
1

Linked Lists

Section 4.3

2

Sequential vs. Linked Allocation
Sequential allocation: Put items one after another.

• Java: array of objects.

Linked allocation: Include in each object a link to the next one.

• Java: link is reference to next item.

Key distinctions:

• Array: random access, fixed size.

• Linked list: sequential access, variable size.

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

value addr

"Alice"

"Bob"

B0

B1

"Carol"

-

B2

B3

-

-

B4

B5

-

-

B6

B7

-

-

B8

B9

-

-

BA

BB

value addr

array

(B0)

linked list

(C4)

get ith item

get next item

3

From the point of view of a particular object:

all of these structures look the same!

Multiply-linked data structures: Many more possibilities.

Singly-Linked Data Structures

sequential (this lecture)

parent-link tree rho general case

circular

Section 4.3

4

Linked list:

• A recursive data structure.

• An item plus a pointer to another linked list (or empty list).

– Unwind recursion: linked list is a sequence of items.

Node data type:

• A reference to a String.

• A reference to another Node.

Linked Lists

public class Node {

 public String item;

 public Node next;

}

Alice Bob Carol

first

item next special pointer value null

terminates list

null

5

Building a Linked List

Node third = new Node();

third.item = "Carol";

third.next = null;

Node second = new Node();

second.item = "Bob";

second.next = third;

Node first = new Node();

first.item = "Alice";

first.next = second;

"Carol"

null

C0

C1

-

-

C2

C3

"Alice"

CA

C4

C5

-

-

C6

C7

-

-

C8

C9

"Bob"

C0

CA

CB

-

-

CC

CD

-

-

CE

CF

Value addr

Carol null

item next

third

C0 third

main memory

Bob

second

CA second

Alice

first

C4 first

6

Stack API

Section 4.3

7 7

Stack Push: Linked List Implementation

Node second = first;

first.item = "of";

first.next = second;

first = new Node();

best the was it

first

of

second

best the was it

first second

best the was it

first

second

best the was it

first

Section 4.3

8 8

Stack Pop: Linked List Implementation

first = first.next;

return item;

best the was it

first

of

best the was it

first

best the was it

first

of

garbage-collected

String item = first.item;

"of"

Section 4.3

9

Stack: Linked List Implementation
public class LinkedStackOfStrings {

 private Node first = null;

 private class Node {

 private String item;

 private Node next;

 }

 public boolean isEmpty() { return first == null; }

 public void push(String item) {

 Node second = first;

 first = new Node();

 first.item = item;

 first.next = second;

 }

 public String pop() {

 String item = first.item;

 first = first.next;

 return item;

 }

}

"inner class"

stack and linked list contents

after 4th push operation

10

Linked List Stack: Test Client Trace

push

pop

Section 4.3

11

Stack Data Structures: Tradeoffs
Two data structures to implement Stack data type.

Array:

• Every push/pop operation take constant time.

• But… must fix maximum capacity of stack ahead of time.

Linked list:

• Every push/pop operation takes constant time.

• Memory is proportional to number of items on stack.

• But… uses extra space and time to deal with references.

to be or not

0 1 2 3 4 5 6 7 8 9

a[]

N

12

List Processing Challenge 1

What does the following code fragment do?

for (Node x = first; x != null; x = x.next) {

 System.out.println(x.item);

}

Alice Bob Carol null

item next

first

Section 4.3

13

List Processing Challenge 2

Node last = new Node();

last.item = args[0];

last.next = null;

Node first = last;

for (int i = 1; i < args.length; i++) {

 last.next = new Node();

 last = last.next;

 last.item = args[i];

 last.next = null;

}

Alice Bob Carol null

item next

first
last

What does the following code fragment do?

Section 4.3

