
CIS 120 Midterm I October 13, 2017

SOLUTIONS

1

1. Binary Search Trees (16 points total)
This problem concerns buggy implementations of the insert and delete functions for bi-
nary search trees, the correct versions of which are shown in Appendix A.

First: At most one of the lines of code contains a compile-time (i.e. typechecking) error. If
there is a compile-time error, explain what the error is and one way to fix it. If there is no
compile-time error, say “No Error”.

Second: even after the compile-time error (if any) is fixed, the code is still buggy—for some
inputs the function works correctly and produces the correct BST, and for other inputs, the
function produces an incorrect tree. Complete each of the test cases with an int value for
x so that the test passes, demonstrating that these implementations sometimes produce the
correct answers and sometimes do not. The test cases all use the tree t shown pictorially as

let t : int tree = 4
/ \
1 7
/ \ \
0 2 10

where, as usual, Empty constructors are not shown, to avoid clutter.

a. (2 points) Tree t satisfies the BST invariants: � True � False

b. (7 points)
1 let rec bad_insert (t:int tree) (n:int) : int tree =
2 begin match t with
3 | Empty -> n
4 | Node(lt, x, rt) ->
5 if n < x then Node(bad_insert lt n, x, rt)
6 else Node(lt, x, bad_insert rt n)
7 end

Compile Error on line ___3____ : _returning an int not a int tree_

Fix for Error: _______replace n with Node(Empty, n, Empty)________

ANSWER: This insert function will add duplicate nodes to the right side. It will work
correctly if insert is only called on nodes that don’t already exist.

;; run_test "bad_insert_works_correctly" (fun () ->
let x = ____________ in
bad_insert t x = insert t x)

;; run_test "bad_insert_computes_wrong_answer" (fun () ->
let x = ____________ in
not (bad_insert t x = insert t x))

PennKey: 2

c. (7 points)
1 let rec bad_delete (t:int tree) (n:int) : int tree =
2 begin match t with
3 | Empty -> Empty
4 | Node(lt,x,rt) ->
5 if n < x then Node(bad_delete lt n, x, rt)
6 else Node(lt, x, bad_delete rt n)
7 end

Compile Error on line _______ : ____NO ERRORS____________________

Fix for Error: __

;; run_test "bad_delete_works_correctly" (fun () ->

let x = ____________ in
bad_delete t x = delete t x)

;; run_test "bad_delete_computes_wrong_answer" (fun () ->

let x = ____________ in
not (bad_delete t x = delete t x))

ANSWER: This deletion function only deletes nodes not in the tree (so not very help-
ful).

PennKey: 3

2. Higher-order Functions (21 points)

Recall the higher-order list processing functions:

let rec transform (f: ’a -> ’b) (l: ’a list): ’b list =
begin match l with
| [] -> []
| h :: t -> (f h) :: (transform f t)

end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)

end

For these problems do not use any list library functions such as @. Constructors, such as ::
and [], are fine.

a. Use tranform or fold, along with suitable anonymous function(s), to implement a
function that removes all elements from a list that match the criteria specified. For ex-
ample, the call reject (fun x -> x > 2) [1; 2; 3; 4] evaluates to the list [1; 2].
let reject (pred: ’a -> bool) (l: ’a list) : ’a list =
fold (fun x acc -> if pred x then acc else x::acc) [] l

b. Is tranform just a fold? Implement transform using fold if possible. If it’s not
possible, explain why.
let transform_using_fold (f: ’a -> ’b) (l: ’a list) : ’b list =

fold (fun x acc -> (f x) :: acc) [] l;;

PennKey: 4

c. Use tranform or fold, along with suitable anonymous function(s), to implement a
function that removes all duplicates from a list. For example, the call
uniq [1; 2; 3; 4; 1; 2] evaluates to the list [1; 2; 3; 4]. The order of elements
in the returned list doesn’t matter so the above call could also return [3; 4; 1; 2].
let uniq (l: ’a list) : ’a list =
let mem x l = fold (fun y acc -> x = y || acc) false l in
fold (fun x acc -> if mem x acc then acc else (x::acc)) [] l

(∗ or ∗)
let uniq’ (l:’a list) : ’a list =
fold (fun x acc ->

if (fold (fun y acc -> x = y || acc) false acc) then acc else (x::acc)) [] l

PennKey: 5

3. Types (16 points)

For each OCaml value below, fill in the blank for the type annotation or else write “ill typed”
if there is a type error on that line. Your answer should be the most generic type that OCaml
would infer for the value—i.e. if int list and bool list are both possible types of an
expression, you should write ’a list.

