
CIS 1100
Searching Python

Fall 2024

University of Pennsylvania

We often need to search for an item in a collection

In this module, we will learn about how to search for an element in a list.

Overview

Is this student in this recitation roster?

Is this username in our user database?

Is there any data point in our dataset that matches this description?

1

Learning Objectives
To be able to use linear search to find an element inside an sequence

To be able to use binary search to find an element inside an sequence

To be able to know when to use linear search and when to use binary search

2

Formally, given a sequence of values and a target value, we want to

determine if the target value is in the sequence, and if so, where it is located.

Problem: Search

3

Python has a built-in solution: sequence.index(target) returns the position of

target inside of the sequence , or raises a ValueError if the target is not present.

Solution: .index()

You'll just use this (or .find() for strings) most of the time

BUT!

How does it work?

index() the best solution in all cases? Are there better strategies?

(There are.)

4

Formally, given a sequence of values and a target value, we want to

determine if the target value is in the sequence, and if so, where it is located.

Problem: Search

in our case, the "sequence of values" could be a list, tuple, string, Series , DataFrame ...

the "target value" is the value we are searching for

the location is the index of the value in the sequence, or -1 if it's not present.

5

In any problem, the feasible region is the name for

the set of possible values that might be a solution.

In our search algorithms, we repeatedly reduce the feasible region until we find the

target value, or until we determine that the target value is not present in the sequence.

Concept: The "Feasible Region"

In the context of search, the feasible region refers to the set

of indices in the sequence that might contain the target value.

A set of indices is functionally a region of the

sequence where the target value might be found.

6

CIS 1100
Linear Search Python

Fall 2024

University of Pennsylvania

Used to search for a value (the target) in an unsorted list

With each iteration, we reduce the feasible region by one element.

Linear Search

Use a loop to iterate over the values

Start at the first element and move to the next element until the target is found

Returns the position of the target if it was found in the

sequence, or -1 if the target was not found in the sequence

7

(this image is a link)

Linear Search Example

8

https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#linear-searching
https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#linear-searching
https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#linear-searching

def linear_search(sequence, target):
 for idx, element in enumerate(sequence):
 if element == target:
 return idx
 return -1

>>> linear_search(range(30, 300, 4), 30)
0
>>> linear_search(range(30, 300, 4), 262)
58
>>> linear_search(range(30, 300, 4), 31)
-1

Linear Search

9

How many iterations of the for loop will we need if...

Linear Search: Thinking Critically

the target is the first element in the sequence?

the target is the 10th element in the sequence?

the target is not in the sequence?

10

How many iterations of the for loop will we need if...

Linear Search: Thinking Critically

the target is the first element in the sequence? 1

the target is the 10th element in the sequence? 10

the target is not in the sequence? len(sequence)

11

Linear search is...

These are desirable properties, but linear search is not always the most efficient.

Linear Search: Properties

Complete: we'll always get an answer

Correct: we'll always get the right answer

May require more time (~more iterations) than other searching algorithms for "average use"

12

Here's a dumb searching algorithm called Bogo Search

from random import randrange
def bogo_search(sequence, target):
 while True:
 idx = randrange(len(sequence)) # picks a random index to look at
 if sequence[idx] == target:
 return idx

Not even complete: if we got unlucky, we could accidentally just look at

the same (wrong) index infinitely many times in a row and never return.

A Contrasting Point of View

13

CIS 1100
Binary Search Python

Fall 2024

University of Pennsylvania

Can we do better than linear search? Can we be...

The answer is "yes, yes, and sometimes."

Binary Search

complete?

correct?

faster?

14

Used to search for a target value in a sorted sequence only

Binary Search

Compares the target with the value at the middle index (middle element)

Repeat on the remaining search area of the sequence until

If the middle element is the target element, then we're done!

If the target is less than the middle element, then we search for the target

in the left half of the sequence (the positions before the middle element)

If the target is greater than the middle element, then we search the target

in the right half of the sequence (the positions after the middle element)

the element is found

there is no feasible search area left

15

Searching for "Dustin" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low middle high

Binary Search

middle = (low + high) // 2 = 3

names[middle] is "Elliot" , which comes after "Dustin" alphabetically.

So, if "Dustin" is present, it must be between positions 0 and middle - 1 .

