

Learning Objectives
Learn how to repeat some action for each element of a sequence using a for loop

Become familiar with certain patterns of processing sequences:

Learn how to repeat some action while a condition holds using a while loop

Identify cases when a for loop is more appropriate than a while loop and vice versa

aggregating,

mapping,

& filtering

1

Can you write a program that counts up from 1 to 100?

1
2
3
4
5
6
7
...
100

Counting Up

2

Right now, our best bet would be to do it manually...

print(1)
print(2)
print(3)
print(4)
...
print(100)

Yes, but Slowly

3

"Counting from 1 to 100" "Printing all numbers in the range from 1 to 100"

numbers = range(1, 101) # stop at 101 so that 100 is the last number included.
print(numbers)

range(1, 101)

Oookay...

Yes, but Not Really

Sounds like a place where a range might come in handy!

Remember: range(start, stop) creates a

sequence of numbers between [start, stop)

Not so easy to print, though...

4

If range(1, 101) has all of the values, we

could actually get them one-by-one using indices:

numbers = range(1, 101) # stop at 101 so that 100 is the last number included.
print(numbers[0])
print(numbers[1])
print(numbers[2])
print(numbers[3])

1
2
3
4

But now the program is one line longer than our first solution!

Printing Values in a Range

5

Python provides a way of proceeding through all

members of a sequence in order: the for loop.

numbers = range(1, 101)
for number in numbers:
 print(number)

1
2
3
4
...
100

Success! And in three lines.

Printing All Members of a Range

6

A for loop allows you to write a block of code

that is executed once per element in an iterable.

The for Loop

For now, think iterable sequence

"Plucks out" elements in sequence order, one-by-one, and gives each a variable name

The code block executed each time can be written in terms of this variable name

We call this "iterating over" elements of the sequence

7

for element in sequence:
 do_something()
 do_something_else()

Syntax of for

sequence is the name of the sequence that we're iterating over

element is the name of a variable that stores each value from the sequence

The first time we execute the body of the loop, element == sequence[0] .

If element is not already declared, it will be declared here

element will remain "in scope" (available) even after the loop

The next time, element == sequence[1]

The next time, element == sequence[2]

and so on

8

A shorter version of counting to 100:

count_off = range(1, 4) # contains 1, 2, 3
for number in count_off:
 print(number)

1
2
3

We can write an "unravelled" version of this program

that shows exactly what happens with this loop.

Unravelling a for Loop

9

No loop, but logically equivalent:

count_off = range(1, 4) # contains 1, 2, 3
number = count_off[0]
print(number)
number = count_off[1]
print(number)
number = count_off[2]
print(number)

1
2
3

The body of the loop is repeated verbatim for each iteration we do. The value

that number gets with each iteration is the next value stored in the sequence.

Unravelling a for Loop

10

Loops over strings go character-by-character:

song_title = "respect"
for letter in song_title:
 print(song_title)

r
e
s
p
e
c
t

Loops on Other Sequences

11

Loops over lists/tuples pull out each element from left to right.

personal_data = ("Harry", "Smith", 27, 19147, False)
for datum in personal_data:
 print(datum)

Harry
Smith
27
19147
False

Loops on Other Sequences

12

Loops over lists/tuples pull out each element from left to right.

top_restaurants = ["Clubhouse", "UTown", "Han Dynasty", "Loco Pez"]
for favorite in top_restaurants:
 print(favorite)

Clubhouse
UTown
Han Dynasty
Loco Pez

Loops on Other Sequences

13

for element in sequence:
 print(element)

Printing Values of a Sequence
Strings, tuples, and lists can be printed out to reveal their contents,

but ranges and other iterables don't have this convenience.

Inspect a sequence by printing out each value contained inside.

14

print("you're so funny.")
for x in range(8):
 print("ha")
print("lol")

you're so funny.
ha
ha
ha
ha
ha
ha
ha
ha
lol

Note: didn't even use the variable x in the loop body. That's OK.

Do Something n Times
range(n) is a sequence that contains all integers from 0 to n - 1 .

len(range(n)) == n always.

A for loop over range(n) will execute the body n times.

15

import penndraw as pd
for x_position in range(11):
 pd.circle(x_position / 10, 0.5, 0.05)
pd.run()

Here, we use the value of

x_position to evenly space eleven

circles across a PennDraw canvas.

Do Something
n Times

Circles at (0.0, 0.5) ,

(0.1, 0.5) , (0.2, 0.5) , ...

16

Lists are the only mutable sequences we have so far. They

can be more flexible than other sequences, which is nice.

new_list = [] # [] is a list with no contents
for value in sequence: # For each value in the source sequence,
 new_list.append(value) # add that value to the end of the new list.

Copy a Sequence into a List

To create a list version of another sequence, you

can create a new list and write a for loop to fill it.