Some of these expressions refer to the module S, which implements the SET interface. The
SET interface is shown in Appendix B. Note that all of the code appears after the module S

has been opened.

We have done the first one for you.

;; open S

let z : _____________ ’a list list ____________ = [[]]

let a : _______________ill typed_______________ = add 3 []

let b : _________’a set list___________________ = [empty; empty]

let c : _______________ill typed_______________ =
begin match (add 3 empty) with | [] -> 0 | x::xs -> 1 end

let d : ______int set -> bool _________________ = equals (add 3 empty)

let e : _______’a list -> int__________________ =
fun x -> begin match x with | [] -> 3 | _ -> 4 end

let f : ______________ill typed________________ =
remove "hello" (add 3 empty)

let g : ____int set set -> int set set ________ = add (add 3 empty)

let h : ___(int set -> int set) list___________ = [add 3; add 4; add 5]

Grading Scheme: 2 points each. 1 points partial credit for “close, but not quite”

PennKey: 6

4. Abstract Types, Invariants, and Modularity (32 points total)
In this problem, you will use the S set module (see Appendix B) to implement another
abstract collection type, called a multimap. A multimap associates keys of type ’k to sets of
values of type ’v. The interface for a multimap is the following:
module type MULTIMAP = sig
type (’k, ’v) multimap
val empty : (’k, ’v) multimap
val add : ’k -> ’v -> (’k, ’v) multimap -> (’k, ’v) multimap
val mem : ’k -> (’k, ’v) multimap -> bool
val get : ’k -> (’k, ’v) multimap -> ’v S.set
val remove : ’k -> (’k, ’v) multimap -> (’k, ’v) multimap

end

As usual, the behavior of the multimap abstract type is specified by defining the properties
of its operations. For each of the properties on the next page, define a corresponding test
case. Assume that the MultiMap module is opened and that m1 and m2 are defined as shown.
We have done an example test case for you below.

Example:

Property: A multimap collects together all of the values added with a given key, which are
returned by the get operation as a value of type ’v S.set.
;; open MultiMap
let m1 : (int, string) multimap = add 1 "a" empty
let m2 : (int, string) multimap = add 1 "b" m1

let test () =
S.equals (get 1 m2) (S.set_of_list ["a"; "b"])

;; run_test "m2 maps key 1 to both a and b" test

(There are no questions on this page.)

PennKey: 7

;; open MultiMap
let m1 : (int, string) multimap = add 1 "a" empty
let m2 : (int, string) multimap = add 1 "b" m1

a. (3 points) Property: If no values have been added with a given key, calling get on that
key returns an empty set.
let test () =
S.equals (get 1 empty) (S.empty)

;; run_test "get unassociated key" test

b. (3 points) Property: When we remove a key from the multimap, all of the associated
values are removed too.
let test () =
S.equals (get 1 (remove 1 m2)) (S.empty)

;; run_test "remove removes all" test

c. (3 points) Property: The mem operation returns false for a key k after k is removed.
let test () =
not (mem 1 (remove 1 m2))

;; run_test "key not a member after removal " test

d. (4 points) Suggest a fifth property (different from the ones above) that you would
expect to hold about the MultiMap abstraction. Write a one-sentence description of it
and a test case that checks the property:
Example Properties:

• Adding the same key–value pair twice is the same as adding it once.
• The mem operation returns true for any key that has been added.

let test () =

;; run_test "___" test

PennKey: 8

We can implement the multimap interface in many ways, but in this problem we use as the
representation type an association list defined in the code below. We also choose to use the
following invariant:

INVARIANT: the pairs in the list are sorted (in increasing order) by key values

We have given you the definition of the empty multimap.
module MultiMap : MULTIMAP = struct

