
CIS 1100
Functional Programming
in Python (Cont.)
& Recursion Start

Python

Fall 2024
University of Pennsylvania

We were a bit unclear about HW06 being due

(with no further late tokens usable) last Friday.

1. Anyone can use HW6 as their dropped assignment independent of the score that you
receive on it. Of course, you should still try to complete it if you have time. It will help
you understand things and give you more practice on testable topics. To that end...

2. We will reopen HW6 submissions on 11/18 and 11/19 only. This is right before your
exam, and so anyone who got all or most of the way through HW6 already should
absolutely use the time to just study for the exam instead of submitting things.

Reminders: HW06

1

HW07 is still due on Wednesday with normal late token policy
HW07 is still due on Wednesday with normal late token policy
HW07 is still due on Wednesday with normal late token policy
HW07 is still due on Wednesday with normal late token policy
HW07 is still due on Wednesday with normal late token policy

Reminders: HW07

2

In observance of Election Day, recitation is canceled on Tuesday, 11/5.

Monday recitation (11/4) will be held as normal, but attendance is optional.

If you can't make your recitation feel free for this week to attend another open Monday
recitation (211, 212; locations on the website). Additionally, we will host an optional
recitation on Tuesday night from 8-9:30 p.m. in Berger Auditorium (in Skirkanich).

Reminder: Recitations

3

We covered three general purpose higher-order functions:

and a new language feature: lambda

Review:

filter

map

reduce

4

Why are we talking about Higher Order Functions (HOF)?

It turns out that a LOT of problems we want to solve in computer science can reduce down
to one of the three funnctions we have shown

These are sort of "fundamental" patterns in computer
science, showing up in many programming languages.

If you want to take more CIS courses (e.g. CIS 1200) then this is a core topic.

Why?

filter

map (sometimes called transform)

reduce (sometimes called fold, accumulate, aggregate or other terms)

5

Remember the caesar homework?

We wrote a function called string_to_symbol_list() that took a string and returned a

list but all characters were converted to symbols. ord(charater) - 65

What does this sound like?

Try implementing it with a higher order function (L11):

def string_to_symbol_list(string):
 # TODO

Applying Higher Order
Functions to past problems

6

def shift(symbol, n):
 return (symbol + n) % 26 if 0 <= symbol <= 25 else symbol

assume `n` is the amount we want to shift each symbol by
def encrypt(to_encode, n):
 symbols = string_to_symbol_list(to_encode)
 # TODO: put something here
 return symbol_list_to_string(symbols)

Which of these would work for encrypt? (M6)

(Bonus: When we implement symbol_list_to_string, which HOF will we need?)

Applying HOF to Caesar

(A) symbols = list(map(shift, symbols))

(B) symbols = list(map(lambda char : shift(char, n), symbols))

(C) symbols = list(map(shift(n), symbols))

(D) symbols = list(reduce(shift, symbols, []))

7

Given a list of characters, take only the ones which are singular lowercase letters and

mash them up into character*3 in a string. e.g. [a,A,B,c,b,travis] becomes "aaacccbbb".

(C12)

Practice Code writing!

8

Remember the structure we used in the check-in?

We asked you to implement the def
get_test_names(autograder_results):
which got a list of all tests in that structure.

Which higher order functions would apply here?

Applied to more
complex structures

9

Remember the structure we used in the check-in?

We asked you to implement the def
get_test_names(autograder_results):
which got a list of all tests in that structure.

If we used HOF we could do:

def get_test_names(autograder_results):
 return list(map(lambda test : test['name'], autograder_results['tests']))

Applied to more
complex structures

10

Remember the structure we used in the check-in?

We asked you to implement the def
get_failing_test_names(autograder_resu
lts): which got a list of all failing tests in that
structure.
(e.g. the status was "failed")

How would we do it with HOF?
(C14)

Applied to more
complex structures

11

CIS 1100
Recursion Start Python

Fall 2024
University of Pennsylvania

The journey of a thousand miles starts with one mile.

And then a journey of 999 miles.

Recursive Thinking

12

A function is recursive if it invokes itself to do part of its work.

Recursion is a problem-solving approach that can be used to generate simple
solutions to certain kinds of problems that are difficult to solve by other means.

Recursion reduces a problem into one or more simpler versions of itself.

Recursive Thinking

13

An alternate to using loops for solving problems

The core of recursion is taking a big task and breaking it up into a series of related small
tasks.

Recursion

Example: handing out papers for an exam

Example: Which row are you in?

Iterative: have a TA walk down a row of students, giving each person an exam

Recursive: A student takes one exam, pass the rest down the aisle

14

We want to write a program that prints N stars on one line, but without loops.

def print_stars(N):

Here's

print_stars(N) ---> print_stars(1) + print_stars(N - 1)
print_stars(3) ---> print_stars(1) + print_stars(2)
print_stars(2) ---> print_stars(1) + print_stars(1)
print_stars(1) ---> print("*");

Breaking up a large problem

15

Every recursive function needs at least one base case and at least one recursive part.
The base case:

The recursive part:

Anatomy of a Recursive Function

handles a simple input that can be solved without resorting to a recursive
call. Can also be thought of as the case where we "end“ our recursion.

contains one or more recursive calls to the function.

In every recursive call, the parameters must be in some
sense "closer" to the base case than those of the original call

16

def print_stars(N):
 if (N == 0): # Base case
 # do nothing
 return
 else: # Recursive case
 print("*")
 print_stars(N - 1)

Writing our print_stars function:

17

What would calling mystrery(5) do?

(C16)

def mystery(N):
 if (N == 0):
 print("|/") # prints |/
 else:
 space = " " * N # should be a string with N spaces
 print(f"|{space}/")
 mystery(N - 1)

(L13) what would be an appropriate name for the function and it's parameters?

Practice: Tracing

18

What would this version of mystery do?

(L15)

def mystery(N):
 if (N == 0):
 print("|\\") # prints |\
 else:
 space = " " * N # should be a string with N spaces
 mystery(N - 1)
 print(f"|{space}\\") # print AFTER recursive call
 # Previously this was before the recursive call

Practice: Tracing

19

