
CIS 120 Final Exam 15 December 2017

SOLUTIONS

1. OCaml: Higher-order Functions and Binary Search Trees (12 points)

Recall the definitions of generic transform and fold functions for lists and the type of binary trees and the
binary search tree insert function, which are all given in Appendix A.

a. (2 points) What value for v1 does the following program compute? (Choose one.)

let v1 : int list = transform (fun x -> x * x) [1; 2; 3]

� [1; 2; 3] � [3; 4; 5] � [1; 4; 9] � [0; 2; 4] � it is ill-typed

b. (2 points) What value for v2 does the following program compute? (Choose one.)

let v2 : int list =
transform (fun f -> f 2) [(fun x -> 0); (fun x -> x); (fun x -> x + x)]

� [0; 1; 2] � [0; 2; 4] � [1; 2; 3] � [2; 4; 6] � it is ill-typed

c. (3 points) There are exactly five different binary search trees whose nodes are labeled by the integers
1, 2, and 3. We have drawn two of them below, using our usual convention of omitting the Empty

constructors. Draw the missing three trees:

tree1 tree2 tree3 tree4 tree5

3 2
/ / \
2 1 3

/
1

d. (5 points) We can create a binary tree by repeatedly inserting nodes into the Empty tree. Conveniently,
the fold function (given in Appendix A) allows us to do exactly that. For example, the program below
produces the tree drawn as tree1 in the picture above.

let list1 : int list = [1;2;3]
let tree1 : int tree = fold insert Empty list1

Which of the following lists could we pass to fold as list2 to construct tree2?

let list2 : int list = ???
let tree2 : int tree = fold insert Empty list2

Mark all that are correct:
� [1;3;2] � [2;3;1] � [2;1;3] � [3;2;1] � [3;1;2]

2

2. Abstraction and Encapsulation (16 points)

Recall the simple example of a stateful “counter” abstraction that supports two operations: inc, which
changes the state, and get which returns an integer that is equal to the number of times that inc has been
previously called. We have seen several ways to achieve this (both in OCaml and Java).

Consider the following OCaml module signature and implementation:

module type COUNTER = sig
type t
val create : unit -> t (∗ C r e a t e s a c o u n t e r t h a t has been i n c r e m e n t e d 0 t i m e s ∗)
val inc : t -> unit (∗ I n c r e m e n t t h e c o u n t e r ∗)
val get : t -> int (∗ Re tu rn t h e number o f t i m e s t h e c t r has been inc ’ d ∗)

end

module C : COUNTER = struct
type t = {mutable ctr : int} (∗ a mutab le r e c o r d c o n t a i n i n g t h e f i e l d c t r ∗)
let create () = {ctr = 0}
let inc (c:t) : unit = c.ctr <- c.ctr + 1
let get (c:t) : int = c.ctr

end

a. (6 points) The OCaml type system enforces the abstraction by rejecting some programs even though
they might yield a well-typed answer when executed by the Abstract Stack Machine. For each of the
following code snippets, classify the program as “well-typed” (in which case it can’t crash), “ill-typed
but safe” (meaning that the ASM would compute a good answer but the program is not type-correct),
or “ill-typed but unsafe” (meaning that the program is ill-typed and the ASM would have to crash
because it tries to perform an operation that is nonsensical, like projecting a field from a value that is
not dynamically a record value.).

i. � well-typed � ill-typed but safe � ill-typed but unsafe

let x : int =
let c = C.create () in
C.inc c;
C.get c

ii. � well-typed � ill-typed but safe � ill-typed but unsafe

let x : int =
let c = C.create () in
(C.inc c).ctr

iii. � well-typed � ill-typed but safe � ill-typed but unsafe

let x : int =
let c = C.create () in
c.ctr

PennKey: 3

b. (5 points) Now consider this Java interface and class definition for a similar Counter type:

interface Counter {
void inc(); / / i n c r e m e n t t h e c o u n t e r
int get(); / / r e t u r n t h e number o f t i m e s t h e c t r has been i n c ’ d

}

class C implements Counter {
public int cnt;
public void inc() { cnt = cnt + 1; }
public int get() { return cnt; }

}

Does this implementation properly enforce the same abstraction that the OCaml version does? If not,
say why and briefly explain how to fix the problem.
No – cnt can be externally modified. Change the public to private for the cnt field.

c. (5 points) Now consider this variant of the counter that uses a much less efficient implementation:

class C2 implements Counter {
private List<Boolean> cnt = new LinkedList<Boolean>();
public void inc() { cnt.add(true); }
public int get() { return cnt.size(); }
public List<Boolean> toList() { return cnt; }

}

Does this implementation properly enforce the same abstraction that the OCaml version does? If not,
say why and briefly explain how to fix the problem.
No – cnt can be externally modified by accessing it via the extra method. The method toList should
return a copy of the cnt.