(∗ Invariant : the list is sorted in strictly increasing order by keys ∗)
type (’k, ’v) multimap = (’k * ’v S.set) list

let empty : (’k, ’v) multimap = []

e. (15 points) Complete the following implementation of the multimap add operation. Be
sure to exploit and preserve the representation invariant. Note that this code is within
the MultiMap module structure, but it can refer to S’s set operations using the “dot”
notation (e.g. S.empty).

let rec add (k:’k) (v:’v) (m:(’k, ’v) multimap) : (’k, ’v) multimap =
begin match m with
| [] -> [(k, S.add v S.empty)]
| (x,vs)::t ->

if k < x then (k, S.add v S.empty)::m
else if k = x then (x, S.add v vs)::t
else (x,vs)::(add k v t)

end

PennKey: 9

Consider the following two possible implementations of the multimap get operation. (Note
that the definition of fold is found in problem 2.)

(∗ A ∗)
let rec get (k:’k) (m:(’k, ’v) multimap) : ’v S.set =
begin match m with
| [] -> S.empty
| (x,vs)::xs ->

if k < x then S.empty
else if k = x then vs
else get k xs

end

(∗ B ∗)
let get (k:’k) (m:(’k, ’v) multimap) : ’v S.set =
fold (fun (x,vs) acc -> if k = x then vs else acc) S.empty m

(4 points) Mark all correct answers (there may be zero or more than one):

f. Which of the implementations correctly implement the desired behavior of the mul-
timap?
� A � B

g. Which of the implementations use the representation invariant to improve efficiency?
� A � B

PennKey: 10

5. Recursion and Trees (15 points)

This problem uses the ’a tree datatype from Appendix A, but does not assume the binary
search tree invariants.

Complete this (partial) recursive function called deepest_leaf that, given a tree t finds the
value and depth of the leaf farthest from the root of t. If there is no such leaf (i.e. the tree is
Empty) return None. If there is a tie for deepest, pick the left-most of the deepest values.

Here are several examples, and the expected outputs:

1 3 0
/ \ \ / \
2 2 1 1 1

/ \ / \ / \ \
3 7 4 0 2 2 2

\ /
6 3

Some (3, 2) Some(6, 3) Some (3, 3)

Hint: Think about how to adapt the recursive algorithm for tree height to this scenario.
let rec deepest_leaf (t:’a tree) : (’a * int) option =
begin match t with
| Empty -> None
| Node(lt, x, rt) ->

begin match (deepest_leaf lt, deepest_leaf rt) with
| None, None -> Some (x, 0)
| Some (x, n), None -> Some (x, n+1)
| None, Some (x, n) -> Some (x, n+1)
| Some (x, n), Some (y, m) ->

if n < m then Some (y, m+1) else Some (x, n+1)
end

end

PennKey: 11

Appendix A: (Binary Search) Trees

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

(∗ Inserts n into the binary search tree t ∗)
let rec insert (t:’a tree) (n:’a) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

(∗ returns the maximum integer in a ∗NONEMPTY∗ binary
search tree t ∗)

let rec tree_max (t:’a tree) : int =
begin match t with
| Empty -> failwith "tree_max called on empty tree"
| Node(_,x,Empty) -> x
| Node(_,_,rt) -> tree_max rt
end

(∗ returns a binary search tree that has the same set of
nodes as t except with n removed (if it ’s there)

∗)
let rec delete (t:’a tree) (n:int) : ’a tree =
begin match t with
| Empty -> Empty
| Node(lt,x,rt) ->

if x = n then
begin match (lt, rt) with
| (Empty, Empty) -> Empty
| (Empty, _) -> rt
| (_, Empty) -> lt
| (_,_) ->

let y = tree_max lt in
Node (delete lt y, y, rt)

end
else
if n < x then Node(delete lt n, x, rt)
else Node(lt, x, delete rt n)

end

PennKey: 12

Appendix B: SET Module Signature
The signature below defines a simplified version the SET interface used in the homework project
about abstract types, and the module S (whose code is not shown), which implements that interface.
module type SET = sig
type ’a set
val empty : ’a set
val add : ’a -> ’a set -> ’a set
val remove : ’a -> ’a set -> ’a set
val member : ’a -> ’a set -> bool
val set_of_list : ’a list -> ’a set
val equals : ’a set -> ’a set -> bool

end
module S : SET = struct (∗ ... code not shown ... ∗) end

PennKey: 13

