
CIS 120 Midterm I February 10, 2017

Name (printed):

PennKey (penn login id):

My signature below certifies that I have complied with the University of Pennsylvania’s Code
of Academic Integrity in completing this examination.

Signature: Date:

• Do not begin the exam until you are told it is time to do so.

• Make sure that your username (a.k.a. PennKey, e.g. stevez) is written clearly at the bottom
of every page.

• There are 100 total points. The exam lasts 50 minutes. Do not spend too much time on any
one question.

• Be sure to recheck all of your answers.

• The last page of the exam can be used as scratch space. By default, we will ignore anything
you write on this page. If you write something that you want us to grade, make sure you
mark it clearly as an answer to a problem and write a clear note on the page with that
problem telling us to look at the scratch page.

• Good luck!

1

1. Binary Search Trees
This problem concerns a buggy implementation of the lookup and insert functions for
binary search trees.

Although the implementations below are incorrect, there are still some inputs for which
they do work correctly. Complete each of the test cases below to demonstrate that these
implementations sometimes produce the correct answer and sometimes do not. Your answer
will be always be an integer. These test cases all use the tree shown pictorially as

t = 5
/ \
1 7
/ \
0 3

where Empty nodes are not shown, to avoid clutter.

a. (6 points)
let rec bad_lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt, x, rt) ->
if n < x then bad_lookup lt n
else bad_lookup rt n

end

;; run_test "bad_lookup_works" (fun () ->

let x = ____________ in
bad_lookup t x = lookup t x)

;; run_test "bad_lookup_fails" (fun () ->

let x = ____________ in
not (bad_lookup t x = lookup t x))

PennKey: 2

b. (6 points)
let rec bad_insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->
if x = n then t
else if n < x then bad_insert lt n
else bad_insert rt n

end

;; run_test "bad_insert_works" (fun () ->

let x = ____________ in
bad_insert t x = insert t x)

;; run_test "bad_insert_fails" (fun () ->

let x = ____________ in
not (bad_insert t x = insert t x))

PennKey: 3

2. Higher-order Functions
Recall the higher-order list processing functions:

let rec transform (f: ’a -> ’b) (l: ’a list): ’b list =
begin match l with
| [] -> []
| h :: t -> (f h) :: (transform f t)

end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)

end

Each part of this problem below begins with a sample function written using simple recursion
over lists, followed by several alternatives written using transform or fold. In each
part, mark all of the alternatives that implement the same behavior as the recursive sample.
There may be zero, one, or more than one such function. Some of the alternatives may not
typecheck—do not mark these.

a. (6 points)
let rec strings_of_ints (lst: int list) : string list =
begin match lst with
| [] -> []
| hd :: tl -> string_of_int hd :: strings_of_ints tl
end

� let strings_of_ints (lst: int list) : string list =
transform string_of_int lst

� let strings_of_ints (lst: int list) : string list =
transform (fun s -> string_of_int s) lst

� let strings_of_ints (lst: int list) : string list =
fold (fun s acc -> string_of_int s :: acc) [] lst

PennKey: 4

b. (6 points)
let rec dupl (lst: ’a list) : ’a list =
begin match lst with
| [] -> []
| x::xs -> x :: x :: dupl xs

end

� let dupl (lst: ’a list) : ’a list =
fold (fun x acc -> [x;x] @ acc) [] lst

� let dupl (lst: ’a list) : ’a list =
fold (fun x acc -> x :: x :: acc) [] lst

� let dupl (lst: ’a list) : ’a list =
transform (fun x -> (x,x)) lst

c. (6 points)
let rec remove_all (n : ’a) (lst : ’a list) : ’a list =

begin match lst with
| [] -> []
| h :: tl -> let rest = remove_all n tl in

if h = n then rest else h :: rest
end

� let remove_all (n: ’a) (lst: ’a list) : ’a list =
fold (fun x acc -> if x = n then acc else x :: acc) [] lst

� let remove_all (n: ’a) (lst: ’a list) : ’a list =
transform (fun x -> if x = n then [] else x) lst

� let remove_all (n: ’a) (lst: ’a list) : ’a list =
fold (fun x acc -> if x = n then acc else lst) [] lst

� let remove_all (n: ’a) (lst: ’a list) : ’a list =
fold (fun x acc -> if x = n then acc else x :: acc) 0 lst

PennKey: 5

3. Types (16 points)

For each OCaml value below, fill in the blank for the type annotation or else write “ill typed”
if there is a type error on that line. Your answer should be the most generic type for the
value—i.e. if int list and bool list are both possible types of an expression, you should
write ’a list.

We have done the first one for you.

let z : _________ ’a list list ________ = [[]]

let b : _______________________________ = [] :: [] :: []

let c : _______________________________ = begin match [] with
| [] -> "foo"
| h::t -> h+3
end

let d : _______________________________ = transform (fun x -> x>2)

let e : _______________________________ = fold (fun x y -> x::y)

let f : _______________________________ = (fun x -> fun y -> x) 42

let g : _______________________________ = let f x = [x] in f (f 5)

let h : _______________________________ = let sum x y = x+y in
transform (transform sum)

PennKey: 6

4. Abstract Types, Invariants, and Modularity
A priority queue is a data structure whose job it is to maintain a collection of elements,
each associated with a numeric priority telling how urgent it is. For example, the items in
the queue could represent patients waiting to be seen by an emergency-room doctor and the
priorities could indicate which patients require the most urgent attention. In this simplified
presentation, priority queues come with just four operations:

• empty is a constant representing an empty priority queue;

• add takes a priority queue, a priority, and a new item, and adds the item and its priority
to the queue;

• largest takes a queue and returns the item with the largest (= most urgent) priority;

• droplargest takes a queue and returns a new queue in which the item with the
largest priority has been removed.

