Programming Languages
and Techniques
(C1S120)

Lecture 20
October 19t 2015

Wrapping up GUIs; Transition to Java

Announcements

HWO5: GUI programming is available
— Due: THURSDAY OCT. 22 at 11:59:59pm
— Graded manually

e Submission only checks for compilation, no auto tests
* Won’t get scores immediately
* Only LAST submission will be graded

— This project is challenging:
* Requires working with multiple levels of abstraction.
* Managing state in the paint program is a bit tricky.

How far are you on HW 57?

Haven’t started yet

Working on Tasks 1-4 (layout, drawing)
Working on Checkboxes

Working on Something Cool

I’'m done!

LnogS e =

CIS120

Demo: lightswitchdemo.ml

Putting it all together.

lightbulb demo

space label, with border

| NON X\ OCaml graphics
o four]
canvas
Clicking here

makes the “lightbulb” turn on
and changes label text

O O % OCaml graphics
|DFF|QUIT|

_

Clicking again
makes it turn back off

Looking Back...

Course Overview

e Declarative (Functional) programming
— persistent data structures
— recursion is main control structure

— frequent use of functions as data

* |Imperative programming
— mutable data structures (that can be modified “in place”)
— jteration is main control structure

e Object-oriented (and reactive) programming
— mutable data structures / iteration
— heavy use of functions (objects) as data
— pervasive “abstraction by default”

Recap: The Functional Style

Core ideas:

— value-oriented programming

— immutable (persistent / declarative) data structures
— recursion (and iteration) over tree structured data
— functions as data

— generic types for flexibility (i.e. ‘a list)

— abstract types to preserve invariants (i.e. BSTs)

Good for:

— simple, elegant descriptions of complex algorithms and/or data
— parallelism, concurrency, and distribution
— “symbol processing” programs (compilers, theorem provers, etc.)

Language Support for FP

“Functional languages” (OCaml, Standard ML, F#, Haskell,
Scheme, Clojure) promote this style as a default and work

hard to implement it efficiently

“Hybrid languages” (Scala, Python) offer it as one possibility
among others

“Object Oriented” languages (Java, C#, C++, Objective C) favor

a different style by default

— But many common OO idioms and design patterns have a functional
flavor (e.g. the “Visitor” pattern is analogous to transform)

— And most of them are gradually adding features (like anonymous
functions) that make functional-style programming more convenient

— Best practices discourage use of imperative state

Functional programming

OCaml

Immutable lists primitive,
tail recursion

Datatypes and pattern
matching for tree
structured data

First-class functions
Generic types

Abstract types through
module signatures

Java (and C, C++, C#)

No primitive data
structures, no tail recursion

Trees must be encoded by
objects

No first-class functions.*
Must encode first-class
computation with objects

Generic types

Abstract types through
public/private modifiers

*until recently, in Java 8

OCaml

VS. Java

type 'a tree =
| Empty
| Node of ('a tree) * 'a * ('a tree)

let is_empty (t:'a tree) =
begin match t with
| Empty -> true
| Node(_,_,_) -> false
end

let t : int tree = Node(Empty,3,Empty)
let ans : bool = is_empty t

interface Tree<A> {
public boolean isEmpty();
¥
class Empty<A> implements Tree<A> {
public boolean isEmpty() {
return true;
¥

}

class Node<A> implements Tree<A> {
private final A v;
private final Tree<A> 1t;
private final Tree<A> rt;

Node(Tree<A> 1t, A v, Tree<A> rt) {
this.1lt = 1t; this.rt = rt; this.v = v;
}

public boolean isEmpty() {
return false;

¥
¥

class Program {
public static void main(String[] args) {
Tree<Integer> t =
new Node<Integer>(new Empty<Integer>(),
3, new Empty<Integer>());
boolean ans = t.isEmpty(Q);

}
}

Recap: Imperative programming

Core ideas:

— computation as change of state over time

— distinction between primitive and reference values

— aliasing

— linked data-structures and iteration control structure

— generic types for flexibility (i.e. ‘a queue)

— abstract types to preserve invariants (i.e. queue invariant)

Good for:

— numerical simulations

— implicit coordination between components

Imperative programming

OCaml

No null. Partiality must be

made explicit with options.

