
CIS 120 Midterm I February 10, 2017

SOLUTIONS

1. Binary Search Trees
This problem concerns a buggy implementation of the lookup and insert functions for
binary search trees.

Although the implementations below are incorrect, there are still some inputs for which
they do work correctly. Complete each of the test cases below to demonstrate that these
implementations sometimes produce the correct answer and sometimes do not. Your answer
will be always be an integer. These test cases all use the tree shown pictorially as

t = 5
/ \
1 7
/ \
0 3

where Empty nodes are not shown, to avoid clutter.

a. (6 points)
let rec bad_lookup (t:tree) (n:int) : bool =
begin match t with
| Empty -> false
| Node(lt, x, rt) ->
if n < x then bad_lookup lt n
else bad_lookup rt n

end

;; run_test "bad_lookup_works" (fun () ->

let x = ____________ in
bad_lookup t x = lookup t x)

;; run_test "bad_lookup_fails" (fun () ->

let x = ____________ in
not (bad_lookup t x = lookup t x))

PennKey: 1

ANSWER: This lookup function always returns false. Therefore, answers to the first
test include any number not present in the tree, and for the second, any number in the
tree.

b. (6 points)
let rec bad_insert (t:tree) (n:int) : tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->
if x = n then t
else if n < x then bad_insert lt n
else bad_insert rt n

end

;; run_test "bad_insert_works" (fun () ->

let x = ____________ in
bad_insert t x = insert t x)

;; run_test "bad_insert_fails" (fun () ->

let x = ____________ in
not (bad_insert t x = insert t x))

ANSWER: This insert function only works for 5 (which is already in the tree).

2. Higher-order Functions
Recall the higher-order list processing functions:

let rec transform (f: ’a -> ’b) (l: ’a list): ’b list =
begin match l with
| [] -> []
| h :: t -> (f h) :: (transform f t)

end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)

end

Each part of this problem below begins with a sample function written using simple recursion
over lists, followed by several alternatives written using transform or fold. In each
part, mark all of the alternatives that implement the same behavior as the recursive sample.
There may be zero, one, or more than one such function. Some of the alternatives may not
typecheck—do not mark these.

PennKey: 2

a. (6 points)
let rec strings_of_ints (lst: int list) : string list =
begin match lst with
| [] -> []
| hd :: tl -> string_of_int hd :: strings_of_ints tl
end

� let strings_of_ints (lst: int list) : string list =
transform string_of_int lst

� let strings_of_ints (lst: int list) : string list =
transform (fun s -> string_of_int s) lst

� let strings_of_ints (lst: int list) : string list =
fold (fun s acc -> string_of_int s :: acc) [] lst

b. (6 points)
let rec dupl (lst: ’a list) : ’a list =
begin match lst with
| [] -> []
| x::xs -> x :: x :: dupl xs

end

� let dupl (lst: ’a list) : ’a list =
fold (fun x acc -> [x;x] @ acc) [] lst

� let dupl (lst: ’a list) : ’a list =
fold (fun x acc -> x :: x :: acc) [] lst

� let dupl (lst: ’a list) : ’a list =
transform (fun x -> (x,x)) lst

c. (6 points)
let rec remove_all (n : ’a) (lst : ’a list) : ’a list =

begin match lst with
| [] -> []
| h :: tl -> let rest = remove_all n tl in

if h = n then rest else h :: rest
end

� let remove_all (n: ’a) (lst: ’a list) : ’a list =
fold (fun x acc -> if x = n then acc else x :: acc) [] lst

� let remove_all (n: ’a) (lst: ’a list) : ’a list =
transform (fun x -> if x = n then [] else x) lst

� let remove_all (n: ’a) (lst: ’a list) : ’a list =
fold (fun x acc -> if x = n then acc else lst) [] lst

PennKey: 3

� let remove_all (n: ’a) (lst: ’a list) : ’a list =
fold (fun x acc -> if x = n then acc else x :: acc) 0 lst

3. Types (16 points)

For each OCaml value below, fill in the blank for the type annotation or else write “ill typed”
if there is a type error on that line. Your answer should be the most generic type for the
value—i.e. if int list and bool list are both possible types of an expression, you should
write ’a list.

