

Jupyter Notebooks

Python Fall 2024 University of Pennsylvania

So far, when writing our Python programs, we:

- place code in a .py file
- run the program all the way through by writing python my_file.py

Jupyter Notebooks (or just Python Notebooks) provide an alternative scheme for writing & running code.

- place code in different cells inside of a .ipynb file
- run the program piece by piece by executing individual cells

From .py to .ipynb

Notebooks and Cells

Jupyter Notebooks consist of several different cells.

- Cells can contain code or text
- Cells can be run individually
- The output of a cell is displayed underneath the cell
- Any effects of the cell are remembered & shared going forward

Benefits & Drawbacks of Notebooks

Notebooks are extremely useful for data science and experimentation:

- Try small snippets and immediately see the results
- Save table outputs & figure drawings in the notebook to look at later Notebooks are **not a good way to write all programs**:
- Running cells in different orders means that there's no single predictable output of your program.
- Very easy to accidentally overwrite variables
- Get cluttered easily

Pandas & DataFrames

Python Fall 2024 University of Pennsylvania

- pandas is an extremely popular Python library used for managing tabular data
 programmatic spreadsheets!
- It has so many tools and features, it's almost like learning an entirely new language
 - my role now: teach you a "starter kit"
 - your role later: learn what you need by building off of what you know.
- This material is adapted from the helpful pandas user guide

Getting Started

import pandas as pd # !!!

Importing

import pandas

Importing

pandas Data Structures: Series

- A Series is a "one-dimensional labeled array holding data of any type"
 - Basically an indexed list
 - Usually only holds values of a single type at a time

pandas Data Structures: DataFrame

- A DataFrame is a "two-dimensional data structure that holds data like a two-dimension array or a table with rows and columns."
 Basically a spreadsheet
 - Basically a bunch of Series grouped together

Technically, these can be built by combining a bunch of sequences together. Pretty rare to actually "build" the DataFrame yourself, though!

- More commonly: pandas.read_csv() to load a DataFrame from a CSV (comma separated values) file
- Others: pandas.read_excel(), pandas.read_parquet(), etc.

Creating DataFrames

A CSV file contains several rows of data.

- Each row is broken up into several columns, usually separated by commas
- A row is an individual entry in a dataset
- A column is an individual dimension that each row shares

```
Territory; Bands; Population; Happiness
Afghanistan;2;37466414;2.404
Albania;7;3088385;5.199
Algeria;16;43576691;5.122
Andorra;2;85645;
Angola;8;33642646;
Argentina;1907;45864941;5.967
Armenia;19;3011609;5.399
```

. . .

A column in a CSV is like a Series or a column in a DataFrame

- sequence of values, (usually) all of the same type
- the first value in the column is the **header**, which gives a name to what the column exists to represent

Territory Afghanistan Albania Algeria Andorra Angola Argentina Armenia

A row in a CSV is an individual data point in our larger set

- in this case, contains the name & statistics for a single country
- sometimes a row will have missing data

Algeria;16;43576691;5.122 <u>Andorra;2;85645;</u>

pandas.read_csv(filename) turns a CSV file into a
DataFrame.There are a gazillion other options, though.

Keyword Argument	Usage
sep	Specify the separator string between
header	Specify which row gives the column
names	Provide your own "header" by giving
usecols	Choose which columns you want to r
index_col	Choose which column will be the ind
dtype	Which data type to use for each colu

- columns
- names, if any
- the columns your own names
- ead from the CSV
- ех
- mn

	Territory	Bands	Population	Happiness
0	Afghanistan	2.0	37466414.0	2.404
1	Albania	7.0	3088385.0	5.199
2	Algeria	16.0	43576691.0	5.122
3	Andorra	2.0	85645.0	NaN
4	Angola	8.0	33642646.0	NaN
169	Venezuela	343.0	29069153.0	4.925
170	Vietnam	21.0	102789598.0	5.485
171	Yemen	NaN	NaN	4.197
172	Zambia	NaN	NaN	3.760
173	Zimbabwe	2.0	14829988.0	2.995

df = pand df

174 rows × 4 columns

Creating Our DataFrame

df = pandas.read_csv("metal_bands.csv", sep=";")

df.head()

