
CIS 120 Final Exam May 6, 2019

Name (printed):

Pennkey (letters, not numbers):

My signature below certifies that I have complied with the University of Pennsylvania’s Code of Aca-
demic Integrity in completing this examination.

Signature: Date:

• Please wait to begin the exam until you are told it is time.

• There are 120 total points. The exam period is 120 minutes long. (You do the
math.)

• There are 16 pages in this exam.

• Before beginning, please write your name and Pennkey on the bottom of every
odd-numbered page so that we can reassemble your exam if the staple fails.

• There is a separate appendix for reference. Answers written in the appendix
will not be graded.

• Good luck!

1

1. Higher-Order Programming in OCaml (12 points) Please refer to the OCaml function definitions in
Appendix A (most should already be familiar, but you may not recognize id or compose). Then fill in the
blanks to make the following assertions successfully pass, where assertEq is defined like this:

let assertEq (msg:string) (actual: ’a) (expected: ’a) : unit =
run_test msg (fun () -> actual = expected)

For example, this assertion will pass:

assertEq "sample" (transform id [1;2;3;4])
[1;2;3;4]

(a) assertEq "a" (fold (fun x acc -> 0 :: acc) [] [1;2;3;4])

(b) assertEq "b" (transform (fun x -> x * 2) (filter (fun x -> x > 2) [1;2;3;4]))

(c) assertEq "c" (transform reverse [[1;2];[3;4]])

(d) assertEq "d" (compose reverse reverse [1;2;3;4])

(e) assertEq "e" (reverse (fold (fun x acc -> x :: x :: acc) [] [1;2;3;4]))

(f) assertEq "f" (fold (fun x (acc1,acc2) -> (x && acc1, x || acc2))
(true,false)
[true;true;false;true])

2

2. Java Exceptions (8 points) The code below defines three methods, m1, m2, and m3, that throw and catch
exceptions ExnA and ExnB (two newly declared runtime exceptions that have no relationship with each other).
If we start with a call to m1(), some of the calls to System.out.println will get executed, while others
will not. Please mark the appropriate box next to each of these calls to indicate whether the corresponding
string will or will not get printed (i.e., put an X inside the � before either Printed or Not printed).

class ExnA extends RuntimeException { }
class ExnB extends RuntimeException { }

static void m1() {
System.out.println("begin m1"); / / � P r i n t e d � Not p r i n t e d
try {

System.out.println("calling m2"); / / � P r i n t e d � Not p r i n t e d
m2();
System.out.println("returned from m2"); / / � P r i n t e d � Not p r i n t e d

} catch (ExnA e) {
System.out.println("m1 caught ExnA"); / / � P r i n t e d � Not p r i n t e d

} catch (ExnB e) {
System.out.println("m1 caught ExnB"); / / � P r i n t e d � Not p r i n t e d

}
System.out.println("end m1"); / / � P r i n t e d � Not p r i n t e d

}

static void m2() {
System.out.println("begin m2"); / / � P r i n t e d � Not p r i n t e d
try {

System.out.println("calling m3"); / / � P r i n t e d � Not p r i n t e d
m3();
System.out.println("returned from m3"); / / � P r i n t e d � Not p r i n t e d

} catch (ExnA e) {
System.out.println("m2 caught ExnA"); / / � P r i n t e d � Not p r i n t e d
System.out.println("about to throw ExnB"); / / � P r i n t e d � Not p r i n t e d
throw new ExnB();

} catch (ExnB e) {
System.out.println("m2 caught ExnB"); / / � P r i n t e d � Not p r i n t e d

}
System.out.println("end m2"); / / � P r i n t e d � Not p r i n t e d

}

static void m3() {
System.out.println("begin m3"); / / � P r i n t e d � Not p r i n t e d
try {

System.out.println("about to throw ExnA"); / / � P r i n t e d � Not p r i n t e d
throw new ExnA();

} catch (ExnB e) {
System.out.println("m3 caught ExnB"); / / � P r i n t e d � Not p r i n t e d