Code is an expression that
has a value. Sometimes
computing that value has
other effects.

References are immutable
by default, must be
explicitly declared to be
mutable

Java (and C, C++, C#)

Null is contained in (almost)
every type. Partial functions
can return null.

Code is a sequence of
statements that do
something, sometimes
using expressions to
compute values.

References are mutable by
default, must be explicitly
declared to be constant

Recap (and coming): The OO Style

Core ideas:

— objects (state encapsulated with operations)

— classes (“templates” for object creation)

— dynamic dispatch (“receiver” of method call determines behavior)
— subtyping (grouping object types by common functionality)

— inheritance (creating new classes from existing ones)

Good for:

— GUIs!

* and other complex software systems that include many different
implementations of the same “interface” (set of operations) with different
behaviors (cf. widgets)

— Simulations

* designs with an explicit correspondence between “objects” in the
computer and things in the real world

OO programming

OCaml Java (and C, C++, CH)

Primitive notion of object

* Explicitly create objects .

using a record of higher
order functions and hidden
state

Flexibility through

composition: objects can

only implement one

interface

(i.e. button = widget *
label controller *

notifier_controller).

creation (classes, with
fields, methods and
constructors)

Flexibility through
extension:

Subtyping allows related
objects to share a common
interface

(i.e. button <: widget)

Java and OCaml together

Dr. Stephanie Weirich
(teaches CIS 120 in the Spring)

Guy Steele, one of the
principal designers of Java

Xavier Leroy, one of the principal
designers of OCaml

17

Looking Forward

Today: Objects, Classes and Interfaces in Java

CIS120

How comfortable do you feel working with
objects and classes?

I’'m not sure what they are

| get the basics

Fairly comfortable

I’ve done a lot of OO programming

B0 =

CIS120

Do you understand the concept of Dynamic
Dispatch?

1. Never heard of it

2. I've heard of it, but I’'m not sure what it
means

3. Ithink I know what I’'m doing

4. | could implement an OO-language

Smoothing the transition

DON’T PANIC

Ask questions, but don’t worry about the details until you
need them.

Java resources:
— Lecture notes and lecture slides

— Online Java textbook (http://math.hws.edu/javanotes/) linked from
“CIS 120 Resources” on course website

— Penn Library: Electronic access to “Java in a Nutshell” (and all other
O’Reilly books)

— Piazza!

from OCaml to Java

"Objects"

IN

OCaml

(* The type of counter objects *)
type counter = {

inc : unit -> 1int;

dec : unit -> 1int;

}

(* Create a counter "object" with
hidden state: *)
let new_counter () : counter =
let r = {contents = 0} in {
inc = (fun) ->
r.contents <-
r.contents + 1;
r.contents);
dec = (fun O ->
r.contents <-
r.contents - 1;
r.contents)

Why is this an object?

= Fncapsulated local state
only visible to the methods
of the object

= QObjectis defined by what it
can do—Ilocal state does not
appear in the interface

» There is a way to construct
new object values that
behave similarly

Java Objects and Classes

Object: a structured collection of fields (aka instance
variables) and methods

Class: a template for creating objects

The class of an object specifies...
— the types and initial values of its local state (fields)

— the set of operations that can be performed on the object
(methods)

— ohe or more constructors: code that is executed when the
object is created (optional)

Every Java object is an instance of some class

Objects in Java

class declaration

public class Counter { (355 name 4(///’

}

private int r;

public Counter () { onstructor

instance variable

r=0;
}
public int inc O { - thods / object creation and use
r=r + 1;
1 return r; public class Main {
. ublic static void
public int dec O { P main (String[] args) { constructor
r=r -1, invocation
, return r; Counter c = new Counter();
System.out.println(C c.inc());
} method call
¥

