
Exam Review!!!

Spring 2025 @ University of Pennsylvania

Exam Review!

Monday, April 7th @ 1:45pm in Towne 100

Covers everything through recursion: NO PANDAS!

Pencil & paper, so be ready...

Practice exam on website:

two specifically for exam 2—very challenging

also the two previous practice exams, which are good for fundamentals and are

still worthy of your time even if you did them a month ago.

CIS 1100

Spring 2025 @ University of Pennsylvania 1

Your Requests

Help me understand jupyter notebook more

How to count rows

Help me understand pandas

can we go over what the difference is between saying [schools[schools[""]]]

vs schools[""]

can we conceptually go over pandas and what they are on a higher level

I'd like to see more examples on the difference between .iloc and .loc. I'm still a bit

confused on what to use when.

can you please help me understand how the panda works and its understanding

throughout the course as its used a lot inside the course.

how exactly does pandas work? and what does it due?

LATER!! Because Pandas is not on the exam!!!!

CIS 1100

Spring 2025 @ University of Pennsylvania 2

Your Other Requests: Higher Order Functions & Lambdas

(write your answers anywhere, there's just a ton of practice)

Write this function as a lambda:

def get_last(l: list[int]) -> int:
 return l[-1]

Write this lambda as a function:

lambda a, b: (3 * (a * a)) + (2 * a) + 1

CIS 1100

Spring 2025 @ University of Pennsylvania 3

Your Other Requests: Higher Order Functions & Lambdas

solutions

Write this function as a lambda:

def get_last(l: list[int]) -> int:
 return l[-1]
lambda l: l[-1]

Write this lambda as a function:

lambda a, c: (3 * (a * a)) + (2 * a) + c
def quadratic_func(a, c):
 return (3 * (a * a)) + (2 * a) + c

CIS 1100

Spring 2025 @ University of Pennsylvania 4

Your Other Requests: Higher Order Functions & Lambdas

Quick associations: pick the higher order function that seems most well-suited to the

problem at hand.

get a new copy of a list where we replace every negative number in a list with zero

get a new copy of a list with only the positive numbers included

count the number of positive integers in a list

get a new copy of a list of strings that removes any strings starting with a '+'

concatenate all of the strings in a list into one big string

turn a list of tuples into a list of lists (where the contents of the lists are exactly the

contents of the tuples)

CIS 1100

Spring 2025 @ University of Pennsylvania 5

map

filter

reduce

filter

map

reduce

CIS 1100

Spring 2025 @ University of Pennsylvania 6

Your Other Requests: Higher Order Functions & Lambdas

Do these two silently on your own! WRITE IT OUT!!!! Then, check with a partner.

get a new copy of a list with only the positive numbers included

concatenate all of the strings in a list into one big string

CIS 1100

Spring 2025 @ University of Pennsylvania 7

Your Other Requests: Recursion

Remember:

Work towards a base case

Can you think of individual versions of the problem that are easier to solve?

If you started the problem with an iterative solution & accumulator variable,

what would the initial value of that variable be

Make the problem smaller

making a recursive call where one of the inputs literally gets smaller (smaller

integer, smaller sublist of an input list)

making a recursive call where one of the inputs gets bigger, but therefore

closer to the base case

Figure out how to combine information from different recursive calls

CIS 1100

Spring 2025 @ University of Pennsylvania 8

Recursion: Through Iteration

def count_even_values(l: list[int]) -> int:
 count = ?????
 for num in l:
 if num % 2 == 0:
 count += 1
 return count

What should count start at?

What would need to be true for you to return the initial value of count?

CIS 1100

Spring 2025 @ University of Pennsylvania 9

Recursion: Through Iteration

def count_even_values(l: list[int]) -> int:
 count = ?????
 for num in l:
 if num % 2 == 0:
 count += 1
 return count

count starts at 0 , which is what we would return in the case of an empty list. In other

words, count is the value returned in the base case, which happens when the list is

empty

CIS 1100

Spring 2025 @ University of Pennsylvania 10

Recursion: Through Iteration

def count_even_values(l: list[int]) -> int:
 if len(l) == 0:
 return 0

 first = l[0]
 rest = l[1:]
 if first % 2 == 0:
 return 1 + count_even_values(rest)
 else:
 return count_even_values(rest)

CIS 1100

Spring 2025 @ University of Pennsylvania 11

Recursion

Try this silently on your own! WRITE IT OUT!!!! Then, check with a partner.

def take_only_positives(l: list[int]) -> list[int]:
 ...

