
CIS 1100
Unit Testing Python

Fall 2024

University of Pennsylvania

Learning Objectives
Be able to write unit tests in Python

Be able to run unit tests in Python

Be able to evaluate unit test output in Python

1

CIS 1100
Why Test Your Code? Python

Fall 2024

University of Pennsylvania

How do we decide if the code we've written is "correct"?

Writing Programs That Are "Correct"

We could just think really hard about what we've written

We could use formal verification techniques to prove our code is correct

We can systematically run our code and see what it does.

adding print statements

submitting code to an autograder and looking at outputs

2

Unit Testing is the process of determining correctness

for individual units of code by writing test cases.

Unit Testing

Units of code: functions, basically

Test cases:

also functions

machinery for automatically determining if a

piece of a program exhibited the correct behavior

3

Why Unit Testing?
Writing functions allows us to develop large programs in small pieces

Easier to formalize correctness for small pieces rather than large programs

functions should have clearly defined purpose and intended behavior

hard to answer "is my Caesar Cipher correct?"

easier to answer "does my string-to-symbol conversion work properly in this case?"

4

Limits of Unit Testing
Our case for "correctness" is only as good as the tests that we write

More units of code more test cases to write

Test cases are functions (code) themselves, which can themselves have bugs!

5

CIS 1100
What is a Unit Test? Python

Fall 2024

University of Pennsylvania

How do we test our code to determine if it’s right?

Recipe for a Unit Test

Identify the INPUT, possibly including any state variables

Generate, manually or through means OUTSIDE of your code an EXPECTED OUTPUT

Execute your code to get an ACTUAL OUTPUT

Compare the expected and actual output

6

Nested conditionals, no comments...

def find_max(a, b, c):
 if a > b:
 if a > c:
 return a
 else:
 return c
 else:
 if b > c:
 return b
 else:
 return a

A Function to Test

7

find_max(a, b, c) is a function that should return the largest of its three inputs.

In both cases: 3

Generating Tests

What is the expected output for find_max when called on inputs 3, 2, 1?

What is the expected output for find_max when called on inputs 1, 2, 3?

8

Test Case #1:

Input = 3, 2, 1 ;

Expected output = 3 ;

Actual output = find_max(3, 2, 1)

Test Case #2:

Input = 1, 2, 3 ;

Expected output = 3 ;

Actual output = find_max(1, 2, 3)

Generating Tests

9

The actual output is always determined by calling the function

on the inputs (e.g. actual = find_max(a, b, c))

Is this a passing or failing test case?

Test Case #1: Input = 3, 2, 1 ; Expected output = 3 ; Actual output = 3

Is this a passing or failing test case?

Test Case #2: Input = 1, 2, 3 ; Expected output = 3 ; Actual output = 1

Evaluating Tests

Test cases pass when the expected and actual outputs match

Test cases fail when the expected and actual outputs differ

10

Is this a passing or failing test case? PASSING!

Test Case #1: Input = 3, 2, 1 ; Expected output = 3 ; Actual output = 3

Is this a passing or failing test case? FAILING!

Test Case #2: Input = 1, 2, 3 ; Expected output = 3 ; Actual output = 1

Evaluating Tests

11

"...they both contribute to my overall poor health.

Also, you can’t have just one." - Will McBurney

One test passing may have no bearing on another test passing! One

test is not enough to decide if your implementation is bug-free.

Testing Is Like Potato Chips...

More tests is better:

more passing tests more positive examples of your success

any failing tests signposts to faults in your code

12

Test 1 does not cover/execute the underlying fault in the code.

Test Case #1: Input = {3,2,1} ; Expected output = 3 ; Actual output = 3
Test Case #2: Input = {1,2,3} ; Expected output = 3 ; Actual output = 1

Why Does This Test Pass While That One Fails?

A fault is a particular defect in the code, or bug.

Test 1 was still important for building confidence that the program works

Test 2 is very important for identifying a bug in the program to fix

13

CIS 1100
Writing Unit Tests in Python Python

Fall 2024

University of Pennsylvania

Python comes with unittest built in

unittest : Our Testing Module

allows us to write unit tests that produce descriptive outputs when passing & failing

comes with machinery for finding & running all unit tests in your project

14

import unittest
import other_module

class TestTextAnalysis(unittest.TestCase):

 def test_upper(self):
 to_modify = "cis" # INPUT
 expected = "CIS" # EXPECTED
 actual = to_modify.upper() # ACTUAL
 self.assertEqual(expected, actual) # ASSERTION

 def test_is_palindrome(self):
 a_palindrome = "racecar"
 expected = True
 actual = other_module.is_palindrome(a_palindrome)
 self.assertEqual(expected, actual)

if __name__ == '__main__':
 unittest.main()

Basic unittest Scaffold

15

Ingredients of unittest Test Suites
A test suite is a collection of unit tests that should all be run together

A test case is a function representing a unit test

i.e. all of the tests that you write for a project

Consists of an input, expected output, and actual output

Includes an assertion statement that asks Python to verify that something is true

16

class TestMyCode(unittest.TestCase): # class as test suite

 def test_one(self): # one individual test case indented within class
 ...

 def test_two(self): # another test case
 ...

Test Suites & Classes
The class is a fixture of object oriented programming

for now, just know to group individual test cases together in a class

all test cases (functions) must have self as their only input

more on this later

i.e. a class can be a test suite

name of class must be followed by (unittest.TestCase)

17

import unittest
import other_module

class TestMyCode(unittest.TestCase):

 def test_one(self):
 ...

 def test_two(self):
 ...

if __name__ == '__main__':
 unittest.main()

Zooming out from the Class

Must import unittest to do unit testing

other_module is a generic name for some other file containing code we want to test

if __name__ ... allows the file containing this test suite to be executed directly
18

Assertions are functions from the unittest module that:

Assertions

verify whether come condition of correctness is true

dictate whether a test passes or fails

help produce useful messages as output when running all tests

19

Kind of Assertion Meaning

self.assertEqual(expected, actual) Test passes when expected == actual

self.assertTrue(result) Test passes when result is True

self.assertIsNone(result) Shorthand for self.assertEqual(None, result)

Assertions

Many more, too, including assertNotEqual , assertFalse , assertIsNotNone ...