4

3. Java concepts (16 points)

a. True � False �

In Java, if s and t are values of type String such that s == t evaluates to true, then s.equals(t)

always evaluates to true.

b. True � False �

In Java, if a method includes the code throw new IOException() (where IOException is
a checked/declared exception) the method signature must have a “throws” clause. (e.g.,
public void m1() throws IOException)

c. True � False �

In Java inheritance, every subclass constructor must call a superclass constructor either implicitly or
explicitly.

d. True � False �

In Java, in a given class, it’s possible to have two methods with the same name.

e. True � False �

In Java, consider a class C that implements interfaces A and B. If interfaces A and B have four and
five methods respectively, it’s possible that C has exactly eight methods.

f. True � False �

In Java, if a class overrides equals, it must also override hashCode in a consistent manner.

g. True � False �

In Java, if casting of an object succeeds at compile time (i.e., no compile time errors), it’s guaranteed
to succeed at runtime (i.e., no runtime exceptions).

h. True � False �

In Java, the type List<String> is a subtype of the type List<Object>.

PennKey: 5

4. Java Typing and Dynamic Dispatch (24 points)

This problems uses the Java code shown in Appendix B, which contains an interface and several classes that
might be part of a role playing game.

The following main method has some type annotations omitted–as indicated by the blanks. It can be made
to successfully typecheck (i.e. compile without errors) in more than one way by filling the blanks with
appropriate types.

1 public static void main(String[] args) {
2 __________ sarah = new Person("Sarah");
3 sarah.printGreeting();
4
5 __________ bob = new ShopKeeper("Bob", "potatoes", 10);
6 bob.sell();
7 bob.printGreeting();
8
9 __________ mac = new Mimic(sarah);

10 mac.changePersona(bob);
11 mac.printGreeting();
12
13 __________ eve = new EvilTwin(mac.getName());
14 eve.printGreeting();
15 }

Indicate which types (there may be one or more) can be correctly used for the declarations...

a. (3 points) of the variable sarah on line 2?
� Character � Person � EvilTwin � ShopKeeper � Mimic

b. (3 points) of the variable bob on line 5?
� Character � Person � EvilTwin � ShopKeeper � Mimic

c. (3 points) of the variable mac on line 9?
� Character � Person � EvilTwin � ShopKeeper � Mimic

d. (3 points) of the variable eve on line 13?
� Character � Person � EvilTwin � ShopKeeper � Mimic

e. (8 points) There are four calls to the method printGreeting in the code above. For each call, match it
with the (unique) output that will be printed to the terminal when this program runs. Your choices are listed
below.

line 3: 1 line 7: 4 line 11: 4 line 14: 8

(1) Hello! I am Sarah. (5) Hello! I am Evil Sarah.

(2) Hello! I am Bob. (6) Hello! I am Evil Bob.

(3) Hello! I am Bob. (7) Hello! I am Evil Mimic Sarah.
Would you like to buy some potatoes?
I have 10 in stock. (8) Hello! I am Evil Mimic Bob.

(4) Hello! I am Bob. (9) Hello! I am Evil Mimic Bob.
Would you like to buy some potatoes? Would you like to buy some potatoes?
I have 9 in stock. I have 9 in stock.

6

f. (4 points) Suppose that we add the following two lines of code to the end of the main method given above
(so that they run after all of the previous code).

mac.changePersona(mac);
mac.printGreeting();

What behavior would you expect to see when this call to printGreeting() executes? (Choose one.)

� The program will print:

Hello! I am Bob.
Would you like to buy some potatoes?
I have 9 in stock.

