
CIS 1100
Unit Testing Python

Fall 2024

University of Pennsylvania

Note
Admin:
 - exam reminders
 - practice exam posted
 - exam review tonight
 - actual exam time:
 - in-class, you get 1 hour
 - you can't bring in any notes
 - clobber policy

// More like a typical lecture since no check-in
// also no-check-in for next lecture since they have the exam
Review: basic of writing a test
 - reiterate: why is testing important
 - why uinittest over print statements?
 - some starter file "my_problems.py" that has some functions I want to test
 - def most common letter(word)
 - lets write one test together
 - anyone volunteer a word?
 - okay, without looking at the function implementatino, what is the expected output?
 - write the test
 - error messages in the assert

 - can you write another test case that tests something else? (L11)

 - importance of having a wide variety of tests to cover all cases
 - edgecases
 - middle_value() # gets middle value from a list
 - what are some good test cases we can write for this? (C12)

 - more dictionary practice
 - okay, lets write some tests for this!
 - come up 3 cases, write one test (C14)
 - okay, now lets write the code for word_counts (C16)
 - def word_counts(line):
 - dict[key] = value and split may be useful

lists and sets

//////////////////////////////
// next lecture
//////////////////////////////
more dicts practice
reading error messages
debugging
show how to test float values with my_add()

Reminders:
Midterm 1 is coming up: this Wednesday October 9th in Class

No "notes sheet", we will provide an appendix for you of some things

Exam Review session TONIGHT 8:30pm - 10pm in Levine 101 (Wu & Chen Auditorium)

Midterm Clobber Policy: If you don't do as well as you want, you

can get a grade improvement by doing better on the final exam.

1

Any questions?

2

Testing is important to ensure the correctness of your code. Common industry practice

is to write unit tests, you will see this if you keep programming outside of this course.

Why Testing?

Writing functions allows us to develop large programs in small pieces

Easier to formalize correctness for small pieces rather than large programs

functions should have clearly defined purpose and intended behavior

hard to answer "is my Caesar Cipher correct?"

easier to answer "does my string-to-symbol conversion work properly in this case?"

3

Note
Reiterating since there was no check-in and the motivation I think is important. Not always clear to students why this is important

We already were writing "unit tests" of sort in the Caesar homework.

After you completed a function (e.g. encrypt()) we told you to make main() have:

print(encrypt("ET TU, BRUTE?", "G"))

and then we asked you to make sure that it printed

out KZ ZA, HXAZK? when the program was run

This didn't use python's built in unittest, but was made up of the same ingredients:

Intro to Unit Testing

The Input(s): "ET TU, BRUTE?" and "G"

The Expected Output: KZ ZA, HXAZK?

The Actual Output: gotten from running the encrypt function

Compariing the Expected and Actual Output: Having

you look at the output and making sure it looks correct.
4

Consider I have the file my_problems.py which has the following function:

returns the most common letter in the string. Ignores case and return value is upper case.
incase of a tie, returns one of the most common letters. None if string is empty
def most_common_letter(input_string):

Lets write an example test together!

my_problems_tests.py

Example: my_problems.py

5

Note
- Do not show them the implementation of my_problems.py yet
- write the core skeleton of `my_problems_tests.py`
- lets write one test together
 - anyone volunteer a word?
 - okay, without looking at the function implementation, what is the expected output?
 - write the test
 - error messages in the assert
 - use self.assertEqual
 - note that we have all four "ingredients" for a test here
 - demo running the tests

If time, demo here what happens if we have code that is not in main or in any function and we try to import `my_problems`

Given the function we were working on, what are all

the di�erent kinds of input that may be worth testing?

Practice (L11)

6

Note
if time, demo adding these to the my_problems_tests.py

It is important to have a wide variety of tests to cover all cases.

Edge Cases

If we pass a test, we only know it works for those cases (those particular inputs)

Cases that are not tested may not work

We often want to test a variety of inputs and any "edge cases" (cases

that are not common or obvious, but still should be handled correctly)

7

Example: we have a function that takes a string and

we want to test that function. We should probably try:

Edge cases will vary based on what function we are testing. This is

just to try and explain what we mean with di�erent "types" of input.

Edge Cases

Strings of only letters

Strings of odd and even length

the empty string

Strings with various sequences of characters and non-alphabetic characters

etc.

8

Given the following function header and comment, what

are 3 di�erent test cases that may be useful to test?

Can you write a python test for one of those cases?

Returns the middle value of the list.
If the length is even, it returns the second of the two middle values.
if the length is empty, return None
def get_middle_value(input_list):

Practice (C12)

9

Consider the following function header:

Given a string, returns a dictionary that contains all the words (split on whitespace)
mapped onto how many times that word shows up in the string.
def get_word_counts(string):

Come up 3 di�erent test cases, choose one of them and write the python test code for it

Practice (C14)

10

Now that we have written some tests, lets write the function itself.

Sometimes it actually helps to write the tests first, it can help with thinking about all the cases

the code will have to handle.

Given a string, returns a dictionary that contains all the words (split on whitespace)
mapped onto how many times that word shows up in the string.
def get_word_counts(string):

Hint: dict[key] = value and split() may be useful

Practice (C16)

11

If we were able to get similar a�ects by just printing? Why use unittest?

Why use unittest instead of just printing?

Helps keep the code organized: Which stu� is for

testing and which stu� is part of the actual program

Unlike what we did in Caesar, the test can check the output for us

12

Next time
Lecture next time is the midterm exam!

Lecture on Friday will be more on unit testing w/

some Dictionary Practice that will be useful for HW04

Try to show up early / on time so we can make sure you get the full alloted time

13

	Unit Testing
	Reminders:
	Any questions?
	Why Testing?
	Intro to Unit Testing
	Example: my_problems.py
	Practice (L11)
	Edge Cases
	Edge Cases
	Practice (C12)
	Practice (C14)
	Practice (C16)
	Why use unittest instead of just printing?
	Next time

