
Abstract Data Types (ADT)

Barbara Liskov

• First woman to get a Ph.D. in Computer
Science in the USA (Stanford 1968)

• Turing Award, 2008
• Inventor of Abstract Data Types

Abstract Data Types

• An approach to computer representation of abstraction
• Only the use which may be made of an abstraction is relevant
• How the abstraction is implemented is irrelevant.
• Defines a class of abstract objects which is completely characterized

by the operations (functions/methods) available on those objects.
• An abstract data type can be defined by defining the characterizing

operations for that type

Using Abstract Data Types

1. An abstract object (an ADT is the object’s type) may be operated
upon by the operations which define its abstract type

2. An abstract object may be passed as a parameter to a procedure
(function/method)

3. An abstract object may be assigned to a variable, but only if the
variable is declared to hold objects of that type

ADT in Java: interfaces

• An interface
• Defines an ADT in Java
• An interface is a class-like construct that contains only constants and abstract

methods
• An abstract method is a method that is not implemented. Only the method

signature is listed
• A constant is a variable which value does not change during the execution of

the program. They are declared static and final
• Gives a type for an object based on what it does, not on how it was

implemented
• Describes a contract that objects must satisfy

Defining an interface

• Example:

public interface InterfaceName {
constant declarations;
abstract method signatures;

}

public interface Shape {
public static final double PI = 3.14159;
public double area();
public double perimeter();
public void draw();

}

Implementing an interface

• Define a class that will implement
the interface
• The class implementing the

interface must implement all the
methods defined in the interface
• The class implementing an interface

declares a subtype of the interface
• The interface is a supertype of the

implementation class
• A class can have multiple

supertypes
• An interface can have multiple

subtypes

public class Circle implements Shape
{ (truncated for space)

private double radius;

public Circle(double radius){
this.radius = radius;

}

@Override
public double area() {
return radius * radius * PI;

}
…

}
Defined in the
interface

Implementing an interface: @Override

• The @Override keyword indicates that the method
implements/overrides a method defined in the interface
• Optional but very useful
• If the interface changes, methods “decorated” with @Override

keyword will raise a compiler error. To fix the problem, make your
code to adhere to the new interface

Using an interface

• Declare an object of type the interface and initialize it using the
subtype constructor.
• Invoke the methods defined in the ADT on the object
• Example:

Shape c = new Circle(4);
c.area();
c.perimeter();
c.draw();