� The program will print:

Hello! I am Mimic Bob.

� The program will print:

Hello! I am Mimic Bob.
Would you like to buy some potatoes?
I have 9 in stock.

� The program will loop, eventually crashing with a StackOverflow exception.

� The program will crash with a NullPointerException.

PennKey: 7

5. Java: Swing and Inner Classes (12 points)

This question refers to the Java code for a variant of the Swing LightBulb program we saw in class. You
can find the code in Appendix C.

a. (3 points) Which line of code defines an anonymous inner class? (Choose one.)
� line 2 � line 7 � line 24 � line 35 � line 52

b. (3 points) Suppose we add the following code at line 45.

JButton button2 = new JButton("On/Off2");
panel.add(button2);
button2.addActionListener(al);

How would this change affect the program behavior? (Choose one.)

� The program would fail to compile (there is a type error).
� The program would compile, but fail with an exception when run.
� The program would compile, and when run would have two buttons. The new button does nothing

when clicked.
� The program would compile, and when run would have two buttons. The new button flips the

bulb state of the same lightbulb as the original button.
� The program would compile, and when run would have two buttons. The new button flips the

bulb state of a new lightbulb, which is not displayed.

c. (6 points) Suppose instead that we add the following method to the GUI class at line 50:

ActionListener makeAL(LightBulb b) {
return e -> { b.flip(); b.repaint(); };

}

Note that this code uses the new Java 8 “lambda” syntax, and the method above will compile. We
could now replace lines 35–41 with the following code that has the same functionality:

ActionListener al = makeAL(bulb);

True � False �

The static type of the object referred to by the variable al is ActionListener.

True � False �

The dynamic type of the object referred to by the variable al when execution reaches the end of the
line above is ActionListener.

True � False �

The object instance referred by the variable al when execution reaches the end of the line above must
contain a field for b.

8

6. Java: Design Problem – Iterators (40 points)

In this problem, you will use the design process to implement a (small) program that can find quotations in
a text file or string. Imagine you had a file with the following contents (excerpt from Charles Dickens’ A
Christmas Carol):

"A merry Christmas, uncle! God save you!" cried
a cheerful voice. It was the voice of Scrooge’s
nephew, who came upon him so quickly that this was
the first intimation he had of his approach.

"Bah!" said Scrooge, "Humbug!"

Our program would find the three quotations: A merry Christmas, uncle! God save you!, Bah!, and Hum-
bug!. Once we have a list of all the quotes, we can do additional things like finding the longest quote in the
text.

Step 1: Understand the problem. There is nothing to do for this step; your answers below will indicate
your understanding.

Step 2: Design the interface. We decide to use Iterators for part of the problem. Similar to the WordScanner
or TokenScanner examples from class and homework, we will create a QuoteScanner that implements the
Iterator interface. The documentation for the Iterator interface can be found in Appendix D.

We will create a class QuoteFinder that uses this QuoteScanner to perform two tasks—to find all quotes in
a book and to find the longest quote given a list of quotes. Overall, we will make the following assumptions
and design decisions:

• Quotes begin and end with a ".

• Quotes can span multiple lines and can be arbitrarily long (i.e., there is no maximum length).

• The file is well-formed and there’s an even number of " in the text.

• For QuoteScanner, the Iterator interface methods will have the following behavior:

– hasNext() - Returns true if there is another quote available; false otherwise.
– next() - Returns the next quote without the beginning and ending ", or throws a

NoSuchElementException if none remain.

• For QuoteFinder, the methods will have the following behavior:

– findAllQuotes() - Returns the list of all quotes in the text passed to the constructor.
– findLongestQuote(List<String> quotes) - Returns the longest quote from the list of quotes,

or throws an IllegalArgumentException if quotes is null or empty.

PennKey: 9

Step 3: Write test cases

Below are several example test cases for the various methods above. (No need to do anything but understand
them.) A few things to note:

• If you use a StringReader, you will need to escape quotes. E.g., if the string you want to test is
They went out, and I howled for Jeeves. "Jeeves! What about it?", you
need to escape the quotes as shown in the first test case.

• The file christmas-carol-small.txt has only the text excerpt shown on the previous page.

