
CIS 120 Midterm I October 12, 2018

SOLUTIONS

1

1. Binary Search Trees (16 points total)
This problem concerns buggy implementations of the lookup and tree_max functions for
binary search trees, the correct versions of which are shown in Appendix A.

First: At most one of the lines of code contains a compile-time (i.e., typechecking) error. If
there is a compile-time error, explain what the error is and one way to fix it. If there is no
compile-time error, say “No Error”.

Second: even after the compile-time error (if any) is fixed, the code is still buggy—for some
inputs the function works correctly and produces the correct answer, and for other inputs,
the function produces an incorrect answer.

let t : int tree = 7
/ \
4 9
/ / \
1 8 10

where, as usual, Empty constructors are not shown, to avoid clutter.

a. (2 points) Tree t satisfies the BST invariants: � True � False

b. (7 points)
1 let rec bad_lookup (t: int tree) (n: int) : bool =
2 begin match t with
3 | Empty(_, x, _) -> false
4 | Node(lt, x, rt) ->
5 if n < x then bad_lookup lt n
6 else bad_lookup rt n
7 end

Compile Error on line _3_ : _Empty constructor doesn’t take any arguments_

Fix For Error: ______replace with Empty____________________

Complete each of the test cases with an int value for x so that the test passes, demon-
strating that this implementation sometimes produces the correct answers and some-
times does not. Both of the test cases must use the tree t shown pictorially above.
ANSWER: This lookup function will always return false. It will work correctly for
nodes that are not in the tree.
;; run_test "bad_lookup_works_correctly" (fun () ->

let x = _____15_____ in
bad_lookup t x = lookup t x)

;; run_test "bad_lookup_computes_wrong_answer" (fun () ->
let x = _____7______ in
not (bad_lookup t x = lookup t x))

PennKey: 2

c. (7 points)
1 let rec bad_tree_max (t: ’a tree) : ’a =
2 begin match t with
3 | Empty -> failwith "bad_tree_max called on empty tree"
4 | Node(Empty, x, _) -> x
5 | Node(lt, _, _) -> bad_tree_max lt
6 end

Compile Error on line ______ : ___No Error_______

For the test cases below, draw pictures of Binary Search Trees t1 and t2

where bad_tree_max works correctly and incorrectly respectively, demonstrating that
this implementation sometimes produces the correct answers and sometimes does not.

t1 : int tree = 7

t2 : int tree = 7
/ \
4 9

/ / \
1 8 10

;; run_test "bad_tree_max_works_correctly" (fun () ->

bad_tree_max t1 x = tree_max t1 x)

;; run_test "bad_tree_max_computes_wrong_answer" (fun () ->

not (bad_tree_max t2 x = tree_max t2 x))

ANSWER: This tree_max function actually finds the min of the tree. It will only work
correctly when the min and the max are the same, i.e., there is only 1 int in the tree.

PennKey: 3

2. List Processing and Higher-order Functions (24 points)

Recall the higher-order list processing functions:

let rec transform (f: ’a -> ’b) (l: ’a list): ’b list =
begin match l with
| [] -> []
| h :: t -> (f h) :: (transform f t)

end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)

end

For these problems do not use any list library functions other than @. Constructors, such as
:: and [], are fine.

a. Use transform or fold, along with suitable anonymous function(s), to implement a
function partition that returns a pair of lists (list1, list2), where list1 is the
list of all the elements of the input list that satisfy the given predicate p, and list2 is
the list of all the elements of the input list that do not satisfy the given predicate p. For
example, the call partition (fun x -> x < 4) [6; 5; 2; 3; 4] evaluates to the
pair of lists ([2; 3], [6; 5; 4]).

let partition (p: ’a -> bool) (l: ’a list) : (’a list * ’a list) =
fold (fun x (acc1, acc2) ->
if p x then (x::acc1, acc2) else (acc1, x::acc2)) ([], []) l

PennKey: 4

b. Consider the following recursive function:
let rec g (x: int) (l: int list) : bool =
begin match l with
| [] -> false
| h :: t -> h = x || g x t
end

Rewrite the above function using transform or fold.

let g (x: int) (l: int list) : bool =
fold (fun h acc -> h = x || acc) false l

c. Consider a modification to the transform function that now takes in two input lists.

val transform2 : (’a -> ’b -> ’c) -> ’a list -> ’b list -> ’c list

where,
transform2 f [a1; ...; an] [b1; ...; bn] is [f a1 b1; ...; f an bn].