We have done the first one for you.

let z : _________ ’a list list ________ = [[]]

let a : ______ill typed________________ = true::false

else
let a : _______________________________ = true::false

let b : ______’a list list _______ = [] :: [] :: []

let c : ____ ill-typed ________________ = begin match [] with
| [] -> "foo"
| h::t -> h+3
end

let d : ____ int list -> bool list ____ = transform (fun x -> x>2)

let e : ___ ’a list -> ’a list -> ’a list __ = fold (fun x y -> x::y)

let f : ___ ’a -> int __________ = (fun x -> fun y -> x) 42

let g : _____int list list ____________ = let f x = [x] in f (f 5)

let h : int list list -> (int -> int) list list
= let sum x y = x+y in transform (transform sum)

Grading Scheme: 2 points each. 1 points partial credit for “close, but not quite”

4. Abstract Types, Invariants, and Modularity
A priority queue is a data structure whose job it is to maintain a collection of elements,
each associated with a numeric priority telling how urgent it is. For example, the items in
the queue could represent patients waiting to be seen by an emergency-room doctor and the
priorities could indicate which patients require the most urgent attention. In this simplified
presentation, priority queues come with just four operations:

PennKey: 4

• empty is a constant representing an empty priority queue;

• add takes a priority queue, a priority, and a new item, and adds the item and its priority
to the queue;

• largest takes a queue and returns the item with the largest (= most urgent) priority;

• droplargest takes a queue and returns a new queue in which the item with the
largest priority has been removed.

Here is a module giving a simple implementation of priority queues (the signature PRIQUEUE
will be defined below):
module PriQueue : PRIQUEUE = struct
type ’a priqueue = (int*’a) list

let empty : ’a priqueue = []

let rec add (pri: int) (item: ’a) (q: ’a priqueue) : ’a priqueue =
begin match q with
| [] -> [(pri,item)]
| (pri’,item’)::q’ ->

if pri >= pri’ then (pri,item) :: q
else (pri’,item’) :: (add pri item q’)

end

let largest (q: ’a priqueue) : ’a =
begin match q with
| [] -> failwith "largest called on empty priority queue"
| (pri,item) :: q’ -> item
end

let droplargest (q: ’a priqueue) : ’a priqueue =
begin match q with
| [] -> failwith "droplargest called on empty priority queue"
| (pri,item) :: q’ -> q’
end

end

a. (4 points) The above implementation relies on an invariant to make sure that largest
and droplargest can be answered very quickly. Briefly state this invariant in En-
glish:
The list is kept in sorted order, with largest priorities first.

b. Here are several alternative versions of the PRIQUEUE signature mentioned in the
PriQueue implementation above. For each one, please indicate whether it is a good
signature for this module or, if not, in what way it is not good.

i. (2 points)

PennKey: 5

module type PRIQUEUE = sig
type ’a priqueue
val empty : ’a priqueue
val add : int -> ’a -> ’a priqueue -> ’a priqueue
val remove : ’a -> ’a priqueue -> ’a priqueue
val largest : ’a priqueue -> ’a
val droplargest : ’a priqueue -> ’a priqueue

end

Circle one:
A. Good (i.e., it is a reasonable interface for the module)
B. Not useful (i.e., with this interface, clients cannot use the module to do any-

thing nontrivial)
C. Not safe (i.e., it allows clients to break the module’s invariant)
D. Wrong (i.e., the PriQueue module will not compile with this signature)
Answer: Wrong

ii. (2 points)
module type PRIQUEUE = sig
type ’a priqueue
val add : int -> ’a -> ’a priqueue -> ’a priqueue
val largest : ’a priqueue -> ’a
val droplargest : ’a priqueue -> ’a priqueue

end

Circle one:
A. Good (i.e., it is a reasonable interface for the module)
B. Not useful (i.e., with this interface, clients cannot use the module to do any-

thing nontrivial)
C. Not safe (i.e., it allows clients to break the module’s invariant)
D. Wrong (i.e., the PriQueue module will not compile with this signature)
Answer: Not useful

iii. (2 points)
module type PRIQUEUE = sig
type ’a priqueue
val empty : ’a priqueue
val add : int -> ’a -> (int * ’a) list -> ’a priqueue
val largest : ’a priqueue -> ’a
val droplargest : ’a priqueue -> ’a priqueue

end

Circle one:
A. Good (i.e., it is a reasonable interface for the module)