@Test
public void testGetNextQuote() throws IOException {

Reader in = new StringReader("They went out, and I howled for Jeeves."
+ "\"Jeeves! What about it?\"");

QuoteScanner d = new QuoteScanner(in);
try {

assertTrue("has next", d.hasNext());
assertEquals("Jeeves! What about it?", d.next());

assertFalse("reached end of stream", d.hasNext());
} finally {

in.close();
}

}

/∗ ∗
∗ Finds q u o t e s i n a f i l e
∗ @param f i l e The f i l e n a m e t o read
∗ /
public static List<String> findQuotesInFile(String file) throws IOException {

Reader in = new BufferedReader(new FileReader(file));
QuoteFinder qf = new QuoteFinder(in);

List<String> quotes = qf.findAllQuotes();
in.close();

return quotes;
}

@Test
public void testSimpleQuotes() throws IOException {

List<String> quotes = findQuotesInFile("files/christmas-carol-small.txt");
assertEquals("Excerpt has 3 quotes", 3, quotes.size());

}

10

(16 points) You will now write several test cases for the methods described above.

Write four JUnit tests for the program described above. Two of these tests should be for the QuoteScanner

class and two of the tests should be for the QuoteFinder class. The first one you provide should test
exceptional circumstances. The four tests should test distinct parts of the functionality and should have
descriptive test names.
@Test(expected=IllegalArgumentException.class)
public void testNoLongestQuote() throws IOException {

QuoteFinder qf = new QuoteFinder(null);
String longest = qf.findLongestQuote(null);

}

@Test
public void testLongestQuote() throws IOException {

Reader in = new BufferedReader(
new FileReader("files/christmas-carol-small.txt"));

QuoteFinder qf = new QuoteFinder(in);

List<String> quotes = qf.findAllQuotes();
String longest = qf.findLongestQuote(quotes);
assertEquals("longest quote", longest,

"A merry Christmas, uncle! God save you!");

in.close();
}

@Test
public void testQuoteAtStart() throws IOException {

Reader in = new StringReader("\"Off with her head!\" the Queen shouted "
+ "at the top of her voice. Nobody moved.");

QuoteScanner d = new QuoteScanner(in);
try {

assertTrue("has next", d.hasNext());
assertEquals("Off with her head!", d.next());

} finally {
in.close();

}
}

@Test
public void testMultipleQuotes() throws IOException {

Reader in = new StringReader("\"Because you fell in love!\" growled Scrooge,"
+ " as if\r\n that were the only one thing in the world"
+ "more ridiculous \r\n than a merry Christmas. \"Good afternoon!\"");

QuoteScanner d = new QuoteScanner(in);
try {

assertTrue("has next", d.hasNext());
assertEquals("Because you fell in love!", d.next());

assertTrue("has next", d.hasNext());
assertEquals("Good afternoon!", d.next());

assertFalse("reached end of stream", d.hasNext());
} finally {

in.close();
}

}

PennKey: 11

Step 4: Implement the behavior

a. (18 points) Finally, you will now implement the behavior of these classes. First up, QuoteScanner.
We have provided an incomplete implementation below. Fill out the missing pieces so that all the
relevant tests from the previous section pass. The relevant parts of the Iterator and List interface
and Reader class are shown in Appendix D.
/∗ ∗ P r o v i d e s a Quote I t e r a t o r f o r a g i v e n Reader . ∗ /
public class QuoteScanner implements Iterator<String> {

private Reader in;
private String quote;
/∗ ∗
∗ C r e a t e s a QuoteScanner f o r t h e argued Reader .
∗
∗ As an I t e r a t o r , t h e QuoteScanner s h o u l d o n l y read from t h e Reader as much as i s n e c e s s a r y t o
∗ d e t e r m i n e hasNex t () and n e x t () . The QuoteScanner s h o u l d NOT read t h e e n t i r e s t r ea m and compute
∗ a l l o f t h e t o k e n s i n advance .
∗
∗ @param i n The s o u r c e Reader f o r c h a r a c t e r da ta
∗ @throws I l l e g a l A r g u m e n t E x c e p t i o n I f t h e argued Reader i s n u l l
∗ /

public QuoteScanner(java.io.Reader in) {
if (in == null) {

throw new IllegalArgumentException();
}
this.in = new BufferedReader(in);
skipNonQuotes();