Use transform2 along with suitable anonymous function(s), to implement a function
that creates a zip of two lists. For example, the call
zip [1; 2; 3] [‘‘uno’’; ‘‘due’’; ‘‘tre’’] evaluates to the list
[(1, ‘‘uno’’); (2, ‘‘due’’); (3, ‘‘tre’’)]. You can assume that the inputs
to both zip and transform2 will be lists of the same length.

let zip (a: ’a list) (b: ’b list) : (’a * ’b) list =
transform2 (fun x y -> (x, y)) a b

PennKey: 5

3. Types (16 points)

For each OCaml value below, fill in the blank for the type annotation or else write “ill typed”
if there is a type error on that line. Your answer should be the most generic type that OCaml
would infer for the value–i.e., if int list and bool list are both possible types of an
expression, you should write ’a list.

Some of these expressions refer to the module Q, which implements the Quadrant interface.
The Quadrant interface is shown in Appendix B. Note that all of the code appears after
the module Q has been opened. The last expression refers to the Node that’s defined for a
’a tree in Appendix A.

We have done the first one for you.
;; open Q

let z : _____________ ’a list list ____________ = [[]]

let a : ___________quadrant____________________ =
create (1.0, 2.0) (5.0, 4.0)

let b : ______(point -> quadrant) list_________ =
[create (1.0, 2.0); create (5.0, 4.0)]

let c : _____________(int -> ’a) -> ’a_________ =
fun g -> g 3

let d : _____int list * int list list__________ =
(1::[2], [3]::[[4]])

let e : _____________quadrant list_____________ =
split (enclosing_quad [])

let f : ______________ill typed________________ =
fun x y -> begin match x with

| [] -> split y
| _ -> inside_quad y
end

let g : ____’a -> (’a option * ’a) list________ =
fun x -> (None, x)::[(Some x, x)]

let h : ______________ill typed________________ =
Node("a", "b", Node(Empty, Empty, "c"))

PennKey: 6

4. Abstract Types, Invariants, and Modularity (29 points total)
In this problem we will implement a new abstract type called a Quadrant. Quadrants are
used to represent spatial data (maps). The Quadrant interface is shown in Appendix B.

As usual, the behavior of the quadrant abstract type is specified by defining the properties
of its operations. For each of the following properties, define a corresponding test case.
Assume that the quadrant module is opened and that q is defined as shown. We have done
an example test case for you below.

Example:

Property: A quadrant is defined by its bottom left and top right points. A point is defined by
its x and y coordinates.
;; open Quadrant

let botLeft : point = (1.0, 2.0)
let topRight : point = (5.0, 4.0)
let q : quadrant = create botLeft topRight

let test () : bool =
bounds q = ((1.0, 2.0), (5.0, 4.0))

;; run_test "create q1" test

a. (4 points) Property: When a quadrant is split, the sub quadrants are returned in the
order displayed below.

if q = ___________tr split q = ___________tr
		(1)	(2)
		____	_____
		(3)	(4)
bl__________| bl____|_____|

bl: bottom left point
tr: top right point
split q will return
[quadrant (1); quadrant (2); quadrant (3); quadrant (4)]

let test () =

split q1 = [create (1.0, 3.0) (3.0, 4.0);
create (3.0, 3.0) topRight;
create botLeft (3.0, 3.0);
create (3.0, 2.0) (5.0, 3.0)]