PennKey: 6

B. Not useful (i.e., with this interface, clients cannot use the module to do any-
thing nontrivial)

C. Not safe (i.e., it allows clients to break the module’s invariant)
D. Wrong (i.e., the PriQueue module will not compile with this signature)
Answer: Not safe

iv. (2 points)
module type PRIQUEUE = sig
type ’a priqueue
val empty : ’a priqueue
val add : int -> ’a -> ’a priqueue -> ’a priqueue
val largest : ’a priqueue -> ’a
val droplargest : ’a priqueue -> ’a priqueue

end

Circle one:
A. Good (i.e., it is a reasonable interface for the module)
B. Not useful (i.e., with this interface, clients cannot use the module to do any-

thing nontrivial)
C. Not safe (i.e., it allows clients to break the module’s invariant)
D. Wrong (i.e., the PriQueue module will not compile with this signature)
Answer: Good

c. (12 points) Another useful operation on priority queues is merge, which takes two
priority queues and yields a new queue containing all the items (and their priorities)
from both. A reasonable signaure for merge is:

merge : ’a priqueue -> ’a priqueue -> ’a priqueue

Here is a skeleton for an implementation of merge. Please fill in what’s missing.

let rec merge (q1: ’a priqueue) (q2: ’a priqueue) : ’a priqueue =
begin match q1,q2 with
| [], _ -> q2
| _, [] -> q1
| (pri1,item1)::q1’, (pri2,item2)::q2’ ->

if pri1 > pri2 then
(pri1,item1) :: (merge q1’ q2)

else
(pri2,item2) :: (merge q1 q2’)

end

5. List Recursion and Program Design

PennKey: 7

For this problem, you will use the program design process to implement a function called
remove_n. This function takes a list lst, an element item that may be in that list, perhaps
multiple times, and a count n , and returns a list which is identical to the initial list, except
that the first n instances of item have been removed. If there are less than n instances of
item in lst, the function removes all instances from the list. If item isn’t in the list, the
returned list should be identical with the original list. The function should work on lists of
any type.

a. (4 points) First, define the interface of your function. Write the type of your function
as you might see it in a signature or .mli file.

val remove_n : ’a -> int -> ’a list -> ’a list

Grading Scheme: (From old question this is adapted from: One point deduction for
non-generic types, no deduction for syntax errors or answers that are “almost” correct.
If the type does not match the above, but it is consistent with general approach taken,
then no deduction.)

b. (10 points) Now, write three different tests for remove n. Put some thought into your
answers; we will be grading your answers not just on correctness, but on how well your
tests cover different aspects of its behavior. Don’t forget to give each case a descriptive
name. We’ve filled in one test for you.
;; run_test "remove_n from singleton list" (fun () ->

remove_n "a" 1 ["a"] = [])

Some possible answers:
;;run_test "remove_n simple delete works" (fun () ->

remove_n "a" 2 ["a";"b";"c";"a";"a";"b"] = ["b";"c";"a";"b"])

;;run_test "remove_n deletes everything" (fun () ->
remove_n "a" 10 ["a";"a"] = [])

;;run_test "remove_n item never appears in list" (fun () ->
remove_n "b" 3 ["a";"a"] = ["a"; "a"])

;;run_test "remove_n count = 0" (fun () ->
remove_n "a" 0 ["a";"a"] = ["a"; "a"])

Grading Scheme: We are looking for test cases that correctly specify the behavior of
the helper function and exhaustively test it. A good test suite includes tests along these
lines:

• at least one test that returns a vanilla answer from remove_n

• at least one test where one of the inputs is nil, or is 0.
• at least one test where the original list is returned verbatim.

Points were deducted for test cases that were otherwise redundant.
The tests must also be correct. Here correctness means that they be consistent with the
description of the function in part (a) and the definition of the function in part (c).

PennKey: 8

c. (16 points) Now, implement your function in the space provided below.
let rec remove_n (item: ’a) (count: int) (lst: ’a list) : ’a list =
begin match lst, count with
| [], _ -> []
| _, 0 -> lst
| hd::tl, _ -> if hd=item then remove_n item (count-1) tl

else hd :: remove_n item count tl
end

Grading Scheme: TBD.

PennKey: 9

