
Recursion

Objectives

• To understand how to think recursively

• To learn how to write recursive methods

• To learn how to trace a recursive method

• To learn how to write recursive algorithms and methods for
searching arrays

RECURSIVE THINKING

Recursive Thinking

Boy and Dragon ©2009-2015 doodlediddy

Maya and the dragon

http://doodlediddy.deviantart.com/

Recursive Thinking

• Recursion is a problem-solving approach that
can be used to generate simple solutions to
certain kinds of problems that are difficult to
solve by other means

• Recursion reduces a problem into one or
more simpler versions of itself

Recursive Thinking (cont.)

Recursive Algorithm to Process Nested Figures
if there is one figure

do whatever is required to the figure
else

do whatever is required to the outer
figure
process the figures nested inside the outer
figure in the same way

Steps to Design a Recursive Algorithm

¨There must be at least one case (the base case), for a
small value of n, that can be solved directly

¨A problem of a given size n can be reduced to one or
more smaller versions of the same problem (recursive
case(s))

¨Identify the base case(s) and solve it/them directly
¨Devise a strategy to reduce the problem to smaller

versions of itself while making progress toward the
base case

¨Combine the solutions to the smaller problems to
solve the larger problem

Recursive Algorithm for Printing
String Characters

/** Recursive method printChars
post: The argument string is displayed, one
character per line
@param str The string

*/
public static void printChars(String str) {

if (str == null || str.equals(""))
return;

else {
System.out.println(str.charAt(0));
printChars(str.substring(1));

}
}

Recursive Algorithm for Printing
String Characters in Reverse

/** Recursive method printCharsReverse
post: The argument string is displayed in

reverse, one character per line
@param str The string

*/
public static void printCharsReverse(String str) {

if (str == null || str.equals(""))
return;

else {
printCharsReverse(str.substring(1));
System.out.println(str.charAt(0));

}
}

Recursive Algorithm for Finding the
Length of a String

if the string is empty (has no characters)
the length is 0

else

the length is 1 plus the length of the string
that excludes the first character

Recursive Algorithm for Finding the
Length of a String (cont.)

/** Recursive method length

@param str The string

@return The length of the string

*/

public static int length(String str) {

if (str == null || str.equals(""))

return 0;

else

return 1 + length(str.substring(1));

}

Tracing a Recursive Method

• The process of
returning from
recursive calls and
computing the
partial results is
called unwinding
the recursion

Run-Time Stack and Activation
Frames

¨Java maintains a run-time stack on which it saves
new information in the form of an activation
frame

¨The activation frame contains storage for
¤function arguments
¤local variables (if any)
¤the return address of the instruction that called the

method
¨Whenever a new method is called (recursive or

not), Java pushes a new activation frame onto
the run-time stack

Run-Time Stack and Activation Frames

RECURSIVE ARRAY SEARCH

Recursive Array Search

• Searching an array can be accomplished using
recursion

• Simplest way to search is a linear search
– Examine one element at a time starting with the first

element and ending with the last
– On average, (n + 1)/2 elements are examined to find

the target in a linear search
– If the target is not in the list, n elements are

examined
• A linear search is O(n)

Recursive Array Search (cont.)

• Base cases for recursive search:
– Empty array, target can not be found; result is -1
– First element of the array being searched = target;

result is the subscript of first element

• The recursive step searches the rest of the
array, excluding the first element

Algorithm for Recursive Linear Array
Search

Algorithm for Recursive Linear Array Search
if the array is empty

the result is –1
else if the first element matches the target

the result is the position of the first element
else

search the array excluding the first element and return the result

Implementation of Recursive Linear
Search (cont.)

Design of a Binary Search Algorithm

¨A binary search can be performed only on an
array that has been sorted

¨Base cases
¤The array is empty
¤Element being examined matches the target

¨Rather than looking at the first element, a binary
search compares the middle element for a match
with the target

¨If the middle element does not match the target,
a binary search excludes the half of the array
within which the target cannot lie

Design of a Binary Search Algorithm
(cont.)

Binary Search Algorithm

if the array is empty
return –1 as the search result

else if the middle element matches the target
return the subscript of the middle element as the result

else if the target is less than the middle element
recursively search the array elements before the middle element
and return the result

else
recursively search the array elements after the middle element and
return the result

Binary Search Algorithm

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first = 0 last = 6middle = 3

First call

Binary Search Algorithm (cont.)

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first = 0 last = 2

middle = 1

Second call

Binary Search Algorithm (cont.)

Caryn Debbie Dustin Elliot Jacquie Jonathon Rich

Dustin

target

first= middle = last = 2

Third call

Efficiency of Binary Search

• At each recursive call we eliminate half the array
elements from consideration, making a binary search
O(log n)

• An array of 16 would search arrays of length 16, 8, 4, 2,
and 1: 5 probes in the worst case
– 16 = 24

– 5 = log216 + 1
• A doubled array size would require only 6 probes in the

worst case
– 32 = 25

– 6 = log232 + 1
• An array with 32,768 elements requires only 16

probes! (log232768 = 15)

Trace of Binary Search

