
CIS 1100
Functional
Programming in Python

Python

Fall 2024
University of Pennsylvania

We covered three general purpose higher-order functions:

and a new language feature: lambda
Today we are just going to do a bunch of practice with it and apply it to more complicated

scenarios

Review:

filter

map

reduce

1

Why are we talking about Higher Order Functions (HOF)?

It turns out that a LOT of problems we want to solve in computer science can reduce down
to one of the three funnctions we have shown

These are sort of "fundamental" patterns in computer
science, showing up in many programming languages.

If you want to take more CIS courses (e.g. CIS 1200) then this is a core topic.

Why?

filter

map (sometimes called transform)

reduce (sometimes called fold, accumulate, aggregate or other terms)

2

filter is a higher order function that takes in a function and

sequence and returns a new sequence containing only those

elements for which the provided function evaluates to True.

filter(f, seq) is equivalent to:

[elem for elem in seq if f(elem)]

or

res = []
for elem in seq:
 if f(elem):
 res.append(elem)

filter

3

map is a higher order function that takes in a function and sequence and returns a new

sequence containing elements of the input sequence after having f applied to them.

map(f, seq) is equivalent to:

[f(elem) for elem in seq]

or

res = []
for elem in seq:
 res.append(f(elem))

map

4

Aggregation is done using a slightly trickier HOF

called reduce imported from functools.

reduce is a function that takes in an accumulator function and a sequence and
repeatedly accumulates elements from the sequence using the accumulator function.

reduce(f, seq) is roughly equivalent to:

result = seq[0]
for elem in seq[1:]:
 result = f(result, elem)

reduce

5

Lambdas (or anonymous functions) are functions that are defined without names.

lambda <parameter_list> : expression

would become

def no_name(<parameter_list>):
 return expression

Lambdas

6

(S7)

def perfect_name(name):
 return len(name) == 5 and 'a' in name

names = ["travis", "Harry", "Jessica", "adi", "Sukya", "Molly", "CedriC", "Jared"]
result = list(filter(perfect_name, names))

(S8)

names = ["travis", "Harry", "Jessica", "adi", "Sukya", "Molly", "CedriC", "Jared"]
result = list(map(lambda name : name[0] + name[-1], names))

(S9)

music = ["7eleven", "Cinco De Mayo Shit Show", "Vomitspit", "Lefty", "All My Friends"]
music = list(filter(lambda title : len(title.split()) == 1, music))
music = reduce(lambda a, b: a += b[0], music)

Practice! What do each of these evaluate to?

7

As said before, many problems can boil down to a combination of filter/map/reduce.

For these problems what functions do you think would be needed?
(Select all that apply for each question, A for filter, B for map, C for reduce)

Practice! Identifying the pattern

(M1) convert a list of strings/characters into a single string e.g. ["h", "i", "!"] -> "hi!"

(M2) get a list of all the capital letters in a string

(M3) given a list of numbers, get another list of

numbers that has the square (square of x is x^2)

(M4) find the maximum value in a list without using max()

(M5) given a list of strings, get a single string that is made up of the
first character of each string. (e.g. ["Hello!" , "I, "am", "tired"] -> "HIat")

8

Remember the caesar homework?

We wrote a function called string_to_symbol_list() that took a string and returned a

list but all characters were converted to symbols. ord(charater) - 65

What does this sound like?

Try implementing it with a higher order function (L11):

def string_to_symbol_list(string):
 # TODO

Applying Higher Order
Functions to past problems

9

def shift(symbol, n):
 return (symbol + n) % 26 if 0 <= symbol <= 25 else symbol

assume `n` is the amount we want to shift each symbol by
def encrypt(to_encode, n):
 symbols = string_to_symbol_list(to_encode)
 # TODO: put something here
 return symbol_list_to_string(symbols)

Which of these would work for encrypt? (M6)

(Bonus: When we implement symbol_list_to_string, which HOF will we need?)

Applying HOF to Caesar

(A) symbols = list(map(shift, symbols))

(B) symbols = list(map(lambda char : shift(char, n), symbols))

(C) symbols = list(map(shift(n), symbols))

(D) symbols = list(reduce(shift, symbols, []))

10

Given a list of characters, take only the ones which are singular lowercase letters and

mash them up into character*3 in a string. e.g. [a,A,B,c,b,travis] becomes "aaacccbbb".

(C12)

Practice Code writing!

11

Remember the structure we used in the check-in?

We asked you to implement the def
get_test_names(autograder_results):
which got a list of all tests in that structure.

Which higher order functions would apply here?

Applied to more
complex structures

12

Remember the structure we used in the check-in?

We asked you to implement the def
get_test_names(autograder_results):
which got a list of all tests in that structure.

If we used HOF we could do:

def get_test_names(autograder_results):
 return list(map(lambda test : test['name'], autograder_results['tests']))

Applied to more
complex structures

13

Remember the structure we used in the check-in?

We asked you to implement the def
get_failing_test_names(autograder_resu
lts): which got a list of all failing tests in that
structure.
(e.g. the status was "failed")

How would we do it with HOF?
(C14)

Applied to more
complex structures

14

Recursion :)

Next time!

15

