

Learning Objectives
Apply common for loop idioms using a list comprehension, including:

aggregating,

mapping,

& filtering

1

List comprehensions are expressions that generate

a list based on the elements of another sequence.

List Comprehensions

Succinct way of defining an iteration that builds a list

Makes it easy to:

Copy elements from another sequence

Filter elements based on a condition

Map elements to new values

2

Recall a for loop that copies all characters of a string into a list:

new_list = []
for character in "ABCD":
 new_list.append(character)

"For each character in the string, place that character in the new list I am creating."

new_list = [character for character in "ABCD"]

List Comprehension Syntax

3

A basic list comprehension can be written like so:

[<expression> for variable in sequence]

List Comprehension Syntax

for variable in sequence works exactly like a regular for loop

The value of <expression> is appended to

the output list for each element in the sequence

A new list is created!

Each element in sequence gets visited one-by-one and is given the name variable

Usually write <expression> in terms of variable

4

With a comprehension:

new_list = [<expression> for variable in sequence]

With a loop:

new_list = []
for variable in sequence:
 new_list.append(<expression>)

Comprehension vs. Loop

5

Example: create a list containing all of the characters in a string.

emoji_string = " "
emoji_list = [emoji for emoji in emoji_string]

emoji_string = " "
emoji_list = []
for emoji in emoji_string:
 emoji_list.append(emoji)

Both snippets produce the same output:

[" ", " ", " "]

Copying Using Comprehensions

6

We have a basic for loop pattern for copying all elements

of a sequence that meet a condition. This is called filtering.

new_list = [] # [] is a list with no contents
for variable in sequence: # For each value in the source sequence,
 if condition(variable): # if that value meets some condition
 new_list.append(<expression>) # add that value to the end of the new list.

condition() is a placeholder here to represent some boolean

expression that helps decide whether or not to include value .

Filter Values Out of a Sequence

7

new_list = [] # [] is a list with no contents
for variable in sequence: # For each value in the source sequence,
 if condition(variable): # if that value meets some condition
 new_list.append(<expression>) # add that value to the end of the new list.

We can rewrite the loop (above) into the comprehension (below)

new_list = [<expression> for variable in sequence if condition(variable)]

Filter Values Out of a Sequence

<expression> for variable in sequence works exactly the same way

if condition(variable) allows us to write the expression that is

a condition for whether that element of the sequence can be included.

8

exam_scores = [100, 0, 89, 93, 78, 67, 0]
non_zeroes = [] # [] is a list with no contents
for score in exam_scores: # For each score from the list,
 if score > 0: # if that score is not zero,
 non_zeroes.append(score) # add that score to the end of the new list.
print(non_zeroes)

[100, 89, 93, 78, 67]

Recall: Getting Non-Zero Exam Scores

9

This loop-based version...

exam_scores = [100, 0, 89, 93, 78, 67, 0]
non_zeroes = [] # [] is a list with no contents
for score in exam_scores: # For each score from the list,
 if score > 0: # if that score is not zero,
 non_zeroes.append(score) # add that score to the end of the new list.

...can be rewritten to:

exam_scores = [100, 0, 89, 93, 78, 67, 0]
non_zeroes = [score for score in exam_scores if score > 0]
print(non_zeroes)

[100, 89, 93, 78, 67]

Recall: Getting Non-Zero Exam Scores

10

names = ["haRry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]
proper_caps = [] # [] is a list with no contents
for name in names: # For each name from the list,
 if name.istitle(): # if that name is in "title case"
 proper_caps.append(name) # add that name to the end of the new list.
print(proper_caps)

["Adi", "Sukya"]

Recall: Checking Capitalization

11

This loop-based version...

names = ["haRry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]
proper_caps = [] # [] is a list with no contents
for name in names: # For each name from the list,
 if name.istitle(): # if that name is in "title case"
 proper_caps.append(name) # add that name to the end of the new list.

...can be rewritten to:

names = ["haRry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]
proper_caps = [name for name in names if name.istitle()]
print(names)

["Adi", "Sukya"]

Recall: Checking Capitalization

12

[<expression> for variable in sequence if condition(variable)]

Using the Expression

So far, for copying and filtering, we've just had <expression> be the variable itself

The <expression> can be any expression, though!

13

The expression could be a literal:

l = [0 for i in range(10)]
print(l)

[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Equivalent to:

l = []
for i in range(10):
 l.append(0)

A Constant Expression

14

The expression could also be a more complicated set of operations

defined in terms of the variable that we use in the comprehension:

exam_scores = [92, 99, 100, 98.5]
curved_scores = [score + 10 for score in exam_scores]

This is exactly equivalent to:

curved_scores = []
exam_scores = [92, 99, 100, 98.5]
for score in exam_scores:
 curved_scores.append(score + 10)

More Flexible Expressions

15

We can do the mapping and filtering together. Only

elements that pass the filter get selected & mapped.

Get all strings of length 3 and capitalize them.
names = ["hss", "tQm", "aditya", "Sukya"]
capital_initials = [name.upper() for name in names if len(name) == 3]
print(capital_initials)

 ["HSS", "TQM"]

This is equivalent to:

names = ["hss", "tQm", "aditya", "Sukya"]
capital_initials = []
for name in name:
 if len(name) == 3:
 capital_initials.append(name.upper())

Mapping & Filtering

16

	
	Learning Objectives

	
	List Comprehensions
	List Comprehension Syntax
	List Comprehension Syntax
	Comprehension vs. Loop
	Copying Using Comprehensions

	
	Filter Values Out of a Sequence
	Filter Values Out of a Sequence
	Recall: Getting Non-Zero Exam Scores
	Recall: Getting Non-Zero Exam Scores
	Recall: Checking Capitalization
	Recall: Checking Capitalization

	
	Using the Expression
	A Constant Expression
	More Flexible Expressions
	Mapping & Filtering

