

Learning Objectives
Identify and use different kinds of basic sequences: strings, ranges, lists and tuples

Understand the limitations and restrictions of each type of sequence

Understand the difference between mutable and immutable sequences

Use an index to access a value in a sequence

Use slicing to obtain a subsequence

1

Create a string by writing out a literal as a bunch of characters

placed between a pair of the quotation marks of your choice:

vocabulary_word = "vermiculate"

Sequences are collections of data.

Why is a String a Sequence?

2

A string is defined not just by the characters it contains,

but by the order in which those characters are stored.

a = "relatives"
b = "versatile"
print(a == b) # prints False!

Sequences are ordered collections of data.

Why is a String a Sequence?

3

Sequences in Python are indexable: we can refer to values

at specific positions in the sequence by their positions.

"indexing"
 01234567

Notice that "indexing" is a string with eight characters: since

we start counting at 0 , the index of the last character is 7 .

Indexing in Sequences

first value lives at index 0

second value lives at index 1

4

For a sequence of length n , the valid indices always range from 0 to n-1 .

"short" # 5 characters long
 01234 # biggest index: 4

"lengthy" # 7 characters long
 0123456 # biggest index: 6

Indexing in Sequences

Negative indices & indices >= n lead to IndexError

5

For any sequence s , the operation to get the value at index i is s[i] .

full_name = "Travis Q. McGaha"
middle_initial = full_name[7] # "Q"
first_initial = full_name[0] # "T"
last_initial = full_name[10] # "M"

In a str , the values at each index are individual characters—actually str values themselves

Indexing in Strings

6

When i is too big, we get IndexError and the program will crash.

>>> "HSS"[100]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: string index out of range

Indexing in Strings

7

Since each initial is just a str , we can concatenate them all together using the + operator.

full_name = "Travis Q. McGaha"
middle_initial = full_name[7] # "Q"
first_initial = full_name[0] # "T"
last_initial = full_name[10] # "M"

full_initials = first_initial + middle_initial + last_initial
print(full_initials) # prints "TQM"

Sequences and Concatenation

Many (not all) sequences support concatenation.

8

We know how to refer to one position in a sequence at a time with a single index.

print("earth"[1:4]) # prints "art"
print("earth"[0:3]) # prints "ear"

This operation is called slicing.

Slicing: Generating Subsequences

How about a group of positions—a subsequence?

If we want to obtain a subsequence of a string s including all characters starting

at index i and stopping before index j , then we can do that by writing s[i:j]

9

When slicing, we always excluding the character at the end position:

Slicing: Starting and Stopping

"earth[1:4]" gives "art" , which is the subsequence

consisting of characters at positions 1 , 2 , and 3 only.

For a string s , s[i:j] will always have a length of j - i characters.

To include the last character in a string of length n , use a stop index of n

10

title = "crossroads"
all three examples below give exactly the same value
roads_one = title[5:10]
roads_two = title[5:len(title)]
roads_three = title[5:]

print(roads_one) # prints "roads"
print(roads_one == roads_two == roads_three) # prints True

This last version—title[5:]—is a useful syntactical

shorthand for getting all characters in title at & after index 5 .

Slicing: Shortcuts

11

title = "crossroads"
both examples below give exactly the same value
cross_one = title[0:5]
cross_two = title[:5]

print(cross_one) # prints "cross"
print(cross_one == cross_two) # prints True

Can similarly omit the first number to take everything from the beginning.

Slicing: Shortcuts

12

If you only want every kth element of a string s
starting at index i and ending at index j , you can write

s[i:j:k]

>>> "AaBbCc"[2:5:2]
'BC'

Slicing and Stepping

Start at index 2 ("B"), take that character.

Take 2 steps forward to index 4 .

Since index 4 is before stop index 5 , take it. ("C")

Take 2 steps forward to index 6 .

Since index 6 is not before stop index 5 , stop.

