List
Comprehensions

Learning Objectives

e Apply common for loop idioms using a list comprehension, including:
o aggregating,

o mapping,

o & filtering

List Comprehensions

List comprehensions are expressions that generate
a list based on the elements of another sequence.

e Succinct way of defining an iteration that builds a list

e Makes it easy to:
o Copy elements from another sequence

o Filter elements based on a condition

o Map elements to new values

List Comprehension Syntax

Recall a fox loop that copies all characters of a string into a list:

new_list = []
for character in "ABCD":
new_list.append(character)

"For each character in the string, place that character in the new list | am creating.”

*“%9

new_list = [character for character in "ABCD"]

List Comprehension Syntax

A basic list comprehension can be written like so:

[<expression> for variable in sequence]

e for variable 1n sequence works exactly like a regular for loop
o Each elementin sequence gets visited one-by-one and is given the name variable

e The value of <expression> is appended to
the output list for each element in the sequence

o Usually write <expression> interms of variable

e A new listis created!

Comprehension vs. Loop

With a comprehension: With a loop:

new_list = [<expression> for variable in sequence] new list = []

for variable in sequence:
new_list.append(<expression>)

Copving Using Comprehensions

Example: create a list containing all of the characters in a string.

emoji_string = "@ N emoji_string = "@\NE"

emoji_list = [emoji for emoji in emoji_string] emoji_list = []

for emoji in emoji_string:
emojl_list.append(emoji)

Both snippets produce the same output:

|:||@||, ||%||, ||.')/$;;||:|

Comprehensions:
Filtering

Filter Values Out of a Sequence

We have a basic foxr loop pattern for copying all elements
of a sequence that meet a condition. This is called filtering.

new_list = [] # [] 1s a list with no contents
for variable in sequence: # For each value in the source sequence,
if condition(variable): # 1f that value meets some condition

new_list.append(<expression>) # add that value to the end of the new Llist.

condition () is aplaceholder here to represent some boolean
expression that helps decide whether or not to include value.

Filter Values Out of a Sequence

new_list = [] # [] 1s a Llist with no contents
for variable in sequence: # For each value 1n the source sequence,
if condition(variable): # 1f that value meets some condition

new_list.append(<expression>) # add that value to the end of the new Llist.

We can rewrite the loop (above) into the comprehension (below)

new_list = [<expression> for variable in sequence if condition(variable)]

e <expression> for variable 1n sequence works exactly the same way

e 1f condition(variable) allows us to write the expression that is
a condition for whether that element of the sequence can be included.

Recall: Getting Non-Zero Exam Scores

exam scores = [100, 0, 89, 93, 78, 67, 0]

non_zeroes = [] # [] 1s a List with no contents
for score in exam_scores: # For each score from the Llist,
if score > 0: # 1f that score 1s not zero,

non_zeroes.append(score) # add that score to the end of the new list.
print(non_zeroes)

29

[160, 89, 93, 78, 67]

Recall: Getting Non-Zero Exam Scores

This loop-based version...

exam_scores = [100, 0, 89, 93, 78, 67, 0]

non_zeroes = |[] # [] 1s a List with no contents
for score in exam_scores: # For each score from the Llist,
if score > 0: # 1f that score 1s not zero,

non_zeroes.append(score) # add that score to the end of the new Llist.

...can be rewritten to:

exam scores = [100, 0, 89, 93, 78, 67, 0]
non_zeroes = [score for score in exam_scores if score > 0]
print(non_zeroes)

%

[160, 89, 93, 78, 67]

10

Recall: Checking Capitalization

names = ["haRzry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]

proper_caps = []
for name in names:
if name.istitle():
proper_caps.append(name)
print(proper_caps)

[] 1s a List with no contents

For each name from the Llist,

1f that name 1s in "title case”

add that name to the end of the new List.

29

[IIAdiII’ IISukyall:l

11

Recall: Checking Capitalization

This loop-based version...

names = ["haRry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]

proper_caps = [] # [] 1s a List with no contents
for name in names: # For each name from the Llist,
if name.istitle(): # 1f that name is in "title case”

proper_caps.append(name) # add that name to the end of the new Llist.

...can be rewritten to:

names = ["haRzry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]
proper_caps = [name for name in names if name.istitle()]
print(names)

%

[IIAdiII’ IISukyall:l

12

Comprehensions:
Mapping

Using the Expression

[<expression> for variable in sequence if condition(variable)]

e So far, for copying and filtering, we've just had <expression> be the variable itself

e The <expression> can be any expression, though!

13

The expression could be a literal:

A Constant Expression

1l = [0 foxr 1 in range(10)]
print(l)

29

[©), @, &, @, @, @, 6, ©, &, &

Equivalent to:

1 =[]
for 1 in range(10):
1.append(0)

14

More Flexible Expressions

The expression could also be a more complicated set of operations
defined in terms of the variable that we use in the comprehension:

exam_scores = [92, 99, 100, 98.5]
curved scores = [score + 10 for score in exam _scores]

This is exactly equivalent to:

curved scores = |[]

exam_scores = [92, 99, 100, 98.5]

for score in exam_scores:
curved_scores.append(score + 10)

15

Mapping & Filtering

\We can do the mapping and filtering together. Only
elements that pass the filter get selected & mapped.

Get all strings of length 3 and capitalize them.
names = ["hss", "tOm", "aditya", "Sukya"]

capital _initials = [name.upper() for name in names if len(name) == 3]
print(capital_initials)

w » [IIHSSII,] QMII]

This is equivalent to:

names = ["hss", "tOm", "aditya", "Sukya"]
capital initials = []
for name in name:

if len(name) ==

capital initials.append(name.upper())

16

	
	Learning Objectives

	
	List Comprehensions
	List Comprehension Syntax
	List Comprehension Syntax
	Comprehension vs. Loop
	Copying Using Comprehensions

	
	Filter Values Out of a Sequence
	Filter Values Out of a Sequence
	Recall: Getting Non-Zero Exam Scores
	Recall: Getting Non-Zero Exam Scores
	Recall: Checking Capitalization
	Recall: Checking Capitalization

	
	Using the Expression
	A Constant Expression
	More Flexible Expressions
	Mapping & Filtering

