
CIS 1100
Sets & Dicts Python

Fall 2024

University of Pennsylvania

Learning Objectives
Explain the purpose of sets as unordered collections of unique elements.

Use basic operations of sets: checking for membership,

adding & removing elements, set intersection & difference

Apply knowledge of comprehensions to sets

Explain the purpose of dicts as mappings from keys to vbalues

Use basic operations of dicts: checking for membership,

adding/updating/removing key-value pairs

Apply knowledge of comprehensions to dicts

1

CIS 1100
Sets Python

Fall 2024

University of Pennsylvania

Recall that lists are sequences: ordered collections of values.

Sets are collections, too, but they are unordered and they do not allow duplicate elements.

Sets as Unordered Collections

ordered indexed

no restrictions on the values we store (types, repeats)

unordered no indexing!

can store values of (nearly) any type

each value can be present at most one time

2

Set literals are defined with curly braces ({}).

Set Syntax

{3, 10, 15} is a set with three elements

{"Harry", "Travis"} is a set with two elements

{} is not a set at all

it's a dict (more on this shortly)

unlike how [] gives us an empty list, we need to write

set() to give us an empty set (a set with no elements)

3

>>> set_one = {3, 10, 15}
>>> set_two = {15, 10, 3}
>>> set_one == set_two
True

>>> set_with_duplicates = {"Harry", "Travis", "Harry"}
>>> len(set_with_duplicates)
2

Uniqueness & No Ordering
Any two sets that have exactly the same elements are considered equal to each other.

Adding a "duplicate" value to a set has no effect.

4

Sets cannot store "unhashable" elements.

Restrictions

What is or isn't hashable is of no concern to us now...

...but keep in mind that you can't store lists, sets, or dicts within sets.

tuple and str values are still OK!

5

CIS 1100
Set Operations Python

Fall 2024

University of Pennsylvania

Lots of stuff familiar from lists:

Standard Collection Operations

len() tells you how many elements are present

x in s allows you to check if some element x is in a set s

for x in s allows you to iterate over the elements of s one-by-one

sets are unordered, so the iteration order is (sort of) unpredictable

6

You can use set() to turn another collection into a set. This adds all elements

of the other collection to the set (and therefore removes all duplicates.)

>>> fibs = [0, 1, 1, 2, 3]
>>> fib_set = set(fibs)
>>> fib_set
{0, 1, 2, 3}

Creating Sets

7

Using a for loop still visits each element in the set, but you don't know the order!

my_set = {3, 10, 15}
for number in my_set:
 print(number)

10
3
15

Iteration over Sets

8

To add an element to a set, use the .add() method:

names = {"Crosby", "Young", "Stills"}
names.add("Nash")
print(names)

{'Nash', 'Stills', 'Crosby', 'Young'}

Adding Elements

9

To remove an element from a set, use the .remove() method:

names = {"Crosby", "Young", "Stills", "Nash"}
names.remove("Young")
print(names)

{'Nash', 'Stills', 'Crosby'}

Removing Elements

10

If you try to .remove() an element that's not

present, you get a KeyError (a program crash!)

names = {"Crosby", "Young", "Stills", "Nash"}
names.remove("Harry")
print(names)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'harry'

Removing Elements

11

If you try to .discard() an element that's not present, nothing happens!

names = {"Crosby", "Young", "Stills", "Nash"}
names.discard("Harry")
print(names)

{'Nash', 'Stills', 'Crosby', 'Young'}

Removing Elements Safely

12

Name Meaning Method Operator

Union
Create a new set with

all elements from both
s.union(t) s | t

Intersection
Create a new set with only

elements that appear in both sets
s.intersection(t) s & t

Difference
Create a new set with only

elements in s that don't appear in t
s.difference(t) s - t

Symmetric

Difference

Create a new set with elements that

appear in only one set but not both
s.symmetric_difference(t) s ^ t

Set Operations

13

I have two sets session_one and session_two that contain the names of

people who attended recitation one and recitation two, respectively. How can I...

Set Operations

find all of the people who attended both?

find all of the people who attended at least one?

find all the people who attended exactly one?

find all the people who attended the first but not the second?

14

I have two sets session_one and session_two that contain the names of

people who attended recitation one and recitation two, respectively. How can I...

