
CIS 1100
Objects (Using and
starting to make them)!

Python

Fall 2024
University of Pennsylvania

The last day to register to vote in Pennsylvania is TODAY. You have until midnight.
You all have lived here for at least a month

Reminder: Voting

Any US Citizen who has been living in PA for at least
a month prior to the election can register to vote in PA.

You do not have to be registered to vote in the state that you came to Penn from.

By several measures, a vote for president in PA is significantly more impactful than

A vote in nearly any other state. We also have a closeish Senate race.

Not necessarily true for NV, WI

Presidential elections are not the only ones; check your House races, too.

1

Reminders: Late Token
Late tokens have been updated to account for

all lectures (not including today's or Friday's)

The counts in there is the total amount you have earned. At the end of the
semester we will compare this to the amount you used (not calculated yet)

You may want to calculate these and make use of them.

You cannot use late tokens on the last assignment (HW9)

2

Reminders: Exam 2
There will be a second midterm exam in about a week (November 20th)

There is also the final exam

(and the clobber policy)

3

A class in Python is a construct that allows us to

"bundle data and functionality together." *

* From the Python documentation on classes

A class consists of:

Review: What is an object/class?

A class defines a new data type!

Allows instances of that class to be created.

Some attributes (also called fields) that store data

Some functions that operate with these fields
These allow us to create abstractions that are easier to wrap your head around.

4

Yes some of these things could be also achieved from a tuple,

but consider... Which of these is easier to understand the point of:

c = (0.5, 0.5, 0.25)

Review: Class as a tool for abstraction

5

Yes some of this could be also achieved from a tuple, but

consider... Which of these is easier to understand the point of:

c = (0.5, 0.5, 0.25)

c = Circle(x_center = 0.5, y_center = 0.5, radius = 0.25)

Review: Class as a tool for abstraction

6

To build a class, we need to decide which attribute we will include in our abstraction.

Lets say we wanted to make an object that represented a upenn course, what attributes
may we want to store in that class? What types would they be? (L11)

Review: Attributes

7

If we have an object that we want to access the fields of, we can do so using the . operator

travis_fave = Movie("Pink Floyd - The Wall", 1982, 95, "musical drama", "Vimeo", 0.00)
not sure I would recommend it to just anyone, but it is my fave

the_name = travis_fave.name
print(travis_fave.name)
if (travis_fave.length > 120):
 print("TOO LONG")
travis.genre = "surrealist " + travis.genre

(NOTE: we do not use () when accessing fields directly.

() is usually used to indicate some sort of function call)

Review: Syntax

8

Wich of these are (A) method calls, (B) accessing fields, or (C) neither

Practice:

(M1) name.upper()

(M2) my_movie.name

(M3) my_move.price_adjust_inflation(2020)

(M4) penndraw.set_pen_color(penndraw.BLACK)

(M5) len(name)

(M6) number.numerator

9

A variable is like a "box" inside of

which a piece of data is placed.

Variables, Before

10

A variable is a named portion of memory that contains data of a particular type.

Variables do not directly contain data. Instead, data is
stored in a separate portion of the computer's memory.

Instead of storing the data directly, variables of
these types tell us how to find the data elsewhere!

Let's drill down.

Variables, Now

11

References

my_nums = [3]
my_nums.append(2)
my_nums.append(5)

All Types Are
Reference Types

Reference variables do not store simple values directly!

Reference variables store a reference to some object

The object that the reference
refers to is known as its pointee

Literally: an address that describes where the
object is stored in the computer's memory.

12

Some types are designed to be immutable types. string, int, float, bool, tuple*.

Even if we pass a reference to them, we cannot modify them.

number = 5
x = number + 3 # number is not changed, it's value is used as part of a computation
number += 2 # equivalent to number = number + 2, similar to previous line

name = "Nujabes"
name.upper() # does nothing, returns a new string "NUJABES"
name = name.upper() # Reassigns name to a new string

Mutability

13

Lets look at the string a little closer

name = "Nujabes" <-
name.upper() # does nothing, returns a new string "NUJABES"
name = name.upper() # Reassigns name to a new string

Memory Diagram:
Immutable Type

14

Lets look at the string a little closer

name = "Nujabes"
name.upper() <- # does nothing, returns a new string "NUJABES"
name = name.upper() # Reassigns name to a new string

Memory Diagram:
Immutable Type

15

Lets look at the string a little closer

name = "Nujabes"
name.upper() <- # does nothing, returns a new string "NUJABES"
name = name.upper() # Reassigns name to a new string

Memory Diagram:
Immutable Type

16

Lets look at the string a little closer

name = "Nujabes"
name.upper() # does nothing, returns a new string "NUJABES"
name = name.upper() <- # Reassigns name to a new string

Memory Diagram:
Immutable Type

17

References get more tricky when we
start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5] # <-------
 other = my_nums
 func(my_nums)
 other[1] = 1100
 print(my_nums)

References to
Mutable Types

18

References get more tricky when we
start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5]
 other = my_nums # <-------
 func(my_nums)
 other[1] = 1100
 print(my_nums)

References to
Mutable Types

19

References get more tricky when we
start thinking about mutable types.

Consider:

def func(some_list): # <-------
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5]
 other = my_nums
 func(my_nums) # <-------
 other[1] = 1100
 print(my_nums)

References to
Mutable Types

20

References get more tricky when we
start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400) # <-------

def main():
 my_nums = [3, 2, 5]
 other = my_nums
 func(my_nums)
 other[1] = 1100
 print(my_nums)

References to
Mutable Types

21

References get more tricky when we
start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5]
 other = my_nums
 func(my_nums) # <--------
 other[1] = 1100
 print(my_nums)

References to
Mutable Types

22

References get more tricky when we
start thinking about mutable types.

Consider:

def func(some_list):
 some_list.append(2400)

def main():
 my_nums = [3, 2, 5]
 other = my_nums
 func(my_nums)
 other[1] = 1100 # <--------
 print(my_nums)

References to
Mutable Types

23

Given these snippets of code:

what do you think is printed:

S6

def add_five(num):
 num += 5

def main():
 x = 3
 add_five(x)
 print(num)

Practice

24

Given a class called Point with two fields, an x and a y, what gets printed?

(S10)

def main():
 p = Point(x=2024, y=10) # you can assume this works
 not_p = p
 not_p.x = 2015
 p.x += 2

 m = p.y
 m += 1

 print(p.x)
 print(m)
 print(p.y)

Practice

25

If we wanted to make the Point object in the previous slide we would do:

from dataclasses import dataclass

@dataclass # mark the class as a data class
class Point: # Declare a class
 x: int # declare the field names and their types
 y: int

In Python, a dataclass is the simplest kind of class.

Review Data Class

Defined (in most basic case) just by what
properties that members of this class should have.

26

If we want to have a data class with more advanced

type notations, it would look something like this:

from dataclasses import dataclass

@dataclass
class Example:
 x: list[int] # list of integers
 y: dict[str, int] # dictionary, keys are strings, value are ints
 z: tuple[int, int, str] # a tuple of two ints and a string

More advanced type notations

27

(C12) Write a dataclass that represents a Square with three fields:

Practice:

a float to represent the half_width

two more floats to represent the center_x and center_y

a tuple containing three integers to represent the color

28

Next time
More on objects and creating them!

we will exapnd on how to build onto our data class!

We will do some code that is VERY relevant for the next homework (FFF)

29