}

/∗ ∗
∗ I n v a r i a n t : I f t h e r e are no more quo te s , q u o t e i s n u l l , e l s e i t c o n t a i n s t h e n e x t q u o t e
∗ /

private void skipNonQuotes() {
try {

int c = in.read();
while (c != -1 && c != ’\"’) {

c = in.read();
}
/ / s k i p b e g i n n i n g q u o t e and s e t c t o f i r s t a c t u a l l e t t e r
c = in.read();

if (c == -1) {
quote = null;
return;

}

String answer = "";
while (c != ’\"’) {

answer += (char) c;
c = in.read();

}
quote = answer;

} catch (IOException e) {
quote = null;

}
}

12

/∗ ∗
∗ D e t e r m i n e s whe ther t h e r e i s a n o t h e r q u o t e a v a i l a b l e .
∗ We use t h e i n v a r i a n t d e s c r i b e d above here .
∗ @return t r u e i f t h e r e i s a n o t h e r q u o t e a v a i l a b l e
∗ /

public boolean hasNext() {
return (quote != null);

}

/∗ ∗
∗ R e t u r n s t h e n e x t q u o t e w i t h o u t t h e b e g i n n i n g and end in g ” , or
∗ t h rows a NoSuchElemen tExcep t ion i f none remain .
∗ @return The n e x t q u o t e i f one e x i s t s
∗ @throws NoSuchElemen tExcep t ion When t h e end o f s t r e am i s reached
∗ /

public String next() {
if (!hasNext()) {

throw new NoSuchElementException();
}

String answer = new String(quote);
skipNonQuotes();

return answer;
}

/∗ ∗
∗ We don ’ t s u p p o r t t h i s f u n c t i o n a l i t y w i t h QuoteScanner , b u t s i n c e t h e method i s r e q u i r e d when
∗ i m p l e m e n t i n g I t e r a t o r , we j u s t <code>throw new U n s u p p o r t e d O p e r a t i o n E x c e p t i o n () ; < / code>
∗
∗ @throws U n s u p p o r t e d O p e r a t i o n E x c e p t i o n S i n c e we do n o t s u p p o r t t h i s f u n c t i o n a l i t y
∗ /

public void remove() {
throw new UnsupportedOperationException();

}
}

PennKey: 13

b. (6 points) Lastly, you will implement QuoteFinder. We have provided an incomplete implementation
below. Fill out the missing pieces so that all the relevant tests from the previous section pass. (You can
ignore the import statements.)

/∗∗
∗ Find quotes from a given Reader
∗/
public class QuoteFinder {

private QuoteScanner qs;

/∗∗
∗ Creates a QuoteScanner from the argued Reader
∗ @param in the piece to text to look for quotes
∗/
public QuoteFinder(Reader in) {

qs = new QuoteScanner(in);
}

/∗∗
∗ Finds all quotes in a piece of text
∗ It will use the Reader passed to the constructor as the source of text
∗ @return a list of quotes
∗/
public List<String> findAllQuotes() {

List<String> quotes = new ArrayList<String>();

while(qs.hasNext()) {
quotes.add(qs.next());

}

return quotes;
}

/∗∗
∗ This method will find the longest quote in the list of quotes provided .
∗ If there are multiple quotes tied for longest , it returns the first one.
∗ It should ∗not∗ read contents from the text again.
∗ @param quotes the list of quotes
∗ @return the longest quote
∗ @throws IllegalArgumentException if the argument is null or empty
∗/
public String findLongestQuote(List<String> quotes) {

if (quotes == null || quotes.size() == 0) {
throw new IllegalArgumentException();

}
String longest = "";
int length = -1;

for (String quote : quotes) {
if (quote.length() > length) {

length = quote.length();
longest = quote;

}
}
return longest;

}
}

14

Appendix

Do not write answers in this portion of the exam. (But feel free to use it as scratch paper.)

Do not open until the exam begins.