Set Operations

find all of the people who attended both?

find all of the people who attended at least one?

find all the people who attended exactly one?

find all the people who attended the first but not the second?

both = session_one & session_two

at_least_one = session_one | session_two

exactly_one = session_one ^ session_two

just_first = session_one - session_two

15

Set s is a superset of set t if all elements of t are present in s .

Set Relations: Supersets

s >= t is True when all elements of t are present in s
Set s is a strict superset of set t if all elements of t are present in s and len(s) >
len(t)

s > t is True when s >= t and len(s) > len(t)

16

Set s is a subset of set t if all elements of s are present in t .

Set Relations: Subsets

s <= t is True when all elements of s are present in t
Set s is a strict subset of set t if all elements of s are present in t and len(s) < len(t)

s < t is True when s <= t and len(s) < len(t)

17

CIS 1100
Set Comprehensions Python

Fall 2024

University of Pennsylvania

Create sets with comprehensions exactly the same

way it's done with lists, but using {} instead of [] :

new_set = {expression(elem) for elem in sequence if condition(elem)}

Set Comprehensions

18

Get a set of all of the vowels present in a string:

>>> word = "Avarice"
>>> vowels = {letter.upper() for letter in word if letter in "AaEeIiOoUu"}
>>> vowels
{'A', 'I', 'E'}

Set Comprehension

19

CIS 1100
Dicts Python

Fall 2024

University of Pennsylvania

Dicts are unordered collections of key-value pairs.

Dicts as Mappings from Keys to Values

Short for "dictionary"

Represent associations from keys to values

Allow for looking up some information associated with a search key

Keys must be unique, values do not need to be unique

20

Any association from keys (things you can search

by) to values (information you might want to know.)

The Penn Directory, for example:

Name : Email
Harry Smith : sharry@seas
Travis McGaha : tqmcgaha@seas
...

Here, the names are keys and the emails are values.

What is a Mapping?

21

Dict literals are defined with curly braces ({}) and separate keys and values with a colon.

Dict Syntax

{3, 10, 15}

{"Harry" : "sharry", "Travis" : "tqmcgaha"}

{} is an empty dict

is a set with three elements

is a dict with two elements (key-value pairs)

writing just dict() gets the same result

22

>>> one = {"Harry" : "sharry", "Travis" : "tqmcgaha"}
>>> two = {"Travis" : "tqmcgaha", "Harry" : "sharry"}
>>> one == two
True

Uniqueness & No Ordering
Any two dicts that have exactly the same elements are considered equal to each other.

23

Dicts cannot store "unhashable" keys.

Restrictions

What is or isn't hashable is of no concern to us now...

...but keep in mind that you can't use lists, sets, or dicts as keys.

tuple and str keys are still OK!

24

CIS 1100
Dict Operations Python

Fall 2024

University of Pennsylvania

Lots of stuff familiar from lists and sets:

Standard Operations

len() tells you how many elements are present

k in d allows you to check if some key x is in a dict d

for k in d allows you to iterate over the keys of d one-by-one

dicts are unordered, so the iteration order is (sort of) unpredictable

25

Views of the Dictionary Contents
.keys() is a view of the keys in a dict.

.values() is a view of the values in a dict.

.items() is a view of the key-value pairs in a dict (as tuples).

26

recitations = {210 : "Sukya", 211 : "Jared", 212: "Molly", 213: "Adi", 214: "Cedric"}
for key in recitations.keys():
 print(key)

210
211
212
213
214

(Also works the same with for key in recitations:)

Views of the Dictionary Contents

27

recitations = {210 : "Sukya", 211 : "Jared", 212: "Molly", 213: "Adi", 214: "Cedric"}
for value in recitations.values():
 print(value)

Sukya
Jared
Molly
Adi
Cedric

Views of the Dictionary Contents

28

recitations = {210 : "Sukya", 211 : "Jared", 212: "Molly", 213: "Adi", 214: "Cedric"}
for item in recitations.items():
 print(item)

(210, 'Sukya')
(211, 'Jared')
(212, 'Molly')
(213, 'Adi')
(214, 'Cedric')

