
CIS 1100
Recommending Python

Fall 2024

University of Pennsylvania

Part 1: Scraping

Part 2: Recommending

Reminders:

HW9: What to Watch

Due Dec 9 at 11:59pm

No late days accepted

1

After scraping, we have movie info and user ratings.

We want a way of making a recommendation for a user.

1. Turn each user's ratings into their genre preferences by taking

the average score that they assign to movies of each genre.

2. Determine a way of comparing one user's

preferences to another. (We'll use cosine similarity.)

3. Compare the preferences of the user seeking a recommendation to all

other users' preferences in order to find the most similar other user.

4. Suggest movies that the most similar other user likes a lot.

Recommending

2

Easier to make recommendations based

on what other people like rather than some

essential properties about what you like.

User-Based

Recommendations

3

Genre can be a useful proxy for

more detailed properties of a movie.

We'll model a user's overall preferences by

calculating the average scores they assign

to movies tagged with a particular genre.

Modeling User

Reviews as

Preferences

4

movie_info = {
 1: ("Harry's Adventure", ("Comedy", "Adventure")),
 2: ("Travis' Tragedy", ("Drama", "IMAX", "Comedy")),
}

Maps movie IDs to Sadia's ratings of those movies.
sadias_ratings = {1: 3, 2: 4}

No need to write code to do these, just mental decoding and arithmetic.

(S7) What rating does Sadia give to Travis' Tragedy?

(S8) What is the average rating that Sadia awards to thriller movies?

(S9) What is the average rating that Sadia awards to comedy movies?

(S10) What is the average rating that Sadia awards to drama movies?

Activity: Ratings to Preferences

5

A MovieRecommender stores an attribute called

self.movie_info . It will look something like this.

{1210: ('Star Wars: Episode VI - Return of the Jedi',
 ('Action', 'Adventure', 'Sci-Fi')),
 2028: ('Saving Private Ryan', ('Action', 'Drama', 'War')),
 1307: ('When Harry Met Sally...', ('Comedy', 'Romance')),
 5418: ('Bourne Identity, The', ('Action', 'Mystery', 'Thriller')),
 56367: ('Juno', ('Comedy', 'Drama', 'Romance')),
 3751: ('Chicken Run', ('Animation', 'Children', 'Comedy'))}

(L11) If self.movie_info stores a dictionary with this shape,

write an expression that can look up the title of a movie with ID 3943 .

(C12) Finish this function, which prints out each genre associated with the input movie_id

def print_all_genres(self, movie_id: int):

Movie Recommender

6

A MovieRecommender stores an attribute called self.all_user_ratings .

It will look something like this. (Actually much longer.)

{514: {2716: 5.0, 780: 2.0},
 279: {780: 4.0, 300: 2.5, 1010: 0.5}}

(L13) What do the "outer" keys (514, 279) represent? What do the "inner" keys

(2716 or 300) represent? What do the float values (5.0, 4.0) represent?

Movie Recommender

7

Part 1: Scraping

Part 2: Recommending

Reminders:

HW9: What to Watch

Due Dec 9 at 11:59pm

No late days accepted

Autograder coming really soon, I promise

we haven't forgotten

you can check your correctness on the first few parts using examples in the write-up

the autograder tests take forever to write because they involve

a lot of actual calculations and I really really don't want to have

the tests tell you the wrong things so I'm doing a lot of math
8

(C12) Finish this method belonging to the

MovieRecommender class. Remember the attibutes!

self.all_user_ratings: dict[int, dict[int, float]]
self.movie_info: dict[int, tuple[str, tuple]]

def count_movies_by_genre(self, user_id: int) -> dict[str, int]:
 """Return a dictionary mapping genres to the number of movies that
 the input user has rated from that genre."""

 counter = {}

 ...

 return counter

Movie Recommender

9

Representing something complex as a bunch of numbers?

Figuring out which bunches of numbers are more or less similar?

Cosine similarity calculates this for us!

Cosine Similarity

1 identical in direction

0 perpendicular in direction

-1 opposite in direction

(not actually possible in our case since all numbers are positive)

10

As in the reading, vectors are traditionally represented as lists/arrays. But we're using dicts...

Cosine Similarity & Vectors

Genres don't have unique numeric identifiers, so we would

need a way of encoding genres into the list positions.

Sparsity: There are 19 genres in the dataset, but most people don't rate all of them.

i.e. in [4.0, 5.0, 0.0, 3.0] , which genre gets the 5.0 reading??

{"Comedy" : 4.0, "Action" : 3.0} might become

the following instead if we needed a list of 19 elements:

[4.0, 3.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

11

Cosine Similarity is calculated like so:

"the ratio of the dot product to the product of the magnitudes"

That's hard, but:

Calculations

the top term (dot product) is the sum of elementwise products of vectors A and B

the magnitude of a vector is the square root of the sum of the squares of the elements.

12

If A = {"Comedy" : 4.0, "Action" : 3.0} and

B = {"Action" : 5.0, "Drama" : 2.5} , then:

(S7) Calculate the dot product between two vectors A = {"Comedy" : 4.0,
"Action" : 4.0} and B = {"Action" : 5.0, "Comedy" : 5.0}

(C14) Here's a function to calculate the dot product between two lists (assuming

same length). How would we convert this to work when our vectors are dicts?

def dot(a: list[float], b: list[float]) -> float:
 total = 0
 for i in range(len(a)):
 total += a[i] * b[i]
 return total

Dot Product

13

If A = {"Comedy" : 4.0, "Action" : 3.0} then the magnitude of A is:

(S8) Calculate the magnitude of A = {"Comedy" : 4.0, "Action" : 4.0}
(S9) Calculate the magnitude of B = {"Action" : 5.0, "Comedy" : 5.0}

(C16) Here's a function to calculate the magnitude of a vector as a list of

floats. How would we convert this to work when our vectors are dicts?

import math
def mag(a : list[float]) -> float:
 squared = map(lambda x : x * x, a)
 squared_sum = sum(squared)
 return math.sqrt(squared_sum)

Magnitude

14

(S10) Combine S7, S8, S9 to calculate the cosine similarity between:

(L11) Reflect: what is the meaning of this result?

Cosine Similarity Wrapped

A = {"Comedy" : 4.0, "Action" : 4.0} and

B = {"Action" : 5.0, "Comedy" : 5.0}

15

	Recommending
	HW9: What to Watch
	Recommending
	User-Based Recommendations
	Modeling User Reviews as Preferences
	Activity: Ratings to Preferences
	Movie Recommender
	Movie Recommender
	HW9: What to Watch
	Movie Recommender
	Cosine Similarity
	Cosine Similarity & Vectors
	Calculations
	Dot Product
	Magnitude
	Cosine Similarity Wrapped