16

Searching for "Dustin" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low middle high

Binary Search

middle = (low + high) /// 2 = 1

names[middle] is "Debbie" , which comes before "Dustin" alphabetically.

So, if "Dustin" is present, it must be between positions middle + 1 and 2 .

17

Searching for "Dustin" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low, middle, high

Binary Search

middle = (low + high) // 2 = 2

names[middle] is "Dustin" , which is the target element! So, we return middle .

18

Searching for "Drew" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low middle high

Binary Search: Searching
for an Element not Present

middle = (low + high) // 2 = 3

names[middle] is "Elliot" , which comes after "Drew" alphabetically.

So, if "Drew" is present, it must be between positions 0 and middle - 1 .

19

Searching for "Drew" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low middle high

Binary Search: Searching
for an Element not Present

middle = (low + high) // 2 = 1

names[middle] is "Debbie" , which comes before "Drew" alphabetically.

So, if "Drew" is present, it must be between positions middle + 1 and 2 .

20

Searching for "Drew" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

low, middle, high

Binary Search: Searching
for an Element not Present

middle = (low + high) // 2 = 2

names[middle] is "Dustin" , which comes after "Drew" alphabetically.

So, if "Drew" is present, it must be between positions 2 and middle - 1 .

21

Searching for "Drew" in the sequence names !

Caryn Debbie Dustin Elliot Jacquie Jon Rich

0 1 2 3 4 5 6

high low

Binary Search: Searching
for an Element not Present

high is now less than low . The "feasible search area" is now totally empty.

So, we return -1 to indicate that the target was not found in the sequence.

22

(this image is a link)

Binary Search, Interactive

23

https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#binary-search
https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#binary-search
https://www.cis.upenn.edu/~cis110/current/lectures/viz/binarySearch.html#binary-search

def binary_search(sequence, target):
 low_index, high_index = 0, len(sequence) - 1
 while low_index <= high_index:
 middle_index = (low_index + high_index) // 2
 if target < sequence[middle_index]:
 high_index = middle_index - 1
 elif target > sequence[middle_index]:
 low_index = middle_index + 1
 else:
 return middle_index
 return -1

Binary Search

24

Properties of Binary Search

Binary Search is complete since each iteration of the while loop shrinks our feasible search

area down to a point where we'll stop, or we return the index where we find the target.

Binary Search is correct since we return the index of the target when we find it and

we only return -1 when the element could not have been present in the sequence.

Is Binary Search any more efficient than Linear Search?

This is only guaranteed if the sequence was sorted, though!

25

CIS 1100
Comparing Linear
& Binary Search

Python

Fall 2024

University of Pennsylvania

Linear Search vs. Binary Search
Binary search is faster "on average" than linear search

Per iteration, binary search shrinks the feasible region by half

the remaining elements, linear search only by one element.

In both cases, max number of iterations needed is bounded above by

the number of iterations needed to shrink the feasible region to empty.

On average, binary search requires fewer iterations of the search loop

(when is binary search not faster then linear search?)

26

Runtime analysis: how many iterations will it take

to determine that the target is not in the sequence?

Length of the sequence Linear Search Binary Search

2 2 2

4 4 3

8 8 4

16 16 5

100 100 7

Linear Search vs. Binary Search

27

Runtime analysis: how many iterations will it take to

determine that the target is the first element of the sequence?

Length of the sequence Linear Search Binary Search

2 1 2

4 1 3

8 1 4

16 1 5

100 1 7

Linear Search vs. Binary Search

28

Linear search is...

Binary search is...

Linear Search & Binary Search

Usable when your sequence is not sorted to start with

As efficient as any search algorithm can be when you

don't know anything about the sequence ahead of time

Only usable when your sequence is sorted to start with

Significantly more efficient than linear search on average.

29

CIS 1100
Data Structures & Efficiency Python

Fall 2024

University of Pennsylvania

Data Structures
Python comes with a ton of built-in data structures, or organized containers of data.

What is the point of having so many different kinds?

lists, tuples, sets, dicts

We know that some support operations that others do not

Most are mutable, but tuples are not—why?

Sometimes they have the same operations, though—why?

30

The complexity of an algorithm or a data structure refers to amount of some

resource that is required to perform that algorithm or maintain that data structure.

Efficiency & Complexity

Resources are usually:

Computers are extremely fast. But they are not infinitely fast.

