CiIS1100

Cost of an Function ¢J Python
Fall 2024

University of Pennsylvania

Recall: Binary Search is "Faster" On Average

We say that binary search is faster "on average” than linear search.

So why does Python use linear search to implement in and . index () when we could just
sort the sequence and use binary search instead?

Speedy Snakes

All code takes time to run. A simple heuristic is that a function's runtime

is proportional to the number of iterations of the loops it takes to execute.
Let's approximate "speed” with printed snakes: ¢J

def linear_search_contains(seq, target):
for idx, element in enumerate(sequence):
print("@d")
if element == target:
retuxrn True
return False

(L11): How many snakes are printed if we run
linear_search_contains(range(100), 13)?

Contains with Binary Search

def binary_search_contains(sequence, target):
sequence = sorted(sequence)
low_index, high_index = 0, len(sequence) - 1
while low_index <= high_index:
print("@)")
middle_index = (low_index + high_index) // 2
if target < sequence[middle_index]:
high_index = middle_index - 1
elif target > sequence[middle_index]:
low_index = middle _index + 1
else:
return True
return False

Also (L11): How many snakes are printed if we run
binary_search_contains(shuffle(range(100)), 13)?

A \Whole Other Bundle of Snhakes

sequence = sorted(sequence)

If we're just counting iterations of while loops, it looks like binary search contains
and 11near_search _contailns have the same "snake price."

But this is a LIE! Because sorting also costs an appreciable amount
of time. In fact, if sequence contains 100 elements, then a call to

sorted (sequence) would print about 700 SNAKES on average!

WNAAANANNNAANAAANAANANANANAAANAA AN AANAAAAAAAAAD
WNANNANNNNANANANAAAAAANAAAAANAANANANANADAANANA NN AN AN AN A
WNANNNNANANNNNAAAAAAAAAAAAAAAAAAAANAANAAN N
WNAAANAANNNANAAANAANNAAAAAA AN AAAAA AN AN A
WAAAAANNNANAANAAAAANANAAAAA AN AAAAA AN AAAAD
WNANNNNNNNNNAAAAADAADADADAAAA A (this is only 192 snakes!)

Concluding...

Final thing for (L11): What is the most number of snakes that
a linear search could print for a sequence of 100 numbers.

Use this result to summarize in (C12) why it's not a good idea to always use a
binary search method to check if a target value is found inside of a sequence.

CiIS1100

Choosing the nght Python

Data Structure ¢J Fall 2024
University of Pennsylvania

Building Collaborative Definitions

1. Take two minutes to talk to a partner. For each of the following
types, try to describe some advantages/drawbacks of each.

2. Then, we'll collect everyone's suggestions to build a collaborative inventory.

Type | Advantages & Uses | Disadvantages & Limitations

list

set

dict

tuple

Rapid Fire

Next five slides have five problem statements. We'll look at each for 45
seconds—feel free to discuss with a partner as we do. In each case, decide
which data structure will be best/necessary. (We'll go over this after.)

(M1-5)

| have afile called marathon_timings.txt
that maps runner names to their marathon times.

| want to sort the runners by time and then save the names in order so that |

can quickly look up who was in first place, third place, nineteenth place, etc.

| should use a ... to store my runners
A. list

B. set

C. dict

D. tuple

(M1)

(M2)

| have afile called marathon_timings.txt
that maps runner names to their marathon times.

| want to be able to look up the marathon times of a runner by their names.

| should use a ... to store my runners & their times.
A. list
B. set

C. dict
D. tuple

| have afile called marathon_timings.txt
that maps runner names to their marathon times.

| want to be able to check a name against the names | have stored in this file.

| should use a ... to store my runner names.
A. list
B. set

C. dict
D. tuple

(M3)

10

(M4)

| have afile called marathon_timings.txt
that maps runner names to their marathon times.

| want to be able to look up the marathon times of a runner by their names.

| also want to be able to add runners & times after | process this file.
| should use a ... to store & update my runner names and times.

A. list
B. set

C. dict
D. tuple

11

| have afile called marathon_timings.txt

that maps runner names to their marathon times.

| want to be able to write a function t
fastest runner in a single value. It ma

A. list
B. set

C. dict
D. tuple

nat returns the name & time of the

kes the most sense for me to return a ...

(M5)

12

timeit & cProfile

For timing individual lines:

python -m timeit -s "<setup statement>" "<small snippet of code>"

For timing whole programs:
python -m cProfile your_ filename.py

13

Pointing Out Inefficiency

def add to sorted list(sorted list, other numbers):

Add all of the values from other numbers

to the list sorted list. sorted list 1s

already sorted, and the returned value should

be sorted, too.

output = list(sorted list)

for number in other numbers:
output.append(number)
output.sort()

return output

In (C14), can you think of a way to make this function more efficient?

14

(If Time) __eq__ ()

class Rhyme:
def init (self, first, second):
self.first = first
self.second = second

def to limerick(self):
print (f"There once was a guy named iself.first? who thought for sure he could iself.second?")

silly = Rhyme("Steve", "leave")
silly.to_limerick()

=

There once was a guy named Steve who thought for sure he could leave

15

"INeed Six Rhymes On My Desk By 5PM"

rhymes _for steve = [

Rhyme ("Steve", "leave"),

Rhyme ("Steve", "achieve"),
Rhyme ("Steve", "grieve"), # 1idk
Rhyme ("Steve", "leave"),

Rhyme ("Steve", "heave"),

Rhyme ("Steve", "believe")

]

Whoops, | did a duplicate. Let's just get rid of that...

rhymes _for steve = list(set(rhymes _for steve))
print(len(rhymes_for_steve))

Wait... still 672

16

Objects that are structurally the same as each other will
not automatically be considered to be == to each other @

Object Equality

>>> Rhyme("Steve", "leave") == Rhyme("Steve", "leave")

False

__eq__ () totherescue!

17

__eq__ forEquality

In any class, you can write a method with the signature det
eq__(self, other) todefine how the == operation behaves.

e Called a "magic method"—a method that defines the behavior of an operation
that's called in a different way than the name of the method would apply.

e A perk of Dataclasses—they implement a reasonable versionof __eq__ for you

class Rhyme:
. # other stuff

def eq (self, other):
return self.first == other.first and self.second == other.second

>>> Rhyme("Steve", "leave") == Rhyme("Steve", "leave")
True

18

	Cost of an Function 🐍
	Recall: Binary Search is "Faster" On Average
	Speedy Snakes
	Contains with Binary Search
	A Whole Other Bundle of Snakes
	Concluding...

	Choosing the Right Data Structure 🐍
	Building Collaborative Definitions
	Rapid Fire
	(M1)
	(M2)
	(M3)
	(M4)
	(M5)
	timeit & cProfile
	Pointing Out Inefficiency
	(If Time) __eq__()
	"I Need Six Rhymes On My Desk By 5PM"
	Object Equality
	__eq__ for Equality

