
– Ball() : creates a ball at a random location
– Ball (int x, int y) : creates a ball at (x, y)

These methods constitute the ball's API
(Application Programming Interface)

19

Bouncing Ball Object
Given only the API, we can use the object in a program:

Ball

Ball()
Ball(int x, int y)
void draw()
void update()

static Ball[] balls = new Ball[20];

public class BouncingBallStdDraw {

public static void main(String[] args) {
for (int i=0; i< balls.length; i++){

balls[i] = new Ball();
}
for (int i =0; i <300; i++){

StdDraw.clear();
for (int j=0; j < balls.length; j++)

balls[j].draw();
StdDraw.show(200);
for (int j=0; j< balls.length; j++)

balls[j].update();
}

}
}

Declare
an array
of Balls.

New objects are
created with the
new keyword.

Methods of objects stored in the array
are accessed using dot-notation.

20

Object References

 Allow client to manipulate an object as a
single entity

 Essentially a machine address (pointer)

Ball b1 = new Ball();
b1.update();
b1.update();

Ball b2 = new Ball();
b2.update();

b2 = b1;
b2.update();

main memory

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

0

0

0

0

0

0

0

0

0

0

0

0

0

addr value

(64-bit machine)
21

 Allow client to manipulate an object as a
single entity

 Essentially a machine address (pointer)

Ball b1 = new Ball();
b1.update();
b1.update();

Ball b2 = new Ball();
b2.update();

b2 = b1;
b2.update();

0

0

0

0

C0

C1

C2

C3

C4 0

C5

C6

C7

C8

C9

CA

CB

CC

0

0

0

0

0

0

0

0

C0

0.50

0.50

0.05

0.01

0.03

addr value

b1

registers main memory
(64-bit machine)

22

Object References

 Allow client to manipulate an object as a
single entity

 Essentially a machine address (pointer) 0.50

0.50

Ball b1 = new Ball();
b1.update();
b1.update();

Ball b2 = new Ball();
b2.update();

b2 = b1;
b2.update();

C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

0.05

0.01

0.03

0

0

0

0

0

0

0

0

C0

0.55

0.51

addr value

b1

registers main memory
(64-bit machine)

23

Object References

 Allow client to manipulate an object as a
single entity

 Essentially a machine address (pointer)

Ball b1 = new Ball();
b1.update();
b1.update();

Ball b2 = new Ball();
b2.update();

b2 = b1;
b2.update();

0.55C0

C1 0.51
C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

0.05

0.01

0.03

0

0

0

0

0

0

0

0

C0

0.60

0.52

addr value

b1

registers main memory
(64-bit machine)

24

Object References

 Allow client to manipulate an object as a
single entity

 Essentially a machine address (pointer)

Ball b1 = new Ball();
b1.update();
b1.update();

Ball b2 = new Ball();
b2.update();

b2 = b1;
b2.update();

C0

C1

C2

C3

C4

C5

C6

0.60

0.52

0.05

0.01

0.03

0

0

0

0

0

0

C7

C8

C9

CA

CB 0

CC 0

C0

C7 0.50

0.50

0.07

0.04

0.04

addr value

b1

b2

registers main memory
(64-bit machine)

25

Object References

 Allow client to manipulate an object as a
single entity

 Essentially a machine address (pointer)

Ball b1 = new Ball();
b1.update();
b1.update();

Ball b2 = new Ball();
b2.update();

b2 = b1;
b2.update();

0.50

0.50

C7

C0

addr value

C0 0.60

C1 0.52

C2 0.05

C3 0.01

C4 0.03

C5 0

C6 0

C7 0.57

C8 0.54

C9 0.07

CA 0.04

CB 0.04

CC 0

b1

b2

registers main memory
(64-bit machine)

26

Object References

 Allow client to manipulate an object as a
single entity

 Essentially a machine address (pointer)

Ball b1 = new Ball();
b1.update();
b1.update();

Ball b2 = new Ball();
b2.update();

b2 = b1;
b2.update();

C0

C1

C2

C3

C4

C5

C6

0.60

0.52

0.05

0.01

0.03

0

0

0.57

0.54

0.07

0.04

0.04

C7

C8

C9

CA

CB

CC 0

main memory

C0

registers

C0

addr value

b1

b2

collection in java. (64-bit machine)
27

Object References

C7 – CBcan be reused for other
variables. Known as garbage

 Allow client to manipulate an object as a
single entity

 Essentially a machine address (pointer)

Ball b1 = new Ball();
b1.update();
b1.update();

Ball b2 = new Ball();
b2.update();

b2 = b1;
b2.update();

main memory

0.60

addr value

C0

C1 0.52
C2

C3

C4

C5

C6

C7

C8

C9

CA

CB

CC

0.05

0.01

0.03

0

0

0.57

0.54

0.07

0.04

0.04

0

C0

b1

registers

C0

b2

0.65

0.53

the same object. (64-bit machine)
28

Object References

Moving b2 also moves b1 since
they are aliases that reference

3 7 three
29

Pass-By-Value

Arguments to methods are always passed by value.
 Primitive types: passes copy of value of actual parameter.
 Objects: passes copy of reference to actual parameter.

public class PassByValue {
static void update(int a, int[] b, String c) {

a = 7;
b[3] = 7;
c = "seven";
StdOut.println(a + " " + b[3] + " " + c);

}
public static void main(String[] args) {

int a = 3;
int[] b = { 0, 1, 2, 3, 4, 5 };
String c = "three";
StdOut.println(a + " " + b[3] + " " + c);
update(a, b, c);
StdOut.println(a + " " + b[3] + " " + c);

}
} % java PassByValue

3 3 three
7 7 seven

public class Date {
private int month; // 1 - 12
private int day; // 1 - 31
private int year; // 4 digits

// no-argument constructor
public Date() {
month = 1;
day = 1;
year = 1900;

}

// alternative constructor
public Date(int month, int day, int year) {
this.month = month;
this.day = day;
this.year = year;

}

...
}

Overloaded Constructors

// 1 Jan 1900
Date d1 = new Date();

// 30 Oct
Date d2 =

2013
new Date(10, 30, 2013);

Note the usage of the this
keyword to avoid the
obvious ambiguity

30

Accessors & Mutator

31

• Class behavior may allow access to, or
modification of, individual private instance
variables.