}
System.out.println("end m3"); / / � P r i n t e d � Not p r i n t e d

}

PennKey (letters, not numbers): 3

3. Java Concepts (12 points total) Consider the following Java class:

public class Student {
private int id;
private String name;
private String major;

public Student(int id, String name, String major) {
this.id = id;
this.name = name;
this.major = major;

}
}

(a) (3 points) Will the following test pass?

import java.util.LinkedList;

@Test
public void test1() {

LinkedList<Student> l = new LinkedList<Student>();
l.add(new Student(1610, "Yakkety Yak", "CSCI"));
assertTrue(l.contains(new Student(1610, "Yakkety Yak", "CSCI")));

}

� Yes � No

If you answered No, briefly explain how you would modify the Student class (not test1 itself!) to pass
test1? (Just explain in words—no need to write the code.)

(b) (3 points) Will the following code compile?

import java.util.TreeSet;

@Test
public void test2() {

TreeSet<Student> s = new TreeSet<Student>();
s.add(new Student(606, "Dapper Drake", "MSE"));

}

� Yes � No

If you answered No, how would you modify the Student class (again, not the test) to make the code
compile?

4

For the problems on this page, please mark all answers that apply.

(c) (2 points) The repaint method in Swing is used to ...

� perform low-level drawing operations to update the appearance of some portion of the screen
� notify the Swing framework that some portion of the screen needs to be updated
� quickly update the appearance of some portion of the screen to support real-time animation

(d) (2 points) What is the relation between the static type and the dynamic class of a Java expression?

� The dynamic class will always be a subtype of the static type
� The static type will always be a subtype of the dynamic class
� An expression only has one static type, but its dynamic class can be different at different points during

a program’s execution

(e) (2 points) A cast expression (T)e in Java...

� checks that the static type of e is exactly T

� produces a result whose static type is exactly T (if it compiles at all)
� inserts a runtime check on the dynamic class of e

(f) (2 points) In order for a subclass to override a method from its superclass, it must...

� invoke super at the beginning of the overriding method
� take arguments that are subtypes of the corresponding arguments to the superclass method
� take arguments that have exactly the same types as the corresponding arguments to the superclass

method

(g) (2 points) The term garbage collection refers to ...

� Refactoring a program to remove unused code
� Rebuilding a Map data structure to improve its efficiency
� Scanning the Java heap to reclaim objects that can no longer be accessed by the program

(h) (2 points) What is a hash collision?

� The case where two or more keys “hash” to the same “bucket” in a HashSet or HashMap collection
� A runtime error caused by different threads accessing the same element of a HashMap at the same time
� A bug caused by multiple programmers attempting to modify the same project component

PennKey (letters, not numbers): 5

4. OCaml Objects vs. Java Objects (26 points total) The standard Java interface Iterator<A>

interface Iterator<A> {
A next();
boolean hasNext();

}

corresponds to this OCaml type:

type ’a iterator = {
next : unit -> ’a;
hasNext : unit -> bool;

}

(a) (6 points) Here is an OCaml function iforall, which tests whether some boolean predicate test

returns true on every element of a list:

let rec iforall (i : ’a iterator) (test : ’a -> bool) =
if i.hasNext() then

let x = i.next() in
test x && iforall i test

else true

To translate this predicate into Java, we first need a way of representing testing functions. For this, we
introduce the following interface (a simplified version of the one in Java’s java.util.function library):

interface Predicate<A> {
boolean test(A arg);

}

For example, here is a specific Predicate that tests whether its String argument is longer than two charac-
ters:

class LongStringPredicate implements Predicate<String> {
public boolean test(String x) {

return (x != null && x.length() > 2);
};

}

(There is nothing to write on this page.)