17

new_list = []
dna_sequence = "ACGTCAGTAGACGACAT"
for base_pair in dna_sequence: # For each value in the source sequence,
 new_list.append(base_pair) # add that value to the end of the new list.
print(new_list)

['A', 'C', 'G', 'T', 'C', 'A', 'G', 'T', 'A', 'G', 'A', 'C', 'G', 'A', 'C', 'A', 'T']

Now we could simulate modifications to the DNA sequence:

new_list[3] = "C" # Change the first "T" to a "C"

Copy a Sequence into a List

18

Many of the common idioms we're covering here are so common that

Python has built in shorter ways of doing them right into the language!

new_list = [] # [] is a list with no contents
for value in sequence: # For each value in the source sequence,
 new_list.append(value) # add that value to the end of the new list.

is logically equivalent to:

new_list = list(sequence)

I'll identify the "short", loopless versions of the idioms we cover here. It's useful to know both.

An Aside: Built-in Redundancy

19

We can extend the previous idiom by only copying values

that meet a certain condition. This is called filtering.

new_list = [] # [] is a list with no contents
for value in sequence: # For each value in the source sequence,
 if condition(value): # if that value meets some condition
 new_list.append(value) # add that value to the end of the new list.

condition() is a placeholder here to represent some boolean

expression that helps decide whether or not to include value .

Filter Values Out of a Sequence

20

exam_scores = [100, 0, 89, 93, 78, 67, 0]
non_zeroes = [] # [] is a list with no contents
for score in exam_scores: # For each score from the list,
 if score > 0: # if that score is not zero,
 non_zeroes.append(score) # add that score to the end of the new list.
print(non_zeroes)

[100, 89, 93, 78, 67]

Filter Values Out of a Sequence

21

names = ["haRry", "Adi", "molly", "jared", "cEDRIc", "Sukya", "TraviS"]
proper_caps = [] # [] is a list with no contents
for name in names: # For each name from the list,
 if name.istitle(): # if that name is in "title case"
 proper_caps.append(name) # add that name to the end of the new list.
print(proper_caps)

["Adi", "Sukya"]

Filter Values Out of a Sequence

22

Sometimes, we only want to learn some property of a

sequence instead of creating a whole new sequence.

Aggregating Information

Commonly accomplished with an accumulator variable:

a variable that has its value updated over successive iterations of the loop

important to declare accumulator variables outside
of the loop so we don't overwrite its value each time.

23

As a simple example, what if we didn't have len() available to us?

my_tuple = (10, 20, -10, -20, "Yes", "OK") # This is the sequence we'll iterate over
counter = 0 # This is our accumulator variable starting at 0
for element in my_tuple: # For each value in our tuple,
 counter = counter + 1 # add 1 to our counter.
print(counter) # 6

Counting Elements (len())

counter starts counting at 0—before we've counted

any elements, that's how many we've counted!

Within each loop, we increment counter by 1 .

We don't actually use each element in the tuple, we're

just counting them as they "pass by" in the iteration.

24

Imagine that I write down how much money I spend per day

over a few days. How can I figure out how much I spent overall?

my_tuple = (10.54, 11.90, 203.10, 0, 5.0) # This is the sequence we'll iterate over
total = 0 # This is our accumulator variable starting at 0
for price in my_tuple: # For each price in our tuple,
 total = total + price # add that price to our total.
print(counter) # 230.54

Equivalent to sum(my_tuple)

Adding Elements (sum())

25

What if we only want to count those elements that match some condition we care about?

my_tuple = (10, 20, -10, -20, 0, 40) # This is the sequence we'll iterate over
counter = 0 # This is our accumulator variable starting at 0
for element in my_tuple: # For each value in our tuple,
 if element >= 0: # if that element is not negative,
 counter = counter + 1 # add 1 to our counter.
print(counter) # 4

Counting Elements That Meet a Condition

This time, we only increment counter when a condition is met

This time, we actually use the value of element

26

Make sure to pick the initial value of the accumulator outside

of the loop so that we don't accidentally start over each loop!

my_tuple = (10, 20, -10, -20, 0, 40) # This is the sequence we'll iterate over
for element in my_tuple: # For each value in our tuple,
 counter = 0 # set counter to be equal to 0
 if element >= 0: # if that element is not negative,
 counter = counter + 1 # add 1 to our counter.
print(counter) # 1

The value of counter resets back to 0 for each element we look at.

Be Cautious About Accumulator Variables

27

Accumulator variables don't have to always increase.

To find the largest (smallest) value in a sequence:

exam_scores = [92, 99, 100, 98.5] # This is the sequence we'll iterate over
largest = exam_scores[0] # We'll just "guess" that the first score is the largest.
for score in exam_scores: # For each score,
 if score > largest: # if that score is higher than the largest we've seen,
 largest = score # that score is now the largest we've seen so far.
print(largest) # 100

Finding the Largest/Smallest
Values (max() /min())

Look at each value and compare it to the largest (smallest) so far.