Views of the Dictionary Contents

29

To add an element to a dict, use the "indexing" ([]) syntax with assignment (=):

faves = {2022: "Things to Come and Go", 2023: "Checkout 19", 2024: "Last Summer in the City"}
faves[2021] = "Gilead"
print(faves)

{2022: 'Things to Come and Go', 2023: 'Checkout 19', 2024: 'Last Summer in the City', 2021: 'Gilead'}

Adding Elements

30

To check the value associated with a key, use the "indexing" syntax:

faves = {2022: "Things to Come and Go", 2023: "Checkout 19", 2024: "Last Summer in the City"}
print(faves[2022])

'Things to Come and Go'

Looking Up Elements

31

If a key is not present, you end up with a KeyError (crash!) when looking for it:

faves = {2022: "Things to Come and Go", 2023: "Checkout 19", 2024: "Last Summer in the City"}
print(faves[1854])

KeyError

Looking Up Elements

32

To update the value associated with a key, reassign it!

faves = {2022: "Things to Come and Go", 2023: "Checkout 19", 2024: "Last Summer in the City"}
faves[2024] = "The Details"
print(faves)

{2022: 'Things to Come and Go', 2023: 'Checkout 19', 2024: 'The Details'}

Updating Elements

33

To remove a key-value pair from a dict, use del :

faves = {2022: "Things to Come and Go", 2023: "Checkout 19", 2024: "Last Summer in the City"}
del faves[2024]
print(faves)

{2022: 'Things to Come and Go', 2023: 'Checkout 19'}

(Leads to KeyError again if you delete a key not present)

Removing Elements

34

CIS 1100
Using Dictionaries Python

Fall 2024

University of Pennsylvania

If I poll the class and get a list of everyone's favorite restaurant,

how can I count how many times each restaurant was named?

Dicts as Counters

35

def get_counts_from_list(faves_list):
 counter = {}
 for restaurant in faves_list:
 if restaurant in counter:
 counter[restaurant] = counter[restaurant] + 1
 else:
 counter[restaurant] = 1
 return counter

Dicts as Counters

36

What were the final counts?

>>> tally = get_counts_from_list(["Han Dynasty", "Tampopo", "Halal Guys", "Tampopo", "Tampopo"])
>>> tally
{'Han Dynasty': 1, 'Tampopo': 3, 'Halal Guys': 1}

Did Goldie get any votes? Tampopo?

>>> "Goldie" in tally
False
>>> "Tampopo" in tally
True
>>> tally["Tampopo"]
3

Dicts as Counters

37

CIS 1100
Dict Comprehensions Python

Fall 2024

University of Pennsylvania

Create dicts with comprehensions exactly the same way

it's done with sets, but specifying key:value pairs:

new_set = {key : value for elem in sequence if condition(elem)}

Dict Comprehensions

38

Get a mapping of the length of each string in a list:

>>> names = ["Harry", "Travis", "Jared", "Adi"]
>>> name_lengths = {name : len(name) for name in names}
>>> name_lengths
{'Harry': 5, 'Travis': 6, 'Jared': 5, 'Adi': 3}

Dict Comprehension

39

	Sets & Dicts
	Learning Objectives

	Sets
	Sets as Unordered Collections
	Set Syntax
	Uniqueness & No Ordering
	Restrictions

	Set Operations
	Standard Collection Operations
	Creating Sets
	Iteration over Sets
	Adding Elements
	Removing Elements
	Removing Elements
	Removing Elements Safely
	Set Operations
	Set Operations
	Set Operations
	Set Relations: Supersets
	Set Relations: Subsets

	Set Comprehensions
	Set Comprehensions
	Set Comprehension

	Dicts
	Dicts as Mappings from Keys to Values
	What is a Mapping?
	Dict Syntax
	Uniqueness & No Ordering
	Restrictions

	Dict Operations
	Standard Operations
	Views of the Dictionary Contents
	Views of the Dictionary Contents
	Views of the Dictionary Contents
	Views of the Dictionary Contents
	Adding Elements
	Looking Up Elements
	Looking Up Elements
	Updating Elements
	Removing Elements

	Using Dictionaries
	Dicts as Counters
	Dicts as Counters
	Dicts as Counters

	Dict Comprehensions
	Dict Comprehensions
	Dict Comprehension