6

Fill in the blank in the following Java definition of iforall. (The first <A> in the header line intro-
duces the generic type parameter A; overall, the method header says that, when iforall is called, its two
parameters, i and pred, must share the same element type type A, just as in the OCaml version.)

static <A> boolean iforall (Iterator<A> i, Predicate<A> pred) {

}

PennKey (letters, not numbers): 7

(b) (20 points) See Appendix B for instructions, then fill in the blanks below.

class FilterIterator<A> implements Iterator<A> {
/ / F i e l d d e c l a r a t i o n s go here :

private void findNext() {

}

public FilterIterator(Iterator<A> b, Predicate<A> p) {

}

public boolean hasNext() {

}

public A next() {

}
}

8

5. Java Programming with Collections (36 points total) A bag (sometimes also called a multiset) is an
unordered collection of values that permits duplicates. Intuitively, a bag is a set that can contain multiple
occurrences of the same element. For example, using set-like notation, we might write the bag containing
two ’1’s and one ’2’ as {1, 1, 2} or equivalently as {1, 2, 1} or {2, 1, 1}.

In this problem, you will use the design process to implement (some parts of) a Java Bag<E> class.

Step 1 (Understand the problem) There is nothing to write for this step; your answers below will
indicate your understanding.

Step 2 (Determine the interface) A Bag<E> object implements the Collection<E> interface, the rele-
vant parts of which are given in Appendix C.

In addition to the standard collection methods, a bag object provides a method called getCount(E e),
which returns a non-negative integer indicating the number of times the element e occurs in the multiset.

Step 3 (Write test cases) Below are several example test cases for the add, size, and contains methods
of the Bag<E> implementation. (No need to do anything but understand them.)

@Test
public void sizeEmpty() {

Bag<Integer> b = new Bag<Integer>();
assertEquals(0, b.size());

}

@Test
public void size1() {

Bag<Integer> b = new Bag<Integer>();
b.add(1);
assertEquals(1, b.size());

}

@Test
public void size11() {

Bag<Integer> b = new Bag<Integer>();
b.add(1);
b.add(1);
assertEquals(2, b.size());

}

@Test
public void containsEmpty() {

Bag<Integer> b = new Bag<Integer>();
assertFalse(b.contains(1));

}

@Test
public void contains1() {

Bag<Integer> b = new Bag<Integer>();
b.add(1);
assertTrue(b.contains(1));

}

(There is nothing to write on this page.)

PennKey (letters, not numbers): 9

(a) (5 points) Complete these three distinct tests cases for the remove method by filling in the blank with
either True or False indicating whether the assertion should succeed or fail:

@Test
public void removeEmpty() {

Bag<Integer> b = new Bag<Integer>();

assert___________(b.remove(1));
}

@Test
public void removeA() {

Bag<Integer> b = new Bag<Integer>();
b.add(1);

assert___________(b.remove(1));

assert___________(b.contains(1));
}

@Test
public void removeB() {

Bag<Integer> b = new Bag<Integer>();
b.add(1);
b.add(1);

assert___________(b.remove(1));

assert___________(b.contains(1));
}

(b) (4 points) Now complete this test case by filling in the blanks so that the test case should succeed.
Remember that b.getCount(e) should returns a non-negative integer indicating the number of times the
element e occurs in b.

@Test
public void countTest() {

Bag<Integer> b = new Bag<Integer>();

b.add(_____);

b.add(_____);
assertEquals(1, b.getCount(1));
assertEquals(1, b.getCount(2));

b.add(_____);

b.remove(_____);
assertEquals(2, b.getCount(1));
assertEquals(3, b.size());

}

10

Step 4 (Implementation) To implement the Bag<E> class, we must decide how to represent the collec-
tion using basic data structures, plus appropriate invariants. Here, we choose to represent the internal state
of the Bag<E> class using an object that implements Map<E,Integer>. The idea is to associate with each
element e a count of the number of times that e occurs in the bag. (Appendix D describes the Map interface.)

Let’s introduce the notation [k1 7→ v1 . . . kn 7→ vn] as shorthand for a Map<K,V> object m such that
m.get(ki) returns vi. For example, we could write

["a" 7→ 2, "b" 7→ 1]

for the Map<String,Integer> object m obtained by doing:

Map<String,Integer> m = new TreeMap<String,Integer>();
m.put("a", 2);
m.put("b", 1);

This object m would be a suitable representation of the bag {"a", "a", "b"}, with two “a”s and one “b”.