	Territory	Bands	Population	Happiness
0	Afghanistan	2.0	37466414.0	2.404
1	Albania	7.0	3088385.0	5.199
2	Algeria	16.0	43576691.0	5.122
3	Andorra	2.0	85645.0	NaN
4	Angola	8.0	33642646.0	NaN

.head() and .tail() return views of the top & bottom rows of a DataFrame

Viewing DataFrames

df.columns

Index(['Territory', 'Bands', 'Population', 'Happiness'], dtype='object')

Viewing DataFrames

.columns is a variable that shows the column names for a DataFrame

df.describe()

	Bands	Population	Happiness
count	145.000000	1.450000e+02	146.000000
mean	523.862069	4.681290e+07	5.553575
std	1673.237176	1.650167e+08	1.086843
min	1.000000	5.321000e+03	2.404000
25%	7.000000	2.711566e+06	4.888750
50%	38.000000	8.884864e+06	5.568500
75%	285.000000	3.364265e+07	6.305000
max	17557.000000	1.397898e+09	7.821000

DataFrame

Viewing DataFrames

.describe() produces summary statistics for each of the columns in your

Missing Values

Python Fall 2024 University of Pennsylvania

Every real-world dataset has imperfections in it:

- bias in collecting data (hard for us to fix)
- typos in data entry (might require manual fixes)
- missing or nonsensical values (require systematic fixes)

Data is Messy

	Territory	Bands	Population	Happiness
0	Afghanistan	2.0	37466414.0	2.404
1	Albania	7.0	3088385.0	5.199
2	Algeria	16.0	43576691.0	5.122
3	Andorra	2.0	85645.0	NaN
4	Angola	8.0	33642646.0	NaN
169	Venezuela	343.0	29069153.0	4.925
170	Vietnam	21.0	102789598.0	5.485
171	Yemen	NaN	NaN	4.197
172	Zambia	NaN	NaN	3.760
173	Zimbabwe	2.0	14829988.0	2.995

- NaN
 not a number
- Value may have been missing in original CSV or typed in an inscrutable way.

174 rows × 4 columns

Missing or Nonsensical Values

- There are some NaN values
- in rows 3, 4, 171, and 172...

df.isna().sum()

- .isna() produces a new DataFrame with the same shape, ightarrowbut replacing all NaN with True and all other values with False.
- .sum() counts up all of the instances of True in a column

Territory	$oldsymbol{eta}$
Bands	29
Population	29
Happiness	28
dtype: int64	

i.e. O rows with NaN for Territory, 29 rows with NaN for Bands, etc.

Sniffing out NaN

There's no individual right answer for how to deal with missing data.

- .dropna() produces a new DataFrame by dropping all rows with at least one missing value.

 fillna(value=0) produces a new DataFrame by replacing all values of NaN with 0 On the one hand, losing all of the rows with any missing data can be quite wasteful. But on the other hand, it's not clear how to interpret missing data. Do your best. 🔐

How to Solve NaN

Selection

Python Fall 2024 University of Pennsylvania

Choosing Columns

Three major ways:

1. When the column name is a valid Python identifier, you can use the . syntax to select a single column as a Series

df.Bar	nds
0 1 2 3 4	1
169 170 171 172 173	34 2
Name:	Ban

2.0 7.0 6.0 2.0 8.0				
3.0 21.0 NaN NaN 2.0	Length:	174,	dtype:	float64

Choosing Columns

Three major ways:

1. When the column name is a valid Python identifier, you can use the . syntax to select a single column as a Series

2. No matter the column name, you can use indexing [] syntax to select a single column as a Series

df[<mark>"Ba</mark>	ands
0 1 2 3 4	1
169 170 171 172 173	34 2
Name:	Ban

01 - I				
1				
2 0				
2.0				
7.0				
6 0				
0.0				
2.0				
8 0				
0.0				
•				
3.0				
1 0				
1.0				
NaN				
NoN				
INAIN				
2.0				
de	length	174	dtyne	float64
us,	Length.	1/4 ,	urype.	100004