Efficiency is not your primary concern as an intro programming

student, but you should try to build good habits early if you can.

time: how many CPU cycles—how many operations—must be performed.

space: how much of a computer's memory must be used

In "bigger" programs, we need the right tool for the job if the problem is to be feasible at all.

31

In future courses, you'll learn about mathematical analysis

for proving time and space complexity. But for now... a timer!

python -m timeit "<small snippet of code>"

e.g.

$ python -m timeit "list('howdy, partner')"
2000000 loops, best of 5: 134 nsec per loop

Evaluating list('howdy, partner') 2000000
times took an average of 134 nanoseconds per evaluation.

Estimating Time Complexity

32

Can also add a setup statement using -s <setup-statement>
to provide a line of code that should be run once before the timer.

python -m timeit -s "<setup-statement>" "<small snippet of code>"

e.g.

$ python -m timeit -s "l = list(range(10000))" "l.append(-1)"
10000000 loops, best of 5: 26.3 nsec per loop

Estimating Time Complexity

33

CIS 1100
Measuring Efficiency
of Common Uses

Python

Fall 2024

University of Pennsylvania

Different operations have different costs in different data structures.

$ python -m timeit -s "l = list(range(10000))" "l.append(-1)"
10000000 loops, best of 5: 26.3 nsec per loop
$ python -m timeit -s "l = list(range(10000))" "l.insert(len(l), -1)"
5000000 loops, best of 5: 65.8 nsec per loop
$ python -m timeit -s "l = list(range(10000))" "l.insert(0, -1)"
20000 loops, best of 5: 10.4 usec per loop

 Inserting at the end of a list is faster than inserting at the beginning! (True for tuples too.)

Efficiency & Data Structures

Heck, even the same operation in the same data structure can have different costs!

34

Sets and dicts are very fast for adding, too:

$ python -m timeit -s "s = set(range(10000))" "s.add(-1)"
10000000 loops, best of 5: 28.1 nsec per loop
$ python -m timeit -s "d = dict(enumerate(range(10000)))" "d[-1] = -2"
10000000 loops, best of 5: 21.2 nsec per loop

 Inserting at the end of a list is faster than inserting at the beginning! (True for tuples too.)

Efficiency & Data Structures

35

in is an operation supported for strings, tuples, lists, sets, and

dict. If our goal is tracking membership, which should we use?

Problem setting: forbidding common passwords

123456 123456789 password adobe123 12345678
qwerty 1234567 111111 photoshop 123123 1234567890
000000 abc123 1234 adobe1 macromedia azerty iloveyou
aaaaaa 654321 12345 666666 sunshine 123321 letmein
monkey asdfgh password1 shadow princess dragon
adobeadobe daniel computer michael 121212 charlie
master superman qwertyuiop 112233 asdfasdf jessica
1q2w3e4r welcome 1qaz2wsx 987654321 fdsa 753951 chocolate

Efficiency and Costs

36

Setup: Read a file of known "bad passwords" into a data structure.

Experiment: Search for 'chocolate' , the last password in the file.

$ python -m timeit -s "ds = list(open('passwords.csv', 'r').readlines())" "'chocolate' in ds"
200000 loops, best of 5: 1.1 usec per loop
$ python -m timeit -s "ds = tuple(open('passwords.csv', 'r').readlines())" "'chocolate' in ds"
200000 loops, best of 5: 1.09 usec per loop
$ python -m timeit -s "ds = open('passwords.csv', 'r').read()" "'\nchocolate\n' in ds"
2000000 loops, best of 5: 176 nsec per loop
$ python -m timeit -s "ds = set(open('passwords.csv', 'r').readlines())" "'chocolate' in ds"
20000000 loops, best of 5: 13.1 nsec per loop

 Checking for membership in a set can be nearly

two orders of magnitude faster than checking in a list!

Checking If a Password is Known to Be Bad

37

Setup: Read a file of known "bad passwords" into a data structure.

Experiment: Search for '123456' , the last password in the file.

$ python -m timeit -s "ds = list(open('passwords.csv', 'r').readlines())" "'123456' in ds"
200000 loops, best of 5: 367 nsec per loop
$ python -m timeit -s "ds = tuple(open('passwords.csv', 'r').readlines())" "'123456' in ds"
200000 loops, best of 5: 368 nsec per loop
$ python -m timeit -s "ds = open('passwords.csv', 'r').read()" "'\n123456\n' in ds"
2000000 loops, best of 5: 246 nsec per loop
$ python -m timeit -s "ds = set(open('passwords.csv', 'r').readlines())" "'123456' in ds"
20000000 loops, best of 5: 13.1 nsec per loop

 Checking for membership in a set is usually at least 10x faster than checking in a list!

