
CIS 1100
Jupyter Notebooks Python

Fall 2024

University of Pennsylvania

So far, when writing our Python programs, we:

Jupyter Notebooks (or just Python Notebooks) provide

an alternative scheme for writing & running code.

From .py to .ipynb

place code in a .py file

run the program all the way through by writing python my_file.py

place code in different cells inside of a .ipynb file

run the program piece by piece by executing individual cells

1

Jupyter Notebooks consist of several different cells.

Notebooks and Cells

Cells can contain code or text

Cells can be run individually

The output of a cell is displayed underneath the cell

Any effects of the cell are remembered & shared going forward

2

Notebooks are extremely useful for data science and experimentation:

Notebooks are not a good way to write all programs:

Benefits & Drawbacks of Notebooks

Try small snippets and immediately see the results

Save table outputs & figure drawings in the notebook to look at later

Running cells in different orders means that there's

no single predictable output of your program

Very easy to accidentally overwrite variables

Get cluttered easily

3

CIS 1100
Pandas & DataFrames Python

Fall 2024

University of Pennsylvania

Getting Started
pandas is an extremely popular Python library used for managing tabular data

It has so many tools and features, it's almost like learning an entirely new language

This material is adapted from the helpful pandas user guide

programmatic spreadsheets!

my role now: teach you a "starter kit"

your role later: learn what you need by building off of what you know.

4

import pandas as pd # !!!

Importing

5

import pandas

Importing

6

pandas Data Structures: Series
A Series is a "one-dimensional labeled array holding data of any type"

Basically an indexed list

Usually only holds values of a single type at a time

7

pandas Data Structures: DataFrame
A DataFrame is a "two-dimensional data structure that holds

data like a two-dimension array or a table with rows and columns."

Basically a spreadsheet

Basically a bunch of Series grouped together

8

Technically, these can be built by combining a bunch of sequences

together. Pretty rare to actually "build" the DataFrame yourself, though!

Creating DataFrames

More commonly: pandas.read_csv() to load a

DataFrame from a CSV (comma separated values) file

Others: pandas.read_excel() , pandas.read_parquet() , etc.

9

A CSV file contains several rows of data.

Territory;Bands;Population;Happiness
Afghanistan;2;37466414;2.404
Albania;7;3088385;5.199
Algeria;16;43576691;5.122
Andorra;2;85645;
Angola;8;33642646;
Argentina;1907;45864941;5.967
Armenia;19;3011609;5.399
...

Creating DataFrames from CSV

Each row is broken up into several columns, usually separated by commas

A row is an individual entry in a dataset

A column is an individual dimension that each row shares

10

A column in a CSV is like a Series or a column in a DataFrame

Territory
Afghanistan
Albania
Algeria
Andorra
Angola
Argentina
Armenia
...

Creating DataFrames from CSV

sequence of values, (usually) all of the same type

the first value in the column is the header, which

gives a name to what the column exists to represent

11

A row in a CSV is an individual data point in our larger set

Algeria;16;43576691;5.122
Andorra;2;85645;

Creating DataFrames from CSV

in this case, contains the name & statistics for a single country

sometimes a row will have missing data

12

pandas.read_csv(filename) turns a CSV file into a

DataFrame . There are a gazillion other options, though.

Keyword Argument Usage

sep Specify the separator string between columns

header Specify which row gives the column names, if any

names Provide your own "header" by giving the columns your own names

usecols Choose which columns you want to read from the CSV

index_col Choose which column will be the index

dtype Which data type to use for each column

Creating DataFrames from CSV

13

df = pandas.read_csv("metal_bands.csv", sep=";")
df

Creating Our
DataFrame

14

.head() and .tail() return views of

the top & bottom rows of a DataFrame

Viewing
DataFrames

15

.columns is a variable that shows

the column names for a DataFrame

Viewing
DataFrames

16

.describe() produces summary

statistics for each of the columns in your

DataFrame

Viewing
DataFrames

17

CIS 1100
Missing Values Python

Fall 2024

University of Pennsylvania

Every real-world dataset has imperfections in it:

Data is Messy

bias in collecting data (hard for us to fix)

typos in data entry (might require manual fixes)

missing or nonsensical values (require systematic fixes)

18

There are some NaN values

in rows 3, 4, 171, and 172...

Missing or
Nonsensical Values

NaN not a number

Value may have been missing in original

CSV or typed in an inscrutable way.

19

df.isna().sum()

Territory 0
Bands 29
Population 29
Happiness 28
dtype: int64

i.e. 0 rows with NaN for Territory , 29 rows with NaN for Bands , etc.

Sniffing out NaN

.isna() produces a new DataFrame with the same shape,

but replacing all NaN with True and all other values with False .

.sum() counts up all of the instances of True in a column

20

There's no individual right answer for how to deal with missing data.

On the one hand, losing all of the rows with any missing data can be quite wasteful.

But on the other hand, it's not clear how to interpret missing data. Do your best.