Choosing Columns

Three major ways:

When the column name is a valid Python identifier, you can use the . syntax to select a single column as a Series

- 2. No matter the column name, you can use indexing [] syntax to select a single column as a Series
- 3. You can index with a list of column names to select several columns as a

DataFrame

df[["Territory", "Bands"]]

	Territory	Bands
0	Afghanistan	2.0
1	Albania	7.0
2	Algeria	16.0
3	Andorra	2.0
4	Angola	8.0
69	Venezuela	343.0
70	Vietnam	21.0
71	Yemen	NaN
72	Zambia	NaN
73	Zimbabwe	2.0

174 rows × 2 columns

	Territory	Bands	Population	Happiness
10	Bahrain	6.0	1526929.0	6.647
11	Bangladesh	65.0	164098818.0	5.155
12	Barbados	3.0	301865.0	NaN
13	Belarus	293.0	9441842.0	5.821
14	Belgium	666.0	11778842.0	6.805

df[10:20]

Choosing Rows

You can select a *slice* of a DataFrame by indexing using range syntax.

You can select an individual row from a DataFrame as a Series by using .iloc[index]

df.iloc[13]

Territory	Belarus
Bands	293.0
Population	9441842.0
Happiness	5.821
Name: 13,	dtype: object

Choosing Rows es by using .iloc[index]

Finer Points about the DataFrame

Python Fall 2024 University of Pennsylvania

	Territory	Bands	Population	Happiness
0	Afghanistan	2.0	37466414.0	2.404
1	Albania	7.0	3088385.0	5.199
2	Algeria	16.0	43576691.0	5.122
3	Andorra	2.0	85645.0	NaN
4	Angola	8.0	33642646.0	NaN
169	Venezuela	343.0	29069153.0	4.925
170	Vietnam	21.0	102789598.0	5.485
171	Yemen	NaN	NaN	4.197
172	Zambia	NaN	NaN	3.760
173	Zimbabwe	2.0	14829988.0	2.995

Like any DataFr

- Index is actually a special type in Pandas
- By defa
 a CSV i
- Unlike have to

174 rows × 4 columns

The Index

- Like any sequence, a Series and
- DataFrame will always have an index

- By default, a DataFrame read from
 - a CSV is indexed by row number
- Unlike lists, Pandas data doesn't
 - have to be indexed by numbers

- Choose the index by: df = df.set_index(keys) \circ keys can be a single column name (as str) or a list of columns
- Territory is no longer a column and so cannot be easily modified

```
df2 = df.copy()
df2 = df2.set_index("Territory")
df2.head()
```

	Bands	Population	Happiness	Bands Per Capita
Territory				
Afghanistan	2.0	37.466414	2.404	0.053381
Albania	7.0	3.088385	5.199	2.266557
Algeria	16.0	43.576691	5.122	0.367169
Andorra	2.0	0.085645	NaN	23.352210
Angola	8.0	33.642646	NaN	0.237793

Choosing the Index

df2["Belarus":"Botswana"]

	Bands	Population	Happiness	Bands Per Capita
Territory				
Belarus	293.0	9.441842	5.821	31.032080
Belgium	666.0	11.778842	6.805	56.542061
Belize	1.0	0.405633	NaN	2.465283
Benin	NaN	NaN	4.623	NaN
Bolivia	243.0	11.758869	5.600	20.665253
Bosnia and Herzegovina	86.0	3.824782	5.768	22.484942
Botswana	7.0	2.350667	3.471	2.977878

Queries over the Index

- If our index is now the Territory, we can select ranges of territory
- names using [start:stop]

df.rename(columns={"Territory" : "Name"})

	Name	Bands	Population	Happiness	Bands Per Capita
0	Afghanistan	2.0	37.466414	2.404	0.053381
1	Albania	7.0	3.088385	5.199	2.266557
2	Algeria	16.0	43.576691	5.122	0.367169
3	Andorra	2.0	0.085645	NaN	23.352210
4	Angola	8.0	33.642646	NaN	0.237793

Operations Create New DataFrames

Suppose we want to rename a column. .rename(columns=name_mapping) comes in handy!

