
CIS 120 Midterm I February 9, 2018

SOLUTIONS

1

1. Program design
For this problem, you will use the program design process to implement a function called
shortest. This function should find and return the shortest string in a nonempty list of
strings. If multiple strings have the same shortest length, this function should return the first
one that appears in the list. If this function is given an empty list, then it should fail (using
failwith).

a. (2 points)
First, write the type of the shortest function, as you might see in a signature or mli
file.
val shortest : ______string list -> string_____

b. (8 points)
Which of these tests agree with your understanding of the shortest function from the
problem description? Check YES for tests that capture this specification and NO for
tests that are buggy. Recall that run_failing_test succeeds when the provided test
fails.

i. let test () : bool =
shortest [] = "Fly, Eagles, Fly"

;; run_failing_test "shortest [] fails" test

� YES � NO

ii. let test () : bool =
shortest [] = ""

;; run_test "shortest []" test

� YES � NO

iii. let test () : bool =
shortest [""] = "Fly, Eagles, Fly"

;; run_failing_test "shortest empty string fails" test

� YES � NO
In this problem, run_failing_test succeeds whenever the testing function fails
(with failwith). However, in a correct implementation of shortest, the test-
ing function should return false. The comment also incorrectly indicates that a
failure is expected.

iv. let test () : bool =
shortest ["120"; "a"; "b"] = "a"

;; run_test "shortest is first occurring" test

� YES � NO

PennKey: 2

c. (16 points) The implementation of shortest is a single line that defers to a helper
function, called shortest_aux, that does all the work. It will be your job to implement
shortest_aux.
let rec shortest ss = fst (shortest_aux ss)

Note, in the implementation above we have deliberately left off the type annotations.
Furthermore, the fst function accesses the first component of a pair. For example,
fst (1,2) = 1.

Let’s restart the program design process for shortest_aux. The interface of this func-
tion indicates that it returns a pair of results.
val shortest_aux : string list -> string * int

The test cases for this function, such as the one shown below, show that the second
component of the result should be the length of the shortest string.
let test () : bool =

shortest_aux ["CIS"; "is"; "cool"] = ("is", 2)
;; run_test "shortest_aux returns shortest string and its length" test

The implementation of shortest_aux is on the next page.
(There is nothing to answer on this page.)

PennKey: 3

Fill in the blanks to complete the implementation of shortest_aux.

• You can use the OCaml library function String.length to calculate the length of
a string. (We have done this for you in one of the cases.)

• Your implementation should calculate the length of each string in the list only
once as it iterates through the list. We will take the efficiency of your solution into
account when grading this problem.

• If you wish, you may use fst and snd to access the components of a pair.
• You may not use any other auxiliary functions in your implementation.
• The blanks below are a hint to the size of our solution. If you need more space you

may use the scratch page, but be sure to mark the location of your code clearly.

let rec shortest_aux (ss : string list) : string * int =
begin match ss with
| [] -> failwith "need at least one"
| __[hd]__ -> ___ (hd, String.length hd) ___
| (hd :: tl) ->
let len = String.length hd in
__let p = shortest_aux tl in __________
__if (len <= snd p) ____________________________
__then (hd, len) ______________________________
__else p ______________________________

end

Note, there are several answers that pass the tests but do not satisfy the efficiency
requirements. For example, this version calls String.length twice as much as neces-
sary.
let rec shortest_aux (ss : string list) : string * int =
begin match ss with
| [] -> failwith "need at least one"
| __[hd]__ -> ___ (hd, String.length hd) ___
| (hd :: tl) ->
let len = String.length hd in
match tl with
| h2 :: tl2 ->
__if (String.length hd <= String.length h2)
__then shortest_aux (hd :: tl)
__else shortest_aux (hd2 :: tl)

end

Even worse, this one recalculates the result of the recursive call twice, making this
function particularly inefficient.
let rec shortest_aux (ss : string list) : string * int =
begin match ss with
| [] -> failwith "need at least one"
| __[hd]__ -> ___ (hd, String.length hd) ___

PennKey: 4

| (hd :: tl) ->
let len = String.length hd in
__if (len <= snd (shortest_aux tl)) ____________
__then (hd, len) ______________________________
__else (shortest_aux tl) ______________________

end

PennKey: 5

2. List recursion and Higher-order Functions (18 points)

The clean function processes a list of data readings in preparation for further analysis. In
particular, this function should, when given a list of numbers, filter out the negative numbers
and terminate the output list at the first occurrence of -999 (if present).