How to Solve NaN

.dropna() produces a new DataFrame by

dropping all rows with at least one missing value.

.fillna(value=0) produces a new DataFrame by replacing all values of NaN with 0

21

CIS 1100
Selection Python

Fall 2024

University of Pennsylvania

Three major ways:

1. When the column name is a

valid Python identifier, you

can use the . syntax to select

a single column as a Series

Choosing Columns

22

Three major ways:

1. When the column name is a

valid Python identifier, you

can use the . syntax to select

a single column as a Series

2. No matter the column name, you can

use indexing [] syntax to select a

single column as a Series

Choosing Columns

23

Three major ways:

1. When the column name is a

valid Python identifier, you

can use the . syntax to select

a single column as a Series

2. No matter the column name, you

can use indexing [] syntax to

select a single column as a Series

3. You can index with a list of column

names to select several columns as a

DataFrame

Choosing Columns

24

You can select a slice of a DataFrame
by indexing using range syntax.

df[10:20]

Choosing Rows

25

You can select an individual row from a DataFrame as a Series by using .iloc[index]

df.iloc[13]

Territory Belarus
Bands 293.0
Population 9441842.0
Happiness 5.821
Name: 13, dtype: object

Choosing Rows

26

CIS 1100
Finer Points about
the DataFrame

Python

Fall 2024

University of Pennsylvania

Like any sequence, a Series and

DataFrame will always have an index

The Index

Index is actually a

special type in Pandas

By default, a DataFrame read from

a CSV is indexed by row number

Unlike lists, Pandas data doesn't

have to be indexed by numbers

27

Choosing the Index
Choose the index by: df = df.set_index(keys)

Territory is no longer a column and so cannot be easily modified

keys can be a single column name (as str) or a list of columns

28

If our index is now the Territory ,

we can select ranges of territory

names using [start:stop]

Queries over
the Index

29

Suppose we want to rename a column.

.rename(columns=name_mapping)
comes in handy!

Operations Create
New DataFrames

30

OK. Then, let's just remind ourselves what the DataFrame looks like with df.columns ...

Index(['Territory', 'Bands', 'Population', 'Happiness', 'Bands Per Capita'], dtype='object')

Where did our Name column go? Why is Territory still there?

Operations Create New DataFrames

31

Operations that seem to modify a DataFrame actually create new tables.

Operations Create New DataFrames

The DataFrame that a function was called on is totally unchanged

If we want the modification to apply to the DataFrame
we're working with, we have to save it back into the variable:

df = df.rename(columns={"Territory" : "Name"})

If you just want to see what an operation does without modifying the

DataFrame , then you can perform the operation without saving it back:

df.rename(columns={"Territory" : "Name"}) # not "permanent"

32

CIS 1100
Filtering Python

Fall 2024

University of Pennsylvania

Pandas allows you to write boolean

expressions over a Series/DataFrame
that we typically do on individual values:

Boolean Indexing

(assuming x is a number) x > 50 is an

expression that produces either True or False

df["Bands"] is a Series of numbers, and

df["Bands" > 50] is a Series of booleans.

33

"Show me the rows of df where the

number of bands is greater than 50!"

Boolean Indexing
& Filtering

Alone, a Series of booleans

may not be so interesting.

Used as an index into another

DataFrame , this Series
allows us to select only those

rows that meet a condition.

34

Same as logical and / or , we can combine filtering expressions in Pandas.

"Many bands AND lower happiness"
df[(df["Bands"] > 50) & (df["Happiness"] < 4.0)]

"Few bands OR low population"
df[(df["Bands"] < 10) | (df["Population"] < 5000000)]

More Complex Filtering

Need to use & for "and", | for "or"

Annoyingly, terms usually need to be wrapped in parentheses

35

"Show me the rows of df where the
number of bands is greater than 50

and the happiness is less than 4.0 ."

df[(df["Bands"] > 50) & (df["Happiness"] < 4.0)]

Boolean Indexing
& Filtering

36

CIS 1100
Setting Python

Fall 2024

University of Pennsylvania

Suppose "true" population numbers are too unwieldy—

would like to work with population as number of millions

Systematically Modifying a Column

A little easier to filter:

Can set replace a column's values by setting that column

equal to a new Series with a compatible index.

df["Population"] < 4 instead of df["Population"] < 4000000

37

df["Population"] = df["Population"] / 1000000

Scaling Population

RHS: create a new Series with all of

the values of df["Population"]
but scaled down by a factor of a million

LHS: replace the df["Population"]
column with the RHS

This modifies the DataFrame!

38

Suppose we want a notion of "bands

per capita", or number of heavy

metal bands per one million citizens.

df["Bands Per Capita"] = df["Bands"] / df["Population"]
df[["Territory", "Bands Per Capita"]]

Creating a New Column

39

Setting is Permanent!
If you overwrite a column, that data is lost unless you "reload" from the source data

If you add a new column, it's stuck in the data frame unless you remove it manually

Remove Columns: df = df.drop(columns=["Bands Per Capita"])

40

CIS 1100
Strings & Dealing with Types Python

Fall 2024

University of Pennsylvania

When performing operations on string-valued

columns, you need to insert str into the function call.