13

>>> "AaBbCc"[0:6:3]
'Ab'

Slicing and Stepping

Start at index 0 ("A"), take that character.

Take 3 steps forward to index 3 .

Since index 3 is before stop index 6 , take it. ("b")

Take 3 steps forward to index 6 .

Since index 6 is not before stop index 5 , stop.

14

Stepping can go backwards. The start index will be larger than the stop index.

>>> "devolve"[4:0:-1]
'love'

Slicing and Stepping

Start at index 4 ("l"), take that character.

Take 1 steps backward to index 2 .

Since index 3 is after stop index 0 , take it. ("o")

Take 1 steps backward to index 1 .

Since index 2 is after stop index 0 , take it. ("v")

Take 1 steps backward to index 0 .

Since index 1 is after stop index 0 , take it. ("e")

Take 0 steps backward to index 0 . Stop.
15

Omit the start and stop values to get a "slice" of the entire string but in reverse.

>>> "stop"[::-1]
'pots'

A little confusing to parse why that works, but a handy tool to keep in mind.

Reversing

16

Slicing allows us to pull a subsequence out of another sequence.

>>> "art" in "earth"
True
>>> "at" in "earth"
False
>>> "e" in "earth"
True
>>> "q" in "earth"
True
>>> "earth" in "earth"
True

Membership

For strings only, we can check to see if a subsequence is found anywhere in a larger string

Use the in keyword to ask if a subsequence s is present in a larger string t : s in t

17

A range is a sequence of numbers defined by a start point, stop point, and step size.

Ranges

Like a string is a sequence of characters, a range is a sequence of numbers

Created by writing range(start, stop, step)
Both start and step can be omitted for convenience to get a range from 0 to stop .

18

Contents Expression

0, 1, 2, 3, 4 range(5)

1, 2, 3, 4, 5 range(1, 6)

1, 3, 5 range(1, 6, 2)

0, 10, 20, 30, 40, 50 range(0, 51, 10)

empty! range(6, 0)

6, 5, 4, 3, 2, 1 range(6, 0, -1)

Creating Ranges

19

big_range = range(0, 100)
smaller_range = big_range[0:11]
print(smaller_range) # prints range(0, 11)
print(big_range[10]) # prints 10

Ranges: Support Indexing & Slicing

20

Using in for ranges can only check to see if individual

numbers are present inside of a larger range.

big_range = range(0, 100)
smaller_range = big_range[0:11]
print(smaller_range in big_range) # prints False
print(10 in big_range) # prints True

Ranges: Membership

21

You cannot:

>>> range(1, 3) + range(10, 100)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'range' and 'range'
>>> print(range(1, 3))
range(1, 3)

Ranges: Limitations

concatenate two ranges

nicely inspect all the contents of a range by printing

22

A tuple is an immutable sequence of values

Tuples

Potentially all of different types

Denoted using parentheses

Indexable, sliceable, supports membership checking

Cannot add or change things without creating a new tuple.

23

My initials, as a tuple of three strings:

>>> initials = ("H", "S", "S")
>>> len(initials)
3
>>> initials[0]
'H'
>>> initials[0:2]
('H', 'S')
>>> "H" in initials
True
>>> ("H", "S") in initials
False

Tuples: The Basics

24

Tuples can contain values of different types

>>> some_data = ("H", 27, False)
>>> len(some_data)
3
>>> some_data[0]
'H'
>>> some_data[0:2]
('H', 27)
>>> 27 in some_data
True
>>> ("H", 27) in some_data
False

Tuples With Mutliple Types

25

letters = ("a", "b", "c")
numbers = (1, 2, 3)

everything = letters + numbers
print(everything)

Prints:

("a", "b", "c", 1, 2, 3)

This leaves letters and numbers unchanged—a new tuple is created!

Concatenating Tuples

26

A list is a mutable sequence of values

List

Potentially all of different types

Denoted using square brackets ([])

Indexable, sliceable, supports membership checking

Can add, remove, and change things in the list!