Here is a module giving a simple implementation of priority queues (the signature PRIQUEUE
will be defined below):
module PriQueue : PRIQUEUE = struct
type ’a priqueue = (int*’a) list

let empty : ’a priqueue = []

let rec add (pri: int) (item: ’a) (q: ’a priqueue) : ’a priqueue =
begin match q with
| [] -> [(pri,item)]
| (pri’,item’)::q’ ->

if pri >= pri’ then (pri,item) :: q
else (pri’,item’) :: (add pri item q’)

end

let largest (q: ’a priqueue) : ’a =
begin match q with
| [] -> failwith "largest called on empty priority queue"
| (pri,item) :: q’ -> item
end

let droplargest (q: ’a priqueue) : ’a priqueue =
begin match q with
| [] -> failwith "droplargest called on empty priority queue"
| (pri,item) :: q’ -> q’
end

end

Problem continues on following pages...

PennKey: 7

a. (4 points) The above implementation relies on an invariant to make sure that largest
and droplargest can be answered very quickly. Briefly state this invariant in En-
glish:

b. Here are several alternative versions of the PRIQUEUE signature mentioned in the
PriQueue implementation above. For each one, please indicate whether it is a good
signature for this module or, if not, in what way it is not good.

i. (2 points)
module type PRIQUEUE = sig
type ’a priqueue
val empty : ’a priqueue
val add : int -> ’a -> ’a priqueue -> ’a priqueue
val remove : ’a -> ’a priqueue -> ’a priqueue
val largest : ’a priqueue -> ’a
val droplargest : ’a priqueue -> ’a priqueue

end

Circle one:
A. Good (i.e., it is a reasonable interface for the module)
B. Not useful (i.e., with this interface, clients cannot use the module to do any-

thing nontrivial)
C. Not safe (i.e., it allows clients to break the module’s invariant)
D. Wrong (i.e., the PriQueue module will not compile with this signature)

ii. (2 points)
module type PRIQUEUE = sig
type ’a priqueue
val add : int -> ’a -> ’a priqueue -> ’a priqueue
val largest : ’a priqueue -> ’a
val droplargest : ’a priqueue -> ’a priqueue

end

Circle one:
A. Good (i.e., it is a reasonable interface for the module)
B. Not useful (i.e., with this interface, clients cannot use the module to do any-

thing nontrivial)
C. Not safe (i.e., it allows clients to break the module’s invariant)
D. Wrong (i.e., the PriQueue module will not compile with this signature)

PennKey: 8

iii. (2 points)
module type PRIQUEUE = sig
type ’a priqueue
val empty : ’a priqueue
val add : int -> ’a -> (int * ’a) list -> ’a priqueue
val largest : ’a priqueue -> ’a
val droplargest : ’a priqueue -> ’a priqueue

end

Circle one:
A. Good (i.e., it is a reasonable interface for the module)
B. Not useful (i.e., with this interface, clients cannot use the module to do any-

thing nontrivial)
C. Not safe (i.e., it allows clients to break the module’s invariant)
D. Wrong (i.e., the PriQueue module will not compile with this signature)

iv. (2 points)
module type PRIQUEUE = sig
type ’a priqueue
val empty : ’a priqueue
val add : int -> ’a -> ’a priqueue -> ’a priqueue
val largest : ’a priqueue -> ’a
val droplargest : ’a priqueue -> ’a priqueue

end

Circle one:
A. Good (i.e., it is a reasonable interface for the module)
B. Not useful (i.e., with this interface, clients cannot use the module to do any-

thing nontrivial)
C. Not safe (i.e., it allows clients to break the module’s invariant)
D. Wrong (i.e., the PriQueue module will not compile with this signature)

PennKey: 9

c. (12 points) Another useful operation on priority queues is merge, which takes two
priority queues and yields a new queue containing all the items (and their priorities)
from both. A reasonable signaure for merge is:

merge : ’a priqueue -> ’a priqueue -> ’a priqueue

Here is a skeleton for an implementation of merge. Please fill in what’s missing.

let rec merge (q1: ’a priqueue) (q2: ’a priqueue) : ’a priqueue =
begin match q1, q2 with

| [], _ ->

| _, [] ->

| (pri1,item1)::q1’, (pri2,item2)::q2’ ->

end

PennKey: 10

5. List Recursion and Program Design
For this problem, you will use the program design process to implement a function called
remove_n. This function takes a list lst, an element item that may be in that list, perhaps
multiple times, and a count n , and returns a list which is identical to the initial list, except
that the first n instances of item have been removed. If there are less than n instances of
item in lst, the function removes all instances from the list. If item isn’t in the list, the
returned list should be identical with the original list. The function should work on lists of
any type.

a. (4 points) First, define the interface of your function. Write the type of your function
as you might see it in a signature or .mli file.

val remove_n: __

b. (10 points) Now, write three different tests for remove n. Put some thought into your
answers; we will be grading your answers not just on correctness, but on how well your
tests cover different aspects of its behavior. Don’t forget to give each case a descriptive
name. We’ve filled in one test for you.
;; run_test "remove_n from singleton list" (fun () ->

remove_n "a" 1 ["a"] = [])

;; run_test "___" (fun () ->

__)

;; run_test "__" (fun () ->

__)

;; run_test "___" (fun () ->

__)

PennKey: 11

c. (16 points) Now, implement your function in the space provided below.

PennKey: 12

Scratch Space
Use this page for work that you do not want us to grade. If you run out of space elsewhere in the
exam and you do want to put something here that we should grade, make sure to put a clear note
on the page for the problem in question.

PennKey: 13

PennKey: 14