;; run_test "list of quadrants returned after split" test

PennKey: 7

b. (4 points) Property: When enclosing_quad is called with one point, the quadrant is a
square of size 1 (top right x - bottom left x = 1 and top right y - bottom left y = 1) and
the point is the bottom left bound.
let test () =
(∗ bounds (enclosing quad [(x , y)]) = ((x , y), (x+1, y+1)) ∗)
bounds (enclosing_quad [(1.0, 2.0)]) = ((1.0, 2.0), (2.0, 3.0))
;; run_test "enclosing_quad q1 1 point" test

c. (4 points) Property: enclosing_quad returns the smallest quadrant containing all the
points.
let test () =
bounds (enclosing_quad [(2.0, 3.0); (1.0, 2.0);
(5.0, 4.0); (1.0, 1.5)]) = ((1.0, 1.5), (5.0, 4.0))

;; run_test "enclosing_quad " test

d. (4 points) Property: make_quads returns only one quadrant when only one point is in
the list and the number of points n = 1. The quadrant is created using the property listed
in question 4.b.
let test () =
make_quads [(1.0, 2.0)] 1 = [create (1.0, 2.0) (2.0, 3.0)]

;; run_test "make_quad 1 point " test

PennKey: 8

e. (13 points) We can implement the Quadrant interface in many ways, but in this prob-
lem we use as the representation type a tuple of points that are the bottom left and
top right points respectively. Complete the following implementation of the quadrant
enclosing_quad operation. Note the following:

• We’ll define a Quadrant as follows: type quadrant = point * point

• When enclosing_quad is called with an empty list, the quadrant is of size 0 (bot-
tom left and top right points are the same).

• When enclosing_quad is called with one point, the quadrant is a square of size 1
and the point is the bottom left bound.

module Q : Quadrant = struct

type quadrant = point * point

let rec enclosing_quad (l: point list) : quadrant =
begin match l with
| [] -> ((0.0, 0.0), (0.0, 0.0))
| [h] -> begin match h with

| (x, y) -> ((x, y), (x +. 1.0, y +. 1.0))
end

| h :: y -> begin match y with
| [b] -> let (x, y) = h in

let (x0, y0) = b in
let left_X = min x x0 in
let left_Y = min y y0 in
let right_X = max x x0 in
let right_Y = max y y0 in
((left_X, left_Y), (right_X, right_Y))

| _ ->
let ((x0,y0), (x1, y1)) = bounds (enclosing_quad y) in
let (x, y) = h in
let left_X = min x x0 in
let left_Y = min y y0 in
let right_X = max x x1 in
let right_Y = max y y1 in
((left_X, left_Y), (right_X, right_Y))

end
end

PennKey: 9

5. Recursion and Trees (15 points)

Recall the type of a generic Binary Search Tree:
type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

Implement a (partial) function called scs, short for smallest containing subtree. This func-
tion should, when given two values that may appear in a binary search tree, return the small-
est subtree that contains both of those values, if possible.

For example, given the tree the smallest containing subtree of 1 and 4 is

t1 = 5 t2 = 3
/ \ / \
3 8 1 4
/ \ / \
1 4 7 10

Likewise, the smallest subtree of t1 containing 1 and 3 is also t2. On the other hand, the
smallest subtree of t1 that contains both 1 and 5 is the whole tree.

You should assume that the input tree is a binary search tree, and that the first argument
is smaller than the second. Your solution does not need to detect whether any of these
assumptions are violated. Your implementation must take advantage of the binary search
tree invariant and must work for generic binary search trees. If there is no such tree, e.g., if
the values don’t appear in the tree, return None.