Can also include a str as a final argument to provide

a message that should be printed if the test fails

e.g. self.assertTrue(result, "all odd
numbers should produce False value")

20

my_code.py :

def find_max(a, b, c):
 if a > b:
 if a > c:
 return a
 else:
 return c
 else:
 if b > c:
 return b
 else:
 return a

Back to find_max

21

test_my_code.py :

import unittest
import my_code

class TestFindMax(unittest.TestCase):

 def test_find_max_3_2_1(self):
 a, b, c = 3, 2, 1 # Setting inputs
 expected = 3 # Expected output
 actual = my_code.find_max(a, b, c) # Actual output
 self.assertEqual(expected, actual) # Assertion

 def test_find_max_1_2_3(self):
 a, b, c = 1, 2, 3 # Setting inputs
 expected = 3 # Expected output
 actual = my_code.find_max(a, b, c) # Actual output
 self.assertEqual(expected, actual) # Assertion

if __name__ == '__main__':
 unittest.main()

Back to find_max

22

Write python test_my_code.py in the terminal:

codio@equatormaxwell-octobertina:~/workspace$ python test_my_code.py
F.
==
FAIL: test_find_max_1_2_3 (__main__.TestFindMax.test_find_max_1_2_3)
--
Traceback (most recent call last):
 File "/home/codio/workspace/test_my_code.py", line 16, in test_find_max_1_2_3
 self.assertEqual(expected, actual) # Assertion
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError: 3 != 1

--
Ran 2 tests in 0.001s

FAILED (failures=1)

Running Tests

23

Summary:

F.

So:

Understanding the Output

One character per test

. means a passing test

F means a failing test

E (not pictured) means a test that crashed

Two tests were run

one test passed

one test failed

24

Each error or failure will come with a more verbose description of what went wrong:

==
FAIL: test_find_max_1_2_3 (__main__.TestFindMax.test_find_max_1_2_3)
--
Traceback (most recent call last):
 File "/home/codio/workspace/test_my_code.py", line 16, in test_find_max_1_2_3
 self.assertEqual(expected, actual) # Assertion
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
AssertionError: 3 != 1

"test_find_max_1_2_3 failed because we expected 3 but actually got 1 ."

Understanding the Output

25

We know there's an issue where find_max(1, 2, 3) returns 1 instead of 3 ...

def find_max(a, b, c):
 if a > b:
 if a > c:
 return a
 else:
 return c
 else:
 if b > c:
 return b
 else:
 return a

Fixing find_max

26

We know there's an issue where find_max(1, 2, 3) returns 1 instead of 3 ...

def find_max(1, 2, 3):
 if 1 > 2: # skip
 if 1 > 3:
 return 1
 else:
 return 3
 else:
 if 2 > 3: # skip
 return 2
 else: # execute...
 return 1 # uh oh!

Fixing find_max

27

def find_max(a, b, c):
 if a > b:
 if a > c:
 return a
 else:
 return c
 else:
 if b > c:
 return b
 else:
 return c

Fixing find_max

28

codio@equatormaxwell-octobertina:~/workspace$ python test_my_code.py
..
--
Ran 2 tests in 0.000s

OK

Running the Tests Again

Two dots two passing test cases!

OK in the output no failures or errors to report

29

To run all test cases in all test suites in all files with names starting with test , just use:

python -m unittest

Shortcut for Running All Tests

30

I have test_my_code.py (the two tests we've seen) and

test_other_stuff.py (three tests you haven't seen):

codio@equatormaxwell-octobertina:~/workspace$ python -m unittest
..EF.
==
ERROR: test_this_crashes (test_other_stuff.TestOtherStuff.test_this_crashes)
--
Traceback (most recent call last):
 File "/home/codio/workspace/test_other_stuff.py", line 9, in test_this_crashes
 self.assertTrue(33 > "yes") # Assertion
 ^^^^^^^^^^
TypeError: '>' not supported between instances of 'int' and 'str'

==
FAIL: test_this_fails (test_other_stuff.TestOtherStuff.test_this_fails)
--
Traceback (most recent call last):
 File "/home/codio/workspace/test_other_stuff.py", line 12, in test_this_fails
 self.fail()
AssertionError: None

--
Ran 5 tests in 0.002s

FAILED (failures=1, errors=1)

Running All Tests

31

	Unit Testing
	Learning Objectives

	Why Test Your Code?
	Writing Programs That Are "Correct"
	Unit Testing
	Why Unit Testing?
	Limits of Unit Testing

	What is a Unit Test?
	Recipe for a Unit Test
	A Function to Test
	Generating Tests
	Generating Tests
	Evaluating Tests
	Evaluating Tests
	Testing Is Like Potato Chips...
	Why Does This Test Pass While That One Fails?

	Writing Unit Tests in Python
	unittest: Our Testing Module
	Basic unittest Scaffold
	Ingredients of unittest Test Suites
	Test Suites & Classes
	Zooming out from the Class
	Assertions
	Assertions
	Back to find_max
	Back to find_max
	Running Tests
	Understanding the Output
	Understanding the Output
	Fixing find_max
	Fixing find_max
	Fixing find_max
	Running the Tests Again
	Shortcut for Running All Tests
	Running All Tests