Operations Create New DataFrames

OK. Then, let's just remind ourselves what the DataFrame looks like with df.columns...

Index(['Territory', 'Bands', 'Population', 'Happiness', 'Bands Per Capita'], dtype='object')

Where did our Name column go? Why is Territory still there? 😒 😒 😒

Operations Create New DataFrames

Operations that seem to modify a DataFrame actually create **new** tables.

- The DataFrame that a function was called on is totally unchanged
- If we want the modification to apply to the DataFrame we're working with, we have to save it back into the variable:

df = df.rename(columns={"Territory" : "Name"})

• If you just want to see what an operation does without modifying the DataFrame, then you can perform the operation without saving it back:

df.rename(columns={"Territory" : "Name"}) # not "permanent"

Filtering

Python Fall 2024 University of Pennsylvania

df[<mark>"B</mark> a	ands"] >	5 0			
0	False				
1	False				
2	False				
3	False				
4	False				
169	True				
170	False				
171	False				
172	False				
173	False				
Name:	Bands,	Length:	174,	dtype:	bool

Pandas allows you to write boolean expressions over a Series/DataFrame that we typically do on individual values: • (assuming x is a number) x > 50 is an expression that produces either True or False df["Bands"] is a Series of numbers, and df["Bands" > 50] is a Series of booleans.

Boolean Indexing

df[df["Bands"] > 50]

	Territory	Bands	Population	Happiness
5	Argentina	1907.0	45864941.0	5.967
7	Australia	1545.0	25809973.0	7.162
8	Austria	664.0	8884864.0	7.163
11	Bangladesh	65.0	164098818.0	5.155
13	Belarus	293.0	9441842.0	5.821
163	Ukraine	715.0	43745640.0	5.084
165	United Kingdom	3244.0	66052076.0	6.943
166	United States	17557.0	334998398.0	6.977
167	Uruguay	121.0	3398239.0	6.474
169	Venezuela	343.0	29069153.0	4.925

70 rows × 4 columns

Boolean Indexing & Filtering

- Alone, a Series of booleans
 - may not be so interesting.
- Used as an index into another
 - DataFrame, this Series
 - allows us to **select only those**
 - rows that meet a condition.
- "Show me the rows of df where the number of bands is greater than 50!"

Same as logical and / or, we can combine filtering expressions in Pandas.

- Need to use & for "and", | for "or"
- Annoyingly, terms usually need to be wrapped in parentheses

"Many bands AND lower happiness" df[(df["Bands"] > 50) & (df["Happiness"] < 4.0)]

"Few bands OR low population" df[(df["Bands"] < 10) | (df["Population"] < 5000000)]

More Complex Filtering

df[df["Bands"] > 50]

	Territory	Bands	Population	Happiness
5	Argentina	1907.0	45864941.0	5.967
7	Australia	1545.0	25809973.0	7.162
8	Austria	664.0	8884864.0	7.163
11	Bangladesh	65.0	164098818.0	5.155
13	Belarus	293.0	9441842.0	5.821
163	Ukraine	715.0	43745640.0	5.084
165	United Kingdom	3244.0	66052076.0	6.943
166	United States	17557.0	334998398.0	6.977
167	Uruguay	121.0	3398239.0	6.474
169	Venezuela	343.0	29069153.0	4.925

"Show me the rows of df where the number of bands is greater than 50 and the happiness is less than 4.0."

