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Sequential vs. Linked Allocation 
Sequential allocation:  Put items one after another. 

• Java:  array of objects. 

 

Linked allocation:  Include in each object a link to the next one. 

• Java:  link is reference to next item. 

 

 

Key distinctions: 

• Array:  random access, fixed size. 

• Linked list:  sequential access, variable size. 
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From the point of view of a particular object: 

all of these structures look the same! 

 

 

 

 

 

 

 

 

 

Multiply-linked data structures:  Many more possibilities. 
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Linked list: 

• A recursive data structure. 

• An item plus a pointer to another linked list  (or empty list). 

– Unwind recursion:  linked list is a sequence of items. 

 

 

Node data type: 

• A reference to a String. 

• A reference to another Node. 

Linked Lists 

public class Node { 

  public String item; 

  public Node next; 

} 

Alice Bob Carol 

first 

item next special pointer value null 

terminates list 

null 



5 

Building a Linked List 

Node third  = new Node(); 

third.item  = "Carol"; 

third.next  = null; 
 

Node second = new Node(); 

second.item = "Bob"; 

second.next = third; 
 

Node first  = new Node(); 

first.item  = "Alice"; 

first.next  = second; 
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Stack API 
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Stack Push:  Linked List Implementation 

Node second = first; 

first.item = "of"; 

first.next = second; 

first = new Node(); 
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Stack Pop:  Linked List Implementation 

first = first.next; 

return item; 
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Stack:  Linked List Implementation 
public class LinkedStackOfStrings { 

   private Node first = null; 

    

   private class Node { 

      private String item; 

      private Node next; 

   } 

 

   public boolean isEmpty() { return first == null; } 

 

   public void push(String item) { 

      Node second = first; 

      first = new Node(); 

      first.item = item; 

      first.next = second; 

   } 

 

   public String pop() { 

      String item = first.item; 

      first = first.next; 

      return item; 

   }  

} 
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Linked List Stack:  Test Client Trace 
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Stack Data Structures:  Tradeoffs 
Two data structures to implement Stack data type. 

 

Array: 

• Every push/pop operation take constant time. 

• But…  must fix maximum capacity of stack ahead of time. 

 

Linked list: 

• Every push/pop operation takes constant time. 

• Memory is proportional to number of items on stack. 

• But…  uses extra space and time to deal with references. 
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List Processing Challenge 1 

What does the following code fragment do? 

for (Node x = first; x != null; x = x.next) { 

   System.out.println(x.item); 

} 
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List Processing Challenge 2 

Node last = new Node(); 

last.item = args[0]; 

last.next = null; 

Node first = last; 

for (int i = 1; i < args.length; i++) { 

   last.next = new Node(); 

   last = last.next; 

   last.item = args[i]; 

   last.next = null; 

} 
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