Variables

A Foundation for Programming

any program you might want to write

Variables

- A name to which data can be assigned
- A variable is declared as a specific data type
- Names must begin with a lowercase letter, ' _' or '\$' and can contain letters, digits, ' _ and '\$'

```
boolean bReady = true;
int i;
int j = 12;
float fSize = 10.0;
color _red = color(255, 0, 0);
String name123 = "Fred";
PImage img;
```


Variable Uses

- Use a value throughout your program,
- but allow it to be changed
- As temporary storage for a intermediate computed result
- ... etc

Variables and Types

"int" means that the variable will always hold an integer

Assignment

"=" stores a value in a variable
int a, b;
a = 1234;
b = 99;
int $\mathrm{t}=\mathrm{a}$;
$\mathrm{a}=\mathrm{b}$;
b = t;

It is not for comparison, as in standard math

int: Integers (whole numbers)

+, -, *, /, \% (modulo), (), Integer.parseInt()

Expression	
$5+3$	
$5-3$	
$5 * 3$	
$5 / 3$	
$5 \% 3$	
$5 \%-3$	
$1 / 0$	
$3 * 5-2$	
$3+5 / 2$	
$3-5 / 2$	
$(3-5) / 2$	
$3-(5-2) / 2$	
Integer.parseInt	
Integer.parseInt (3)	
5	

Modulo Operator (\%)

Remainder

Division gives the quotient:

$$
26 / 5==5
$$

Modulo gives the remainder:
$26 \% 5=1$

Example: Determining whether an integer n is even or odd:

Variable Scope

Variable scope:

- That set of code statements in which the variable is known to the compiler
- Where it can be referenced in your program
- Limited to the code block in which it is defined
- A code block is a set of code enclosed in braces (\{ \})

double: Floating-Point (fractions)

+, -, *, /, \% (modulo), (), Double.parseDouble()

Expression	Result?
$3.141+0.03$	
$6.02 \mathrm{e} 23 / 2.0$	
$5.0 / 3$	
(int) $5.0 / 3$	
$5.0 /$ (int) 3	
$10.0 \% 3.141$	
$1.0 / 0.0$	
$-1.0 / 0.0$	
$0.0 / 0.0$	
Math.sqrt(2)	
Math.sqrt(-1)	
Math.sqrt(2) $*$ Math.sqrt(2)	
Math.PI	
Math.pi	

Java Math Library (Excerpts)

```
public class Math
    doub1e abs(doub1e a) absolute value of a
    double max(double a, double b) maximum of a and b
    doub7e min(doub7e a, doub7e b) minimum of a and b
Note 1: abs(), max(), and min() are defined also for int, 1ong, and float.
    double sin(double theta) sine function
    double cos(double theta) cosinefunction
    double tan(double theta) tangent function
Note 2: Angles are expressed in radians. Use toDegrees() and toRadians() to convert.
Note 3: Use asin(), acos(), and atan() for inverse functions.
doub7e exp(double a) exponential (ea)
doub7e log(doub7e a) natural log ( }\mp@subsup{\operatorname{log}}{e}{}a,\mathrm{ or ln a)
double pow(double a, double b) raise a to the bth power (ab)
    long round(double a) round to the nearest integer
double random() random number in [0,1)
double sqrt(double a) square root of a
doub7e E value ofe (constant)
double PI value of \pi (constant)
```


char: Single Characters

Single characters are stored as (small) integers!

Expression	Result?
'A'	
'A' 0	
(int) 'A'	
(char) 65	
(int) 'a'	
(int) '0'	
'3' - 0 '	

Character codes are defined by the AscII and Unicode stendards.

boolean: True/False

true, false, $==,!=,<,\rangle,<=,\rangle=, \& \&$ (and), || (or), ! (not)

Expression	Result?	
true		
!false		
' $\mathrm{A}^{\prime}=$ = 'a'		
Math.PI != 3.14		
'a' > 'b		
$1.7<=(17 / 10)$		
true \&\& true		
true \&\& false		
false \&\& false		
true \|	true	
true \|	false	
false \|	false	
$(1<3) \& \&(3==(6 / 2))$		
$(1>=3)\|\mid!(3==(6 / 2))$		

Data Type Conversion

- Some variable types can be converted to other types
- Via casting (from Java)

```
float f = 10.0;
int i = (int) f;
```

- Processing includes additional type conversion functions (these don't work in standard Java):
// binary (...), boolean(...), byte(...),
// char(...), float(...), str(...)
float $f=10.0$;
int i;
//i $=$ f; // Throws a runtime error
$i=\operatorname{int}(f) ;$
println(char(65));// Prints the character 'A'

Primitive Data Types

Type	Range	Default	Bytes
boolean	\{ true, false \}	false	?
byte	\{ $0 . .255$ \}	0	1
int	$\{-2,147,483,648$	0	4
	... 2,147,483,647 \}		
long	\{ -9,223,372,036,854,775,808	0	8
	... 9,223,372,036,854,775,807 \}		
float	\{ -3.40282347E+38	0.0	4
	... 3.40282347E+38 \}		
double	much larger/smaller	0.0	8
char	a single character 'a', 'b', ...	'\u0000'	2

More Complex Data Types

Type	Range	Default	Bytes
String	a series of chars in quotes "abc"	null	$?$
Plmage	an image	null	$?$
PFont	a font for rendering text	null	$?$