The definition of a BST along with the insert, delete, and lookup functions are provided
in Appendix A. You’re welcome to use any of these in your code if needed.
(∗ Assume that x < y and t is a BST ∗)
(∗ Hint: The BST invariants will be helpful here! ∗)

(∗ Solution 1 ∗)
let rec scs (x: ’a) (y: ’a) (t:’a tree) : ’a tree option =
let rec loop (x: ’a) (y: ’a) (t: ’a tree) : ’a tree option =

begin match t with
| Empty -> None
| Node(lt, z, rt) ->
if x > z then loop x y rt
else if y < z then loop x y lt
else Some t

end
in
if (lookup t x && lookup t y) then loop x y t
else None

PennKey: 10

(∗ Solution 2 ∗)
let rec scs (x: ’a) (y: ’a) (t:’a tree) : ’a tree option =

begin match t with
| Empty -> None
| Node(lt, z, rt) ->
if x > z then scs x y rt
else if y < z then scs x y lt
else if lookup t x && lookup t y then Some t
else None

end

(∗ This solution also correctly returned the smallest common subtree,
but did not take advantage of the BST invariants and called lookup
at every recursive step (lookup only had to be called twice) ∗)

let rec scs (x: ’a) (y: ’a) (t:’a tree) : ’a tree option =
begin match t with
| Empty -> None
| Node(lt, z, rt) ->
if lookup lt x && lookup lt y then scs x y t
else if lookup rt x && lookup rt y then scs x y t
else if lookup t x && lookup t y then Some t
else None

end

PennKey: 11

Appendix A: (Binary Search) Trees

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

(∗ checks if n is in the BST t ∗)
let rec lookup (t:’a tree) (n:’a) : bool =
begin match t with
| Empty -> false
| Node(lt, x, rt) ->

if x = n then true
else if n < x then lookup lt n
else lookup rt n

end

(∗ returns the maximum integer in a ∗NONEMPTY∗ BST t ∗)
let rec tree_max (t: ’a tree) : ’a =
begin match t with
| Empty -> failwith "tree_max called on empty tree"
| Node(_, x, Empty) -> x
| Node(_, _, rt) -> tree_max rt
end

(∗ Inserts n into the BST t ∗)
let rec insert (t: ’a tree) (n: ’a) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

(∗ returns a BST that has the same set of nodes as t except with n removed (if it ’s there) ∗)
let rec delete (t: ’a tree) (n: ’a) : ’a tree =
begin match t with
| Empty -> Empty
| Node(lt, x, rt) ->

if x = n then
begin match (lt, rt) with
| (Empty, Empty) -> Empty
| (Empty, _) -> rt
| (_, Empty) -> lt
| (_,_) -> let y = tree_max lt in Node (delete lt y, y, rt)
end

else if n < x then Node(delete lt n, x, rt)
else Node(lt, x, delete rt n)

end

PennKey: 12

Appendix B: Quadrant Module Signature
The signature below defines the Quadrant interface and the module Q (whose code is not shown),
which implements that interface.

(∗ a point is defined by its x and y coordinates ∗)
type point = float * float

module type Quadrant = sig

type quadrant

(∗ create a new quadrant ∗)
val create : point -> point -> quadrant

(∗ return the bottom left and top right points of the quadrant ∗)
val bounds : quadrant -> point * point

(∗ divide the quadrant −−vertically and horizontally −− in 4 equal size sub quadrants ∗)
val split : quadrant -> quadrant list

(∗ return the smallest quadrant containing all the points ∗)
val enclosing_quad : point list -> quadrant

(∗ return only the points contained in the quadrant ∗)
val inside_quad : quadrant -> point list -> point list

(∗ return a list of quadrants . Each quadrant containing at most n points ∗)
val make_quads : point list -> int -> quadrant list

end

module Q : Quadrant = struct

type quadrant = point * point

(∗ ... rest of the code not shown ... ∗)

end

PennKey: 13

Appendix C: List Processing Higher Order Functions
Here are the higher-order list processing functions:
let rec transform (f: ’a -> ’b) (l: ’a list): ’b list =
begin match l with
| [] -> []
| h :: t -> (f h) :: (transform f t)

end

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)

end

PennKey: 14

