
CIS 1100
Functions &
Caesar (Lecture)

Python

Fall 2024
University of Pennsylvania

The next homework we will release is Caesar.

Warning: This homework is typically a bump up in difficulty. It
is still totally doable and almost everyone finishes it. Please:

This lecture will demo it and introduce a few concepts that we hope are useful to you

Caesar

Start early

read the write-up

ask for help when you need it.

1

The main idea behind this is that we are interacting with a Caesar cipher.

The core idea of how this works is that we can match each letter to a number:

Letter A B C D E F G H I J K L M ... X Y Z

Number 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 23 24 25

Once we do this we can do "arithmetic" on a

message. e.g. B + C -> D and A + B -> B

A caesar takes a message and shifts (adds) all letters in the

message by some other input letter. e.g. CAFE shifted by B is DBGF

Caesar Shift

2

Letter A B C D E F G H I J K L M ... X Y Z

Number 0 1 2 3 4 5 6 7 8 9 10 11 12 ... 23 24 25

Once we do this we can do "arithmetic" on a

message. e.g. B + C -> D and A + B -> B

A caesar takes a message and shifts (adds) all letters in the

message by some other input letter. e.g. CAFE shifted by B is DBGF

What is HI shifted by D ? (S7)

Caesar Shift

3

A caesar takes a message and shifts (adds) all

letters in the message by some other input letter.

e.g. CAFE shifted by B is DBGF

Notice how the meaning of the word afterwards is
"encrypted" (the contents of the message are hidden).

Theoretically one could only get the original message
if they knew how much to "subtract" from the message.

Caesar Shift

4

Live Demo: Running caesar.py
encrypt, decrypt and crack

Caesar Demo

5

We try to give a lot of hints in the specification, please do read

the whole thing. Keep it open as you work on the assignment.

Note some of the hints we have in how we format

it (Demo: personality_quiz.py specification)

Reading the Specification

6

An important part of caesar.py is that we can convert a character to a integer using the

ord() function.

ord('A') returns 65
ord('B') returns 66
ord('C') returns 67 etc.

We can convert an integer back to a character with chr():

chr(65) returns A
chr(66) returns B
chr(67) returns C etc.

If we want to convert A to 0, B to 1, C to 2 etc. how can we do that? (S8)

If we want to convet 0 to A, 1 to B and 2 to C etc. how can we do that? (S9)

ASCII

7

We have a list that containss some sequence of the letters 'A', 'B', 'C', and 'D'.

Write the function get_counts() that returns a list of four integers, containing the number

of times ``'A', 'B', 'C', and 'D'` show up in the input respectively.
for example:

letters = ['A', 'C', 'D', 'C', 'A', 'A', 'A', 'C']
counts = get_counts(letters)
print(counts) # prints [4, 0, 3, 1]

1. Write the function header

2. create the initial values of the result list

3. populate the result list (probably want to use for and ord)

Ord Practice (C14)

8

So far in this class we have put all our code directly in the py file.

Now that we know functions, we should follow better practices.

Starting with HW03 onwards, all code should go in a function.

main

import statements should still be at the top of the py file outside of functions

Comments can be outside of functions

9

From now on we will have a function called main() that will be

where we keep the code we previously did not put in a function

We also need to add an if statement to the bottom of our code. Do not forget it!

For example:

def main():
 print("Hello World!")

if __name__ == "__main__":
 main()

Hello World w/ main()

10

rewrite the following code so that we use the new style that uses:

def main(): and

if __name__ == "__main__":

import sys

Prints all command line args
def print_args():
 for arg in sys.argv:
 print(arg)

print("Hello!")
print_args()

main() practice (C16)

11

Writing our code in a main() function has a few benefits:

Why main()?

Usually means our code is easier to read and better organized

We can now import functions from the python files we write

This is also just a style convention followed by most programming languages

this is the most important point

means we can import our own code into separate files for testing (or for the REPL)

12

Often times in this class we call the inputs to functions "Inputs"

def add(x, b):
 return x + b

zinc = 64
add(3, zinc)

Previously we would call x, b, 3, zinc all "inputs"

Technically we would make the distinction where

x and b are parameters (The variables defined in the function header)

3 and zinc are arguments (The actual data passed into the function)

You do not need to memorize this distinction, this is just for your future use and
so you know what we mean when we say parameter and argument of a function.

Inputs, Parameters, Arguments

13

Quick: What gets printed from this code? (S10)

def mystery(x):
 x += 5

def plank(name):
 name.upper()

def main():
 number = 3
 artist = "Kuji"
 mystery(number)
 plank(artist)

 print(number)
 print(artist)

if __name__ == "__main__":
 main()

Inputs should be inputs

14

When we pass most things to a function, we pass in a

copy of it or we pass something that cannot be mutated.

We generally want our inputs to be inputs only. If we
get something from a function it should be returned

Inputs should be inputs

15

Consider this code though:

def modify_list(nums):
 nums.append(3)

def main():
 my_numbers = [2, 5]
 modify_list(my_numbers)
 print(my_numbers) # prints "[2, 5, 3]"

if __name__ == "__main__":
 main()

Lists (and sets and dicts) are special in that they can be
modified when used as a function input. Why? (more later)

Be careful not to modify a list in a function that was taken as
input. Our homework code checks to make sure you don't do this.

Lists as parameters

16

Sometimes we want our functions to be able to take default
values for their inputs. We can do this with keyword arguments.

def divide(a, b, rounding=False):
 result = a / b
 if rounding:
 return round(result)
 else:
 return result

rounding is a keyword argument that is defined by its name
as well as the default value that it takes if it is not replaced.

Keyword Arguments

17

def divide(a, b, rounding=False):
 result = a / b
 if rounding:
 return round(result)
 else:
 return result

We can do any of the following:

>>> divide(3422, 194)
17.63917525773196
>>> divide(3422, 194, rounding=True)
18
>>> divide(3422, 194, True)
18
>>> divide(3422, 194, False)
17.63917525773196

Keyword Argumennts

18

Signatures:

Calls:

Rules of Keyword Arguments

All keyword parameters have to be provided AFTER all the positional ones

A keyword parameter is defined by writing identifier=<default_value>

Can have as many as you want, including ONLY keyword parameters

All keyword arguments have to be passed in AFTER
all positional inputs, but from there can be in any order

Keyword arguments can be given positionally or by
name, but you should always just give thme by name

19

def fun(a, b, c=13, d):
 pass

Good or Bad?

20

def fun(a, b, c=13, d):
 pass

BAD!

Good or Bad?

21

def fun(a=13, n="haha"):
 pass

Good or Bad?

22

def fun(a=13, n="haha"):
 pass

GOOD!

Good or Bad?

23

def fun(a, b, c=, d=13):
 pass

Good or Bad?

24

def fun(a, b, c=, d=13):
 pass

BAD!

Good or Bad?

25

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4, 0)
...

Good or Bad?

26

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4, 0)
...

OK, but redundant?

Good or Bad?

27

def fun(x, y, z=0):
 pass

then,

...
fun(z=0, 3, 4)
...

Good or Bad?

28

def fun(x, y, z=0):
 pass

then,

...
fun(z=0, 3, 4)
...

BAD!

Good or Bad?

29

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4, z=x+y)
...

Good or Bad?

30

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4, z=x+y)
...

BAD!

Good or Bad?

31

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4)
...

Good or Bad?

32

def fun(x, y, z=0):
 pass

then,

...
fun(3, 4)
...

Good!

Good or Bad?

33