To conveniently implement the size() method required by Collection<E>, we will also keep track of
a size field as part of the bag implementation. We thus arrive at this partial implementation the bag class:

public class Bag<E> implements Collection<E> {
private Map<E,Integer> bag; / / r e p r e s e n t a t i o n
private int size; / / number o f e l e m e n t s

public Bag() {
bag = new TreeMap<E,Integer>();
size = 0;

}

@Override
public int size() {

return size;
}

@Override
public boolean isEmpty() {

return size == 0;
}

/ / c o n t i n u e d

(There are no questions on this page.)

PennKey (letters, not numbers): 11

However, not every bag object of type Map<E,Integer> is a good representation; for example there
should never be a negative number of any element in the bag, so we need an invariant to rule out such
incorrect maps. Which invariant we choose will affect the difficulty of implementing the methods of the
class.

Here are two possible invariants that we might use to rule out invalid maps:

INV1: If bag.containsKey(e) then bag.get(e) ≥ 0.

INV2: If bag.containsKey(e) then bag.get(e) > 0.

(c) (2 points) Which of these invariants is assumed by the following implementation of the contains

operation for Bags?

@Override
public boolean contains(Object o) {

return bag.containsKey(o);
}

� only INV1 � only INV2 � it works with both INV1 and INV2

(d) (2 points) Which of these invariants is assumed by the following implementation of getCount?

public int getCount(E e) {
if (bag.containsKey(e)) {

return bag.get(e);
} else {

return 0;
}

}

� only INV1 � only INV2 � it works with both INV1 and INV2

(e) (3 points) Now consider implementing the equals method for the Bag<E> class: two bags should be
considered equal if, for every element e, they contain the same number of occurrences of e. One of the two
invariants INV1 or INV2 makes it much simpler to implement the equals method. Briefly(!) explain which
one and why:

(f) (2 points) Our Bag implementation must also maintain an appropriate relationship between the size

field and the bag map. Which of the following invariants correctly expresses that relationship? (Mark one)
� If bag is the map [k1 7→ v1, . . . , kn 7→ vn] then size = v1 + ...+ vn.
� If bag is the map [k1 7→ v1, . . . , kn 7→ vn] then size = k1 + ...+ kn.

12

Next, consider the following (buggy but almost correct!) implementation of the add method.

@Override
public boolean add(E e) {

if (bag.containsKey(e)) {
Integer count = bag.get(e);
bag.put(e, count+1);

} else {
bag.put(e,1);
size++;

}
return true;

}

(g) (2 points) One of the example test cases that we provided fails with this implementation of add. Which
one? (The other methods are correct and their code is as shown earlier.)

� sizeEmpty � size1 � size11 � containsEmpty � contains1

(h) (3 points) In one sentence, describe how to fix the bug:

PennKey (letters, not numbers): 13

(i) (13 points) Now implement the remove method, the Javadocs for which are:

boolean remove(Object o)

Removes a single instance of the specified element from this collection, if it is present. Re-
turns true if this collection contained the specified element (or equivalently, if this collection
changed as a result of the call) and false otherwise.

Use representation invariant INV2 and the size invariant indicated above. Make sure that your implemen-
tation passes the test cases. We have reproduced the class declaration and fields here so that you can see
them when writing this code. Hint: pay careful attention to the types, as you will need to use a type cast at
some point.

public class Bag<E> implements Collection<E> {
private Map<E,Integer> bag; / / r e p r e s e n t a t i o n
private int size; / / number o f e l e m e n t s

@Override
public boolean remove(Object o) {

}

14

6. Java Array Programming (20 points) Suppose we have a two-dimensional array where each cell is
filled with an element of the following enumerated type:

public enum Agent {
A, / / Agent t y p e A
B, / / Agent t y p e B
NONE / / Empty c e l l

}

The values A and B represent two different types of “agents”, while NONE represents an empty cell.