70 rows × 4 columns

Boolean Indexing & Filtering

df[(df["Bands"] > 50) & (df["Happiness"] < 4.0)]

Setting

Python Fall 2024 University of Pennsylvania

Systematically Modifying a Column

Suppose "true" population numbers are too unwieldy would like to work with population as number of millions

- A little easier to filter:
 - odf["Population"] < 4 instead of df["Population"] < 4000000</p>
- Can set replace a column's values by setting that column equal to a new Series with a compatible index.

df["Population"] = df["Population"] / 1000000 df

	Territory	Bands	Population	Happiness
0	Afghanistan	2.0	37.466414	2.404
1	Albania	7.0	3.088385	5.199
2	Algeria	16.0	43.576691	5.122
3	3 Andorra	2.0	0.085645	NaN
4	Angola	8.0	33.642646	NaN
169	Venezuela	343.0	29.069153	4.925
170	Vietnam	21.0	102.789598	5.485
171	1 Yemen NaN	NaN	NaN	4.197
172	Zambia	NaN	NaN	3.760
173	Zimbabwe	2.0	14.829988	2.995

- RHS: create a new Series with all of the values of df["Population"] but scaled down by a factor of a million
- LHS: replace the df["Population"] column with the RHS
- This modifies the DataFrame!

Scaling Population

df["Population"] = df["Population"] / 1000000

	Territory	Bands Per Capita
0	Afghanistan	0.053381
1	Albania	2.266557
2	Algeria	0.367169
3	Andorra	23.352210
4	Angola	0.237793
	•••	
169	Venezuela	11.799449
170	Vietnam	0.204301
171	Yemen	NaN
172	Zambia	NaN
173	Zimbabwe	0.134862

Creating a New Column

Suppose we want a notion of "bands" per capita", or number of heavy metal bands per one million citizens.

df["Bands Per Capita"] = df["Bands"] / df["Population"] df[["Territory", "Bands Per Capita"]]

Setting is Permanent!

- If you overwrite a column, that data is lost unless you "reload" from the source data
- If you add a new column, it's stuck in the data frame unless you remove it manually • Remove Columns: df = df.drop(columns=["Bands Per Capita"])

Strings & Dealing with Types

Python Fall 2024 University of Pennsylvania

Syntax for String Operations

When performing operations on string-valued columns, you need to insert str into the function call.

Operation	Call
Getting the length of country names	<pre>df["Territory"].str.len()</pre>
Converting country names to all lowercase	<pre>df["Territory"].str.lower()</pre>
Removing any whitespace around a country's name	<pre>df["Territory"].str.strip()</pre>
Replacing spaces within names with _	<pre>df["Territory"].str.replace(" ", "_")</pre>

All of these still need to be "saved back" to be permanent.

Concatenating Strings

Suppose I have a DataFrame with first names and last names. I might want to use/store full names as well!

<pre>roster = pandas.DataFrame([{"first"</pre>	:	"Harry",	"last"	:	"Sm:
{"first"	:	"Henry",	"last"	:	"Gi
{"first"	:	"Travis"	"last"	:	"Me
roster					

	first	last
0	Harry	Smith
1	Henry	Gifford
2	Travis	McGaha

ith"}, fford"}, cGaha"}])

Concatenating Strings

this_col.str.cat(other_col) allows you to

join the contents of one string Series with another:

roster["full"] = roster["first"].str.cat(roster["last"])
roster

	first	last	full
0	Harry	Smith	HarrySmith
1	Henry	Gifford	HenryGifford
2	Travis	McGaha	TravisMcGaha

... we probably need a space.

Concatenating Strings

this_col.str.cat(other_col, sep="") allows you to join the contents of one string Series with another, adding a space in between:

roster["full"] = roster["first"].str.cat(roster["last"], sep=" ")
roster

	first	last	full
0	Harry	Smith	Harry Smith
1	Henry	Gifford	Henry Gifford
2	Travis	McGaha	Travis McGaha

str.contains(pattern) allows you to check if a column contains a certain pattern.