Checking If a Password is Known to Be Bad

38

No.

What if we wanted to be able to look up the most commonly used password? What

if we wanted to look up the frequency with which a certain password was used?

So... Sets for Everything?

39

Finding the most commonly used password:

Sets Are Not Ordered!

We could store the passwords in a list in descending order of frequency.

We could store the passwords as keys and their frequencies as values in a dict .

most_common = ""
for password, freq in passwords.items()
 if freq > password[most_common]:
 most_common = password

We could put the passwords in a set, and then do...?

passwords[0] gives us our answer

Not necessarily the most fast, but at least we can do it.

40

Data

Structure
Use for... Avoid...

list
Ordered sequences, sorted sequences,

collections that grow from the end

Repeated membership

checks, inserting elements at

positions other than the end.

set
Unordered collections, repeated membership checks,

collections that can grow and shrink over time

When the order of

the elements matters

dicts

Key-value associations, hierarchical data structures

(next module), repeated membership checks,

collections that can grow and shrink over time

When the order of

the elements matters

Choosing the Right Tool for the Job

41

CIS 1100
What About Tuples? Python

Fall 2024

University of Pennsylvania

Look, you can just use a list almost anywhere you want an ordered sequence of elements.

Okay, What About Tuples?

42

But, tuples are necessary when you want to use sequences as keys for dictionaries!

Suppose you have a collection of circles you want to draw in different colors.

Tuples as Hashable Types

Could use a sequence of <x_center, y_center, radius> as a key

Could use a sequence of <r, g, b> as a value for the color.

43

my_circles = {[0.5, 0.5, 0.1] : [255, 255, 255],
 [0.2, 0.8, 0.2] : [0, 0, 180]}

TypeError: unhashable type: 'list'

Lists Can't Be Keys

44

my_circles = {(0.5, 0.5, 0.1) : [255, 255, 255],
 (0.2, 0.8, 0.2) : [0, 0, 180]}

Changing the keys to tuples works!

Tuples Can Be Keys

Don't even have to change the types of the values

This is because lists are mutable, and so the way that we

"look them up" in the dictionary might change over time.

More on this in an algorithms class..

45

Suppose we wrote a function that calculated the centroid

of a given shape and returned it as an (x, y) coordinate.

Tuples Have Finality

Could return the coordinate as a list or a tuple.

But what would it mean to append a value to the coordinate pair?

l = find_centroid(my_shape)
l.append("password") # ???????????

Tuples and their immutability can convey the message: "final answer!"

46

	Searching
	Overview
	Learning Objectives
	Problem: Search
	Solution: .index()
	Problem: Search
	Concept: The "Feasible Region"

	Linear Search
	Linear Search
	Linear Search Example
	Linear Search
	Linear Search: Thinking Critically
	Linear Search: Thinking Critically
	Linear Search: Properties
	A Contrasting Point of View

	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search
	Binary Search: Searching for an Element not Present
	Binary Search: Searching for an Element not Present
	Binary Search: Searching for an Element not Present
	Binary Search: Searching for an Element not Present
	Binary Search, Interactive
	Binary Search
	Properties of Binary Search

	Comparing Linear & Binary Search
	Linear Search vs. Binary Search
	Linear Search vs. Binary Search
	Linear Search vs. Binary Search
	Linear Search & Binary Search

	Data Structures & Efficiency
	Data Structures
	Efficiency & Complexity
	Estimating Time Complexity
	Estimating Time Complexity

	Measuring Efficiency of Common Uses
	Efficiency & Data Structures
	Efficiency & Data Structures
	Efficiency and Costs
	Checking If a Password is Known to Be Bad
	Checking If a Password is Known to Be Bad
	So... Sets for Everything?
	Sets Are Not Ordered!
	Choosing the Right Tool for the Job

	What About Tuples?
	Okay, What About Tuples?
	Tuples as Hashable Types
	Lists Can't Be Keys
	Tuples Can Be Keys
	Tuples Have Finality