• Accessor method
– retrieves the value of a private instance variable
– conventional to start the method name with get

• Mutator method
– changes the value of a private instance variable
– conventional to start the name of the method with set

• Gives the client program indirect access to the
instance variables.

More Accessors and Mutators

32

Question: Doesn’t the use of accessors and
mutators defeat the purpose of making the
instance variables private?

Answer: No
• The class implementer decides which instance

variables will have accessors.
• Mutators can:

– validate the new value of the instance variable, and
– decide whether or not to actually make the requested

change.

Accessor and Mutator Example
public class Date {

33

private int month; // 1 - 12
private int day; // 1 - 31
private int year; // 4-digit year

// accessors return the value ofprivatedata
public int getMonth() { return month; }

// mutators can validate the new value
publicboolean setMonth(intmonth) {
if (1 <= month && month <= 12) {

this.month = month;
return true;

}
else // this is an invalid month

return false;
}
}
// rest of class definition follows

}

Accessor/Mutator Caution

34

• In general you should NOT provide
accessors and mutators for all private
instance variables.

– Recall that the principle of encapsulation is
best served with a limited class interface.

Private Methods

35

• Methods may be private.

– Cannot be invoked by a client program
– Can only be called by other methods within

the same class definition
– Most commonly used as "helper" methods to

support top-down implementation of a public
method

Private Method Example

36

public class Date {
private int month; // 1 - 12
private int day; // 1 - 31
private int year; // 4-digit year

// accessors return the value of private data
public int getMonth() { return month; }

// mutators can validate the new value
public boolean setMonth(int month) {
if (isValidMonth(month)) {

this.month = month;
return true;

}
else // this is an invalid month

return false;
}

// helper method - internal use only
private boolean isValidMonth(int month) {
return 1 <= month && month <= 12;

}
}

Static and Final

37

Static Variable

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved 38

• A static variable belongs to the class as a
whole, not just to one object.

• There is only one copy of a static variable
per class.
– All objects of the class can read and change

this static variable.

• A static variable is declared with the
addition of the modifier static.

static int myStaticVariable = 0;

Static Variable

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved 39

• The most common usage of a static variable is in order
to keep track of the number of instances of an object.

• Assume class called Human. There is some
'controlling' class which creates humans (new
Human()) and it also is responsible for the death of
humans.

• We would like to keep track of the number of
Humans. One way to do this would be have a static
variable in the Human class which gets incremented
upon child birth and decremented upon death.

Static Constants

40

• A static constant is used to symbolically represent a
constant value.
– The declaration for a static constant includes the modifier

final, which indicates that its value cannot be changed:
public static final float PI = 3.142;

• It is not necessary to instantiate an object to access a
static variable, constant or method.

• When referring to such a constant outside its class,
use the name of its class in place of a calling object.

float radius = MyClass.PI * radius * radius;

Copyright © 2008 Pearson Addison-Wesley.
All rights reserved

Rules for Static Methods

41

• Static methods have no calling/host object (they
have no this).

• Therefore, static methods cannot:
– Refer to any instance variables of the class
– Invoke any method that has an implicit or explicit this for a

calling object

• Static methods may invoke other static methods or
refer to static variables and constants.

• A class definition may contain both static methods
and non-static methods.

main = Static Method

42

Note that the method header for main() is
public static void main(String[] args)

Being static has two effects:
• main can be executed without an object.
• "Helper" methods called by main must

also be static.
– Hence public static when you were first

introduced to functions

Any Class Can Have a main()

43

• Every class can have a public static
method name main().

• Java will execute the main that exists in
whichever class you choose to run

java <className>

• A convenient way to write test code for
your class.

Static Review

44

• Given the skeleton class definition below

public class C {
public int a = 0;
public static int b = 1;

public void f() {…}
public static void g() {…}

}

• Can body of f() refer to a?
• Can body of f() refer to b?
• Can body of g() refer to a?
• Can body of g() refer to b?
• Can f() call g()?
• Can g() call f()?

For each, explain why or why not.

	3.1	Objects
	A Foundation for Programming
	Data Types
	Objects
	Object-Oriented Programming
	Defining Your Own Objects with Classes
	The String Object
	Constructors and Methods
	Constructors
	Encapsulation
	Access Control
	Access Control in Java
	Good Programming Practice
	Using this
	Comparing Declarations and Initializers
	Where to Write Your Class
	Bouncing Ball Object
	Bouncing Ball Object
	Bouncing Ball Object
	Bouncing Ball Object
	Object References
	Object References
	Object References
	Object References
	Object References
	Object References
	Object References
	Object References
	Pass-By-Value
	Overloaded Constructors
	Accessors & Mutator
	More Accessors and Mutators
	Accessor and Mutator Examplepublic	class	Date	{
	Accessor/Mutator Caution
	Private Methods
	Private Method Example
	Static and Final
	Static Variable
	Static Variable
	Static Constants
	Rules for Static Methods
	main	= Static Method
	Any Class Can Have a main()
	Static Review