- pattern can be a string specifying a pattern literally or a *regular expression* **o**
- returns a boolean series, so can be used for Boolean Indexing (filtering)

df[df["Territory"].str.contains("New")]

	Territory	Bands	Population	Happiness	Bands Per Capita
113	New Caledonia	5.0	0.293608	NaN	17.029509
114	New Zealand	288.0	4.991442	7.2	57.698757

Checking for Patterns

df["split_names"] = df["Territory"].str.split(" ") df

	Territory	Bands	Population	Happiness	Bands Per Capita	split_names
0	Afghanistan	2.0	37.466414	2.404	0.053381	[Afghanistan]
1	Albania	7.0	3.088385	5.199	2.266557	[Albania]
2	Algeria	16.0	43.576691	5.122	0.367169	[Algeria]
3	Andorra	2.0	0.085645	NaN	23.352210	[Andorra]
4	Angola	8.0	33.642646	NaN	0.237793	[Angola]
169	Venezuela	343.0	29.069153	4.925	11.799449	[Venezuela]
170	Vietnam	21.0	102.789598	5.485	0.204301	[Vietnam]
171	Yemen	NaN	NaN	4.197	NaN	[Yemen]
172	Zambia	NaN	NaN	3.760	NaN	[Zambia]
173	Zimbabwe	2.0	14.829988	2.995	0.134862	[Zimbabwe]

• This is a little weird: the value stored in a cell of the DataFrame is now a list...

Splitting Strings

str.split(sep) splits a column of strings into lists of strings

df["sp	olit_names"].s	str.get())		
0	Afghanistan				
1	Albania				
2	Algeria				
3	Andorra				
4	Angola				
169	Venezuela				
170	Vietnam				
171	Yemen				
172	Zambia				
173	Zimbabwe				
Name:	split_names,	Length:	174,	dtype:	object

• To get the value at a given index of a list in a DataFrame, use .str.get()

Splitting Strings

str.split(sep) splits a column of strings into lists of strings

df["split_names"].str.len() Name: split_names, Length: 174, dtype: int64

 To get the length a list in a DataFrame,use .str.len()

Splitting Strings

str.split(sep) splits a column of strings into lists of strings

Can use string splitting & length checking to ask more complex questions: "Show me the countries that have more than one-word names."

df[df["split_names"].str.len() > 1]

	Territory	Bands	Population	Happiness	Bands Per Capita
18	Bosnia and Herzegovina	86.0	3.824782	5.768	22.484942
23	Burkina Faso	NaN	NaN	4.670	NaN
33	Costa Rica	235.0	5.151140	6.582	45.620969
37	Czech Republic	964.0	10.702596	6.920	90.071605
39	Dominican Republic	31.0	10.597348	5.737	2.925260
40	East Timor	1.0	1.413958	NaN	0.707235
43	El Salvador	96.0	6.528135	6.120	14.705578

Splitting Strings

split_names

[Bosnia, and, Herzegovina]

[Burkina, Faso]

[Costa, Rica]

[Czech, Republic]

[Dominican, Republic]

[East, Timor]

[El, Salvador]

Plotting

Python Fall 2024 University of Pennsylvania

Plotting with .plot()

DataFrame.plot() is an extremely powerful function. On its own, it can do:

- line plots
- bar plots
- horizontal bar plots
- histograms
- box plots
- Kernel Density Estimation plots
- area plots
- pie plots
- scatter plots
- hexbin plots

Plotting with .plot()

DataFrame.plot() is an extremely powerful function.

- In later lectures, we'll talk about all the finer points of data visualization
- For now, just READ THE DOCUMENATION!

Histograms

What's the overall distribution of a given column in my DataFrame?

df.plot(kind="hist", y="Bands")

Histograms

Change y to pick a different column to map out:

df.plot(kind="hist", y="Happiness")

Histograms

- Create a list of columns for y and use subplots=True to generate multiple plots at once. Needs refinement...
- df.plot(kind="hist", y=["Bands", "Happiness"],
 subplots=True)

Scatter Plots

Not an excellent plot, but...

• x: the column to show on the x axis

• y: the column to show on the y axis

• title: add a title to the figure

- Best learned by trying things with different data sets
- You can read about all of the kinds of plots that come with Pandas and their options by reading the documentation
- Will talk in later modules about best practices for picking & designing plots
- Will work in class to make different kinds of plots with different datasets.

Plotting

designing plots rent datasets.