We would like to know whether the agent in some given cell is satisfied with its neighbors, using the
following rule:

• An agent is satisfied if at least as many of the cells adjacent to it (horizontally, vertically, or diagonally)
are occupied by agents of the same type as are occupied by agents of the other type. That is, if the
surrounding cells contain d agents of the other type and s agents of the same type, then this agent is
satisfied as long as s ≥ d.

For example, given this arrangement of agents...

0 1 2 3
0 NONE NONE B NONE
1 NONE A B A
2 NONE NONE A B
3 A NONE NONE A

... the three agents printed in bold are all satisfied. For example, the A agent in the bottom right corner,
location (3, 3), is satisfied because it has one neighbor of type A and one of type B, and the A agent at
location (3, 0) is also satisfied because it has no neighbors of either type. On the other hand, the A agent at
location (1, 1) is not satisfied because it has two neighbors of type B and only one of type A, and the B agent
at location (0, 2) is also not satisfied because it has two neighbors of type A and only one of type B.

On the next page, please fill in the missing body of the method satisfied, which takes an array agents

and two integer coordinates row and col and returns true if the agent at position agents[row][col] is
satisfied.

If you need more space (e.g., for a helper method), you can use the blank page at the end of the exam.
If you do this, make sure to leave a clear note telling us where to look for the extra material.

You may assume that the given coordinates will be within the bounds of the given array, that the given
array contains either A or B (not NONE) at the given position, and that the given array is rectangular (every
row has the same number of columns) and not empty.

Your solution should correctly handle the “boundary cases” where either row or col are just barely
within the bounds of the array (i.e., exactly on the edge).

(There is nothing to write on this page.)

PennKey (letters, not numbers): 15

public enum Agent {
A, / / Agent t y p e A
B, / / Agent t y p e B
NONE / / Empty c e l l

}

public static boolean satisfied (Agent[][] agents, int row, int col) {
int height = agents.length;
int width = agents[0].length;

}

16

Feel free to use this page as scratch paper. (If you write anything here that you want us to grade, make
sure you clearly indicate this on the corresponding page earlier in the exam.)

PennKey (letters, not numbers): 17

18

CIS 120 Final Exam — Appendices

A Higher-Order Functions for Problem 1

let rec transform (f: ’a -> ’b) (lst: ’a list): ’b list =
begin match lst with

| [] -> []
| h :: t -> (f h) :: (transform f t)

end

let rec fold (combine: ’a -> ’b -> ’b) (base:’b) (lst : ’a list) : ’b =
begin match lst with

| [] -> base
| h :: t -> combine h (fold combine base t)

end

let rec filter (f:’a -> bool) (lst:’a list) : ’a list =
begin match lst with

| [] -> []
| x::xs -> if f x then x :: (filter f xs) else (filter f xs)

end

let reverse (l: ’a list) : ’a list =
fold (fun x rest -> rest @ [x]) [] l

let id (x: ’a) : ’a = x

let compose (f: ’b -> ’c) (g: ’a -> ’b) : (’a -> ’c) =
fun (a: ’a) -> f (g a)

1

B OCaml Iterator Code for Problem 4b

For a more interesting challenge, suppose we want to build a Java class FilterIterator that expresses the
functionality of the OCaml definition found in Appendix B.

Here is an OCaml definition of an “iterator filter” object:

let filterIterator (base: ’a iterator) (test: ’a -> bool) : ’a iterator =
let current = ref None in
let rec findNext () =

if base.hasNext() then
(let x = base.next() in
current := Some x;
if test x then () else findNext())

else
(current := None;
()) in

findNext();
{

hasNext = (fun () -> (!current <> None));
next = (fun () -> begin match !current with

| None -> assert false
| Some(x) -> findNext(); x

end)
}

That is, given an iterator base and a testing function test, the expression

filterIterator base test

yields an iterator that produces just those elements from base for which test returns true. For example, if
someStrings is a string iterator that produces "a", "foo", "", and "bar", then

filterIterator someStrings (fun s -> String.length s > 1)

is an iterator that produces just "foo" and "bar".
Your job will be to translate filterIterator into Java.