27

My initials, as a list of three strings:

>>> initials = ["H", "S", "S"]
>>> len(initials)
3
>>> initials[0]
'H'
>>> initials[0:2]
('H', 'S')
>>> "H" in initials
True
>>> ["H", "S"] in initials
False

List: The Basics

28

Tuples can contain values of different types

>>> some_data = ["H", 27, False]
>>> len(some_data)
3
>>> some_data[0]
'H'
>>> some_data[0:2]
['H', 27]
>>> 27 in some_data
True
>>> ["H", 27] in some_data
False

Lists With Mutliple Types

29

letters = ["a", "b", "c"]
numbers = [1, 2, 3]

everything = letters + numbers
print(everything)

Prints:

["a", "b", "c", 1, 2, 3]

This leaves letters and numbers unchanged—a new list is created!

Concatenating Lists

30

numbers_list = [1, 2, 3]

numbers_list[2] = -3
print(numbers_list)

Prints:

[1, 2, -3]

Changing Lists

31

numbers_tuple = (1, 2, 3)

numbers_tuple[2] = -3 # this line leads to a TypeError!
print(numbers_tuple)

Results in:

TypeError: 'tuple' object does not support item assignment

Changing Tuples: No Can Do!

32

append() allows us to add a single value to the end of a list.

numbers_list = [1, 2, 3]

numbers_list.append(4)
print(numbers_list)

Prints:

[1, 2, 3, 4]

Growing Lists: append

33

extend() allows us to add all contents of another list onto this list.

numbers_list = [1, 2, 3]
letters_list = ["a", "b", "c"]

numbers_list.extend(letters_list)
print(numbers_list)

Prints:

[1, 2, 3, "a", "b", "c"]

No new list is created!

Growing Lists: extend

34

+ allows us to create a new list combining the

contents of one list before the contents of another list

numbers_list = [1, 2, 3]
letters_list = ["a", "b", "c"]

new_list = numbers_list + letters_list
print(numbers_list)
print(new_list)

Prints:

[1, 2, 3]
[1, 2, 3, "a", "b", "c"]

numbers_list is unchanged!

Concatenating Lists: +

35

Tuples are suitable for fixed-length, permanent collections.

Lists are suitable for variable-length, changing collections.

Immutability

append , extend , and setting the value at a

particular index (e.g. t[3] = "new") do not work!

36

No matter what, all sequence types are ordered collections of elements.

Different sequence types have different restrictions on what they contain.

Sequences: Ordered Collections

Ordering gives rise to indexing, which allows for

selecting individual elements or subsequences

str : characters

range : int values

tuple : anything

list : anything

37

Type Index/Subsequence Membership len() Concatenation Modification

str yes
individual elements

or subsequences
yes yes no

range yes individual elements yes no no

tuple yes individual elements yes yes no

str yes individual elements yes yes yes

Sequences

38

	
	Learning Objectives

	
	Why is a String a Sequence?
	Why is a String a Sequence?
	Indexing in Sequences
	Indexing in Sequences
	Indexing in Strings
	Indexing in Strings
	Sequences and Concatenation

	
	Slicing: Generating Subsequences
	Slicing: Starting and Stopping
	Slicing: Shortcuts
	Slicing: Shortcuts
	Slicing and Stepping
	Slicing and Stepping
	Slicing and Stepping
	Reversing
	Membership

	
	Ranges
	Creating Ranges
	Ranges: Support Indexing & Slicing
	Ranges: Membership
	Ranges: Limitations

	
	Tuples
	Tuples: The Basics
	Tuples With Mutliple Types
	Concatenating Tuples
	List
	List: The Basics
	Lists With Mutliple Types
	Concatenating Lists
	Changing Lists
	Changing Tuples: No Can Do!
	Growing Lists: append
	Growing Lists: extend
	Concatenating Lists: +
	Immutability

	
	Sequences: Ordered Collections
	Sequences