0

A OCaml Code

Binary Trees

(∗ The type of generic binary trees . ∗)
type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

(∗ Inserts node n into binary search tree t . ∗)
(∗ Assumes that t is a binary search tree . ∗)
let rec insert (n:’a) (t:’a tree) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->
if x = n then t
else if n < x then Node (insert n lt, x, rt)
else Node(lt, x, insert n rt)

end

Higher-order Functions: Transform and Fold

let rec transform (f: ’a -> ’b) (l: ’a list): ’b list =
begin match l with
| [] -> []
| hd :: tl -> (f hd) :: (transform f tl)
end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| hd :: tl -> combine hd (fold combine base tl)
end

1

B Java Code for Characters

interface Character {
public String getName();
public void printGreeting();

}

class Person implements Character {
private String name;
public Person(String name) { this.name = name; }
public String getName() { return name; }
public void printGreeting() {

System.out.println("Hello! I am " + getName() + ".");
}

}

class EvilTwin extends Person {
public EvilTwin(String name) { super(name); }
@Override
public String getName() { return "Evil " + super.getName(); }

}

class ShopKeeper extends Person {
private String wares;
private int supply;
public ShopKeeper(String name, String wares, int supply) {

super(name);
this.wares = wares;
this.supply = supply;

}

public boolean sell() {
if (supply > 0) {

supply = supply - 1;
return true;

}
return false;

}

@Override
public void printGreeting() {

super.printGreeting();
if (supply > 0) {

System.out.println("Would you like to buy some " + wares + "?");
System.out.println("I have " + supply + " in stock.");

}
}

}

class Mimic implements Character {
private Character c;
public Mimic(Character c) { this.c = c; }
public void changePersona(Character c) { this.c = c; }
public Character getPersona() { return c; }
public String getName() { return ("Mimic " + c.getName()); }
public void printGreeting() { c.printGreeting(); }

}

2

C Java GUI Code

1 /∗ A Swing v e r s i o n o f t h e L i g h t b u l b GUI program ∗ /
2 class LightBulb extends JComponent {
3
4 private boolean isOn = false;
5 public void flip() { isOn = !isOn; }
6
7 @Override
8 public void paintComponent(Graphics gc) {
9 / / d i s p l a y t h e l i g h t bu lb here

10 if (isOn) {
11 gc.setColor(Color.YELLOW);
12 } else {
13 gc.setColor(Color.BLACK);
14 }
15 gc.fillRect(0, 0, 100, 100);
16 }
17
18 @Override
19 public Dimension getPreferredSize() {
20 return new Dimension(100,100);
21 }
22 }
23
24 public class GUI implements Runnable {
25 public void run() {
26 JFrame frame = new JFrame("On/Off Switch");
27
28 / / Cr ea t e a p a n e l t o s t o r e t h e two components
29 / / and make t h i s p a n e l t h e c o n t e n t P a n e o f t h e frame
30 JPanel panel = new JPanel();
31 frame.getContentPane().add(panel);
32
33 LightBulb bulb = new LightBulb();
34 panel.add(bulb);
35 ActionListener al = new ActionListener() {
36 @Override
37 public void actionPerformed(ActionEvent e) {
38 bulb.flip();
39 bulb.repaint();
40 }
41 };
42 JButton button1 = new JButton("On/Off");
43 panel.add(button1);
44 button1.addActionListener(al);
45
46 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
47 frame.pack();
48 frame.setVisible(true);
49 }
50
51 public static void main(String[] args) {
52 SwingUtilities.invokeLater(new GUI());
53 }
54 }

3

D Iterator documentation

• public interface Iterator<E>

Type Parameters:

– E - the type of elements returned by this iterator

Methods:

– boolean hasNext()

Returns true if the iteration has more elements. (In other words, returns true if next() would return an
element rather than throwing an exception.)
Returns: true if the iteration has more elements.

– E next()

Returns the next element in the iteration.
Returns: the next element in the iteration.
Throws: NoSuchElementException - if the iteration has no more elements.

• public interface List<E>

Type Parameters:

– E - the type of elements in this list

Methods:

– boolean add(E e)

Appends the specified element to the end of this list.
Returns: true if this collection changed as a result of the call.

– int size()

Returns the number of elements in this list.
Returns: the number of elements in this list.

• public class Reader

Methods:

– int read() throws IOException

Reads a single character.
Returns: The character read, as an integer in the range 0 to 65535, or -1 if the end of the stream has
been reached.
Throws: An IOException if an IO error occurs.

4