You may assume that the base iterator in the Java version will never return null.
Your solution should throw NoSuchElementException if the next method is called when there are no

more elements available.

2

C Excerpt from the Collections Framework (Lists and Sets) for Problem 5

interface Collection<E> extends Iterable<E> {
public boolean add(E o);
/ / Ensures t h a t t h i s c o l l e c t i o n c o n t a i n s t h e s p e c i f i e d e l e m e n t
/ / R e t u r n s t r u e i f t h i s c o l l e c t i o n changed as a r e s u l t o f t h e c a l l .
/ / (R e t u r n s f a l s e i f t h i s c o l l e c t i o n does n o t p e r m i t d u p l i c a t e s
/ / and a l r e a d y c o n t a i n s t h e s p e c i f i e d e l e m e n t .)

public boolean contains(Object o);
/ / R e t u r n s t r u e i f t h i s c o l l e c t i o n c o n t a i n s t h e s p e c i f i e d e l e m e n t .

public int size();
/ / R e t u r n s t h e number o f e l e m e n t s i n t h i s c o l l e c t i o n .

public boolean remove(Object o);
/ / Removes a s i n g l e i n s t a n c e o f t h e s p e c i f i e d e l e m e n t from t h i s
/ / c o l l e c t i o n , i f i t i s p r e s e n t . R e t u r n s t r u e i f t h i s c o l l e c t i o n
/ / c o n t a i n e d t h e s p e c i f i e d e l e m e n t (or e q u i v a l e n t l y , i f t h i s c o l l e c t i o n
/ / changed as a r e s u l t o f t h e c a l l) and f a l s e o t h e r w i s e .

/ / (Other methods o m i t t e d .)
}

3

D Excerpt from the Collections Framework (Maps) for Problem 5

interface Map<K,V> {

public V get(Object key)
/ / R e t u r n s t h e v a l u e t o which t h e s p e c i f i e d key i s mapped , or n u l l i f t h i s
/ / map c o n t a i n s no mapping f o r t h e key .
/ / More f o r m a l l y , i f t h i s map c o n t a i n s a mapping from a key k t o a v a l u e v
/ / such t h a t (key==n u l l ? k==n u l l : key . e q u a l s (k)) , t h e n t h i s method r e t u r n s
/ / v ; o t h e r w i s e i t r e t u r n s n u l l . (There can be a t most one such mapping .)

public V put(K key, V value)
/ / A s s o c i a t e s t h e s p e c i f i e d v a l u e w i t h t h e s p e c i f i e d key i n t h i s map

public V remove(Object key)
/ / Removes t h e mapping f o r a key from t h i s map i f i t i s p r e s e n t .
/ / R e t u r n s t h e v a l u e t o which t h i s map p r e v i o u s l y a s s o c i a t e d t h e
/ / key , or n u l l i f t h e map c o n t a i n e d no mapping f o r t h e key .

public int size()
/ / R e t u r n s t h e number o f key−v a l u e mappings i n t h i s map .

public boolean isEmpty()
/ / R e t u r n s t r u e i f t h i s map c o n t a i n s no key−v a l u e mappings .

public Set<K> keySet()
/ / R e t u r n s a S e t v iew o f t h e k e y s c o n t a i n e d i n t h i s map . The s e t i s backed
/ / by t h e map , so changes t o t h e map are r e f l e c t e d i n t h e s e t , and
/ / v i c e−v e r s a .

public boolean containsKey(Object key)
/ / R e t u r n s t r u e i f t h i s map c o n t a i n s a mapping f o r t h e s p e c i f i e d key .

}

class TreeMap<K,V> implements Map<K,V> {

public TreeMap()
/ / c o n s t r u c t o r
/ / C o n s t r u c t s a new , empty t r e e map , u s i n g t h e n a t u r a l o r d e r i n g o f i t s k e y s .

/ / . . . methods s p e c i f i e d by i n t e r f a c e

}

4