If we find a new largest (smallest), write that down!

At the end, the largest (smallest) so far is the also the largest (smallest) overall!

28

exam_scores = [92, 99, 100, 98.5] # This is the sequence we'll iterate over
largest = exam_scores[0] # We'll just "guess" that the first score is the largest.
for score in exam_scores: # For each score,
 if score > largest: # if that score is higher than the largest we've seen,
 largest = score # that score is now the largest we've seen so far.
print(largest) # 100

is equivalent to:

exam_scores = [92, 99, 100, 98.5]
print(max(exam_scores))

Finding the Largest/Smallest
Values (max() /min())

29

We can modify the values in a list, one by one, using the same rule

each time. For example, curving exam scores by adding 10 points:

curved_scores = []
exam_scores = [92, 99, 100, 98.5]
for score in exam_scores:
 curved_scores.append(score + 10)

Here, we are appending a value that is not just the

same as the one that we're pulling out of the list.

Mapping

30

We can apply the same curve to the list without creating a new list at all using enumerate() .

exam_scores = [92, 99, 100, 98.5]
for index, score in enumerate(exam_scores):
 exam_scores[index] = score + 10

Mapping In Place

Remove for score in exam_scores

Replace it with for index, score in enumerate(exam_scores)

Within the loop body,

index will store the index of the current element (i.e. 0 , 1 , 2 , ...)

score will store the current element itself

31

Careful! We have permanently changed the list exam_scores .

exam_scores = [92, 99, 100, 98.5]
print(exam_scores)
for index, score in enumerate(exam_scores):
 exam_scores[index] = score + 10
print(exam_scores)

[92, 99, 100, 98.5]
[102, 109, 110, 108.5]

Caution with Mapping In Place

32

while loops are a more general form of looping: specify a condition

and as long as that condition is met, repeat a body of statements

Syntax:

while condition:
 statement_one
 statement_two

while Loops

like an if statement that checks its condition more than once

everything that you accomplish with a for loop can be

accomplished with a while loop, but in a more verbose way

33

We've already seen while loops as a way to run an animation loop forever and ever:

import penndraw as pd
x_center = 0.5 # SETUP
while True:
 pd.clear() # 1. clear the screen
 pd.filled_square(x_center, 0.5, 0.1) # 2. draw this frame
 x_center += 0.01 # 3. update shapes for next frame
 pd.advance()

while Loops: Animation

34

while True: is a tricky construct--its condition is always true by definition!

while True:
 print("stuck :(") # This will happen infinitely
print("I'm free!") # This will never be reached

stuck :(
stuck :(
stuck :(
stuck :(
stuck :(
stuck :(
stuck :(
stuck :(
stuck :(
stuck :(
...

Infinite while Loops

35

We could use a while loop to solve our original counting problem:

counter = 0
while counter < 5:
 print(counter)
 counter += 1

0
1
2
3
4

Counting with while

36

1. Define a loop control variable

2. Define your loop condition in terms of the loop control variable

3. Make sure to update your loop control variable to eventually

reach a case when your condition will go from true to false.

Recipe for a while Loop

37

import penndraw as pd
pd.set_canvas_size(256, 256)
x = 0 # define a loop control variable
while x < 256: # write condition in terms of l.c.v.
 pd.set_pen_color(x, x, x)
 pd.filled_rectangle(x / 255, 0.5, 1 / 255, 0.25)
 x += 1 # update the l.c.v., bringing loop closer to end
pd.run() # we do eventually get here!

Example: Drawing with while

38

for vs. while
Use for loops to iterate over sequences

Use while loops for animation, or when you're

not sure how many iterations you need to go for

Both kinds of loops can often be "replaced" with built-

ins, but this takes practice to remember them all!

39

	
	Learning Objectives

	
	Counting Up
	Yes, but Slowly
	Yes, but Not Really
	Printing Values in a Range
	Printing All Members of a Range
	The for Loop
	Syntax of for
	Unravelling a for Loop
	Unravelling a for Loop
	Loops on Other Sequences
	Loops on Other Sequences
	Loops on Other Sequences

	
	Printing Values of a Sequence
	Do Something n Times
	Do Something n Times

	
	Copy a Sequence into a List
	Copy a Sequence into a List
	An Aside: Built-in Redundancy
	Filter Values Out of a Sequence
	Filter Values Out of a Sequence
	Filter Values Out of a Sequence

	
	Aggregating Information
	Counting Elements (len())
	Adding Elements (sum())
	Counting Elements That Meet a Condition
	Be Cautious About Accumulator Variables
	Finding the Largest/Smallest Values (max()/min())
	Finding the Largest/Smallest Values (max()/min())

	
	Mapping 🌏
	Mapping In Place
	Caution with Mapping In Place

	
	while Loops
	while Loops: Animation
	Infinite while Loops
	Counting with while
	Recipe for a while Loop
	Example: Drawing with while
	for vs. while