Operation Call

Getting the length of country names df["Territory"].str.len()

Converting country names to all lowercase df["Territory"].str.lower()

Removing any whitespace around a country's name df["Territory"].str.strip()

Replacing spaces within names with _ df["Territory"].str.replace(" ", "_")

All of these still need to be "saved back" to be permanent.

Syntax for String Operations

41

Suppose I have a DataFrame with first names and last

names. I might want to use/store full names as well!

Concatenating Strings

42

this_col.str.cat(other_col) allows you to

join the contents of one string Series with another:

... we probably need a space.

Concatenating Strings

43

this_col.str.cat(other_col, sep=" ") allows you to join the

contents of one string Series with another, adding a space in between:

Concatenating Strings

44

str.contains(pattern) allows you to check if a column contains a certain pattern.

Checking for Patterns

pattern can be a string specifying a pattern literally or a regular expression

returns a boolean series, so can be used for Boolean Indexing (filtering)

45

str.split(sep) splits a column

of strings into lists of strings

Splitting Strings

This is a little weird: the value stored in

a cell of the DataFrame is now a list...

46

str.split(sep) splits a column

of strings into lists of strings

Splitting Strings

To get the value at a given index of a list

in a DataFrame , use .str.get()

47

str.split(sep) splits a column

of strings into lists of strings

Splitting Strings

To get the length a list in a

DataFrame , use .str.len()

48

Can use string splitting & length checking to ask more complex questions:

"Show me the countries that have more than one-word names."

Splitting Strings

49

CIS 1100
Plotting Python

Fall 2024

University of Pennsylvania

DataFrame.plot() is an extremely powerful function. On its own, it can do:

Plotting with .plot()

line plots

bar plots

horizontal bar plots

histograms

box plots

Kernel Density Estimation plots

area plots

pie plots

scatter plots

hexbin plots 50

DataFrame.plot() is an extremely powerful function.

Plotting with .plot()

In later lectures, we'll talk about all the finer points of data visualization

For now, just READ THE DOCUMENATION!

51

What's the overall distribution of

a given column in my DataFrame?

df.plot(kind="hist", y="Bands")

Histograms

52

Change y to pick a different

column to map out:

df.plot(kind="hist", y="Happiness")

Histograms

53

Create a list of columns for y and use

subplots=True to generate multiple

plots at once. Needs refinement...

df.plot(kind="hist", y=["Bands", "Happiness"],
 subplots=True)

Histograms

54

Not an excellent plot, but...

df.plot(kind="scatter", x="Bands Per Capita", y="Happiness",
 title="How Do Metal Bands Influence a Country's Happiness?")

Scatter Plots

x : the column to show on the x axis

y : the column to show on the y axis

title : add a title to the figure

55

Plotting
Best learned by trying things with different data sets

You can read about all of the kinds of plots that come with

Pandas and their options by reading the documentation

Will talk in later modules about best practices for picking & designing plots

Will work in class to make different kinds of plots with different datasets.

56

	Jupyter Notebooks
	From .py to .ipynb
	Notebooks and Cells
	Benefits & Drawbacks of Notebooks

	Pandas & DataFrames
	Getting Started
	Importing
	Importing
	pandas Data Structures: Series
	pandas Data Structures: DataFrame
	Creating DataFrames
	Creating DataFrames from CSV
	Creating DataFrames from CSV
	Creating DataFrames from CSV
	Creating DataFrames from CSV
	Creating Our DataFrame
	Viewing DataFrames
	Viewing DataFrames
	Viewing DataFrames

	Missing Values
	Data is Messy
	Missing or Nonsensical Values
	Sniffing out NaN
	How to Solve NaN

	Selection
	Choosing Columns
	Choosing Columns
	Choosing Columns
	Choosing Rows
	Choosing Rows

	Finer Points about the DataFrame
	The Index
	Choosing the Index
	Queries over the Index
	Operations Create New DataFrames
	Operations Create New DataFrames
	Operations Create New DataFrames

	Filtering
	Boolean Indexing
	Boolean Indexing & Filtering
	More Complex Filtering
	Boolean Indexing & Filtering

	Setting
	Systematically Modifying a Column
	Scaling Population
	Creating a New Column
	Setting is Permanent!

	Strings & Dealing with Types
	Syntax for String Operations
	Concatenating Strings
	Concatenating Strings
	Concatenating Strings
	Checking for Patterns
	Splitting Strings
	Splitting Strings
	Splitting Strings
	Splitting Strings

	Plotting
	Plotting with .plot()
	Plotting with .plot()
	Histograms
	Histograms
	Histograms
	Scatter Plots
	Plotting

