
CIS 1100
Cost of an Function Python

Fall 2024

University of Pennsylvania

We say that binary search is faster "on average" than linear search.

So why does Python use linear search to implement in and .index() when we could just

sort the sequence and use binary search instead?

Recall: Binary Search is "Faster" On Average

1

All code takes time to run. A simple heuristic is that a function's runtime

is proportional to the number of iterations of the loops it takes to execute.

Let's approximate "speed" with printed snakes:

def linear_search_contains(seq, target):
 for idx, element in enumerate(sequence):
 print(" ")
 if element == target:
 return True
 return False

(L11): How many snakes are printed if we run

linear_search_contains(range(100), 13)?

Speedy Snakes

2

def binary_search_contains(sequence, target):
 sequence = sorted(sequence)
 low_index, high_index = 0, len(sequence) - 1
 while low_index <= high_index:
 print(" ")
 middle_index = (low_index + high_index) // 2
 if target < sequence[middle_index]:
 high_index = middle_index - 1
 elif target > sequence[middle_index]:
 low_index = middle_index + 1
 else:
 return True
 return False

Also (L11): How many snakes are printed if we run

binary_search_contains(shuffle(range(100)), 13)?

Contains with Binary Search

3

sequence = sorted(sequence)

If we're just counting iterations of while loops, it looks like binary_search_contains
and linear_search_contains have the same "snake price."

But this is a LIE! Because sorting also costs an appreciable amount

of time. In fact, if sequence contains 100 elements, then a call to

sorted(sequence) would print about 700 SNAKES on average!

 (this is only 192 snakes!)

A Whole Other Bundle of Snakes

4

Final thing for (L11): What is the most number of snakes that

a linear search could print for a sequence of 100 numbers.

Use this result to summarize in (C12) why it's not a good idea to always use a

binary search method to check if a target value is found inside of a sequence.

Concluding...

5

CIS 1100
Choosing the Right

Data Structure

Python

Fall 2024

University of Pennsylvania

1. Take two minutes to talk to a partner. For each of the following

types, try to describe some advantages/drawbacks of each.

2. Then, we'll collect everyone's suggestions to build a collaborative inventory.

Type Advantages & Uses Disadvantages & Limitations

list

set

dict

tuple

Building Collaborative Definitions

6

Next five slides have five problem statements. We'll look at each for 45

seconds—feel free to discuss with a partner as we do. In each case, decide

which data structure will be best/necessary. (We'll go over this after.)

(M1-5)

Rapid Fire

7

I have a file called marathon_timings.txt
that maps runner names to their marathon times.

I want to sort the runners by time and then save the names in order so that I

can quickly look up who was in first place, third place, nineteenth place, etc.

I should use a ... to store my runners

A. list

B. set

C. dict

D. tuple

(M1)

8

I have a file called marathon_timings.txt
that maps runner names to their marathon times.

I want to be able to look up the marathon times of a runner by their names.

I should use a ... to store my runners & their times.

A. list

B. set

C. dict

D. tuple

(M2)

9

I have a file called marathon_timings.txt
that maps runner names to their marathon times.

I want to be able to check a name against the names I have stored in this file.

I should use a ... to store my runner names.

A. list

B. set

C. dict

D. tuple

(M3)

10

I have a file called marathon_timings.txt
that maps runner names to their marathon times.

I want to be able to look up the marathon times of a runner by their names.

I also want to be able to add runners & times after I process this file.

I should use a ... to store & update my runner names and times.

A. list

B. set

C. dict

D. tuple

(M4)

11

I have a file called marathon_timings.txt
that maps runner names to their marathon times.

I want to be able to write a function that returns the name & time of the

fastest runner in a single value. It makes the most sense for me to return a ...

A. list

B. set

C. dict

D. tuple

(M5)

12

For timing individual lines:

python -m timeit -s "<setup statement>" "<small snippet of code>"

For timing whole programs:

python -m cProfile your_filename.py

timeit & cProfile

13

def add_to_sorted_list(sorted_list, other_numbers):
 """
 Add all of the values from other_numbers
 to the list sorted_list. sorted_list is
 already sorted, and the returned value should
 be sorted, too.
 """
 output = list(sorted_list)
 for number in other_numbers:
 output.append(number)
 output.sort()
 return output

In (C14), can you think of a way to make this function more efficient?

Pointing Out Inefficiency

14

class Rhyme:
 def __init__(self, first, second):
 self.first = first
 self.second = second

 def to_limerick(self):
 print(f"There once was a guy named {self.first} who thought for sure he could {self.second}")

silly = Rhyme("Steve", "leave")
silly.to_limerick()

There once was a guy named Steve who thought for sure he could leave

(If Time) __eq__()

15

rhymes_for_steve = [
 Rhyme("Steve", "leave"),
 Rhyme("Steve", "achieve"),
 Rhyme("Steve", "grieve"), # idk
 Rhyme("Steve", "leave"),
 Rhyme("Steve", "heave"),
 Rhyme("Steve", "believe")
]

Whoops, I did a duplicate. Let's just get rid of that...

rhymes_for_steve = list(set(rhymes_for_steve))
print(len(rhymes_for_steve))

Wait... still 6?

"I Need Six Rhymes On My Desk By 5PM"

16

Objects that are structurally the same as each other will

not automatically be considered to be == to each other

>>> Rhyme("Steve", "leave") == Rhyme("Steve", "leave")
False

__eq__() to the rescue!

Object Equality

17

In any class, you can write a method with the signature def
__eq__(self, other) to define how the == operation behaves.

class Rhyme:
 ... # other stuff

 def __eq__(self, other):
 return self.first == other.first and self.second == other.second

>>> Rhyme("Steve", "leave") == Rhyme("Steve", "leave")
True

__eq__ for Equality

Called a "magic method"—a method that defines the behavior of an operation

that's called in a different way than the name of the method would apply.

A perk of Dataclasses—they implement a reasonable version of __eq__ for you

18

	Cost of an Function 🐍
	Recall: Binary Search is "Faster" On Average
	Speedy Snakes
	Contains with Binary Search
	A Whole Other Bundle of Snakes
	Concluding...

	Choosing the Right Data Structure 🐍
	Building Collaborative Definitions
	Rapid Fire
	(M1)
	(M2)
	(M3)
	(M4)
	(M5)
	timeit & cProfile
	Pointing Out Inefficiency
	(If Time) __eq__()
	"I Need Six Rhymes On My Desk By 5PM"
	Object Equality
	__eq__ for Equality