(this will be equivalent to filter(lambda e: e > 0, l))

CIS 1100

Spring 2025 @ University of Pennsylvania 12

Recursion

def take_only_positives(l: list[int]) -> list[int]:
 if len(l) == 0:
 return []

 first = l[0]
 rest = l[1:]
 if first > 0:
 return [first] + take_only_positives(rest)
 else:
 return take_only_positives(rest)

CIS 1100

Spring 2025 @ University of Pennsylvania 13

JSON

It's just lists and dictionaries that were saved to a file! Don't think of this as an

especially separate unit, just think of dictionaries and lists (and then nesting these

things inside of each other.)

CIS 1100

Spring 2025 @ University of Pennsylvania 14

JSON

{
 "data": [
 { "id": 1, "name": "Wei Zhang", "email": "wei@example.com", "status": "active"},
 { "id": 2, "name": "Aisha Patel", "email": "aisha@example.com", "status": "inactive"},
 { "id": 3, "name": "José Rodriguez", "email": "jose@example.com", "status": "pending"}
],
 "meta": {"total": 3}
}

If this JSON lives in a file called people.json and I write:

file = open("people.json", "r")
response = json.load(file)

What is the type of response? response["data"]? response["meta"]?

CIS 1100

Spring 2025 @ University of Pennsylvania 15

JSON

{
 "data": [
 { "id": 1, "name": "Wei Zhang", "email": "wei@example.com", "status": "active"},
 { "id": 2, "name": "Aisha Patel", "email": "aisha@example.com", "status": "inactive"},
 { "id": 3, "name": "José Rodriguez", "email": "jose@example.com", "status": "pending"}
],
 "meta": {"total": 3}
}

If this JSON lives in a file called people.json and I write:

file = open("people.json", "r")
response = json.load(file)

dict, list, dict

CIS 1100

Spring 2025 @ University of Pennsylvania 16

JSON

{
 "data": [
 { "id": 1, "name": "Wei Zhang", "email": "wei@example.com", "status": "active"},
 { "id": 2, "name": "Aisha Patel", "email": "aisha@example.com", "status": "inactive"},
 { "id": 3, "name": "José Rodriguez", "email": "jose@example.com", "status": "pending"}
],
 "meta": {"total": 3}
}

If this JSON lives in a file called people.json and I write:

file = open("people.json", "r")
response = json.load(file)

There are two simple expressions you can write to find the number of users whose data

is included here. Write them both.

CIS 1100

Spring 2025 @ University of Pennsylvania 17

JSON

{
 "data": [
 { "id": 1, "name": "Wei Zhang", "email": "wei@example.com", "status": "active"},
 { "id": 2, "name": "Aisha Patel", "email": "aisha@example.com", "status": "inactive"},
 { "id": 3, "name": "José Rodriguez", "email": "jose@example.com", "status": "pending"}
],
 "meta": {"total": 3}
}

Write a short snippet to count the number of users whose status is pending:

file = open("people.json", "r")
response = json.load(file)
...

CIS 1100

Spring 2025 @ University of Pennsylvania 18

JSON

Count the number of users whose status is pending:

file = open("people.json", "r")
response = json.load(file)
count = 0
for user in response["data"]:
 if user["status"] == "pending":
 count += 1
print(f"{count} pending users.")

CIS 1100

Spring 2025 @ University of Pennsylvania 19

	Exam Review!!!
	Exam Review!
	Your Requests
	Your Other Requests: Higher Order Functions & Lambdas
	Your Other Requests: Higher Order Functions & Lambdas
	Your Other Requests: Higher Order Functions & Lambdas
	Your Other Requests: Higher Order Functions & Lambdas
	Your Other Requests: Recursion
	Recursion: Through Iteration
	Recursion: Through Iteration
	Recursion: Through Iteration
	Recursion
	Recursion
	JSON
	JSON
	JSON
	JSON
	JSON
	JSON