For example, clean [1;-1;3;-999;43;92] should return [1;3].

a. Define clean using a recursive function. In your answer below, you may not use any
library or helper functions such as @ or fold. Constructors (such as :: and []) and
operators (such as < and =) are fine.
let rec clean (l : int list) : int list =

begin match l with
| [] -> []
| x :: tl -> if x = -999 then []

else if x < 0 then clean tl
else x :: clean tl

end

b. Now recall the higher-order list processing function, fold:

let rec fold (combine: ’a -> ’b -> ’b) (base: ’b) (l: ’a list) : ’b =
begin match l with
| [] -> base
| h :: t -> combine h (fold combine base t)

end

Redefine the clean function using fold. Your answer may not be recursive. You also
may not use any other library functions such as @ or transform. As before, constructors
(such as :: and []) and operators (such as < and =) are fine.
let clean (l : int list) : int list =

fold (fun x acc ->
if x = -999 then []
else if x < 0 then acc
else x :: acc) [] l

PennKey: 6

3. Types (16 points)

For each OCaml value below, fill in the blank for the type annotation or else write “ill typed”
if there is a type error on that line. Your answer should be the most generic type that OCaml
would infer for the value—i.e. if int list and bool list are both possible types of an
expression, you should write ’a list.

Some of these expressions refer to the module S, which implements the SET interface. The
SET interface is shown in Appendix B. Note that all of the code appears after the module S

has been opened.

We have done the first one for you.

;; open S

let z : _____________ ’a list list ____________ = [[]]

let a : _______________ill typed_______________ = add 3 []

let b : _________’a set list___________________ = [empty; empty]

let c : _______________ill typed_______________ =
begin match (add 3 empty) with | [] -> 0 | x::xs -> 1 end

let d : ______________int set -> int set_______ = add 3

let e : _______’a list -> int__________________ =
fun x -> begin match x with | [] -> 3 | _ -> 4 end

let f : ______________int set set ______________ = set_of_list [add 3 empty]

let g : _____________int set list _____________ = [add 3 empty; add 4 empty]

let h : ___(int set -> int set) list___________ = [add 3; add 4]

PennKey: 7

4. Generic operations (10 points)

In the homework, you have seen that the < operator can be used to order ints and strings.
However, in OCaml, this operator is generic — it works for two arguments of any type, as
long as the two arguments have the same type.

This problem requires you to understand the behavior of the < operator on pairs from the
description given below. OCaml uses lexicographic ordering for pairs, which means that <
compares the components of the pairs left-to-right, in the same way as we might sort words
in a dictionary.

Definition (Lexicographic ordering): the pair (x1,x2) is less than the pair (y1,y2) when
x1 < y1 or x1 = y1 && x2 < y2

Check whether each expression returns true or false, or is ill-typed.

a. (1,0) < (0,1)

� true � false � ill-typed

b. (0,1) < (0,2)

� true � false � ill-typed

c. (3,5) < (3,1)

� true � false � ill-typed

d. (3,3) < (3,(3,1))

� true � false � ill-typed

e. ((1,5),4) < ((1,6),4)

� true � false � ill-typed

PennKey: 8

Binary Search Trees and Invariants
Now consider an implementation of the SYMREL that uses binary search trees to store pairs of
associated elements. For reference, a generic implementation of binary search trees appears
in Appendix A.
type ’a symrel = (’a * ’a) tree

To make sure that the relation is symmetric, when we add associations into the tree, we will
insert both orderings of the pair.
let add (x:’a) (y:’a) (r:’a symrel) : ’a symrel =

insert (insert r (x,y)) (y,x)

For example, we can draw the relation r1 = add 1 3 empty as the following tree

(1,3)
\
(3,1)

Furthermore, we can draw the BST corresponding to

r3 = add 2 3 (add 1 0 (add 1 2 empty))

as

(1,2)
/ \

(1,0) (2,1)
/ \

(0,1) (2,3)
\
(3,2)

(Note, there is nothing to answer on this page.)

PennKey: 9

5. (10 points)

In our BST-based implementation, we choose to maintain the following invariant.

INVARIANT: The tree must satisfy the binary search tree invariant. Furthermore, if a pair
(x,y) is stored in the tree, then the pair (y,x) must also be present.

Do the following int symrel values satisfy the invariant? Check YES or NO. You should
use the lexicographic ordering from Problem 4 to order the pairs in the tree.

a.
(1,2)
/ \

(1,0) (2,1)
� YES � NO

b.
(1,2)
/ \

(1,1) (2,1)
� YES � NO

c.
(1,2)
/

(1,2)
� YES � NO

d.
(1,2)
/

(2,1)
� YES � NO

e.

(1,3)
/ \

(1,2) (3,1)
/ \

(1,4) (4,1)
\
(2,1)

� YES � NO

PennKey: 10

6. (20 points total)

Appendix D contains an incomplete implementation of the SymRel module using BSTs.

Below, select the correct code to complete blanks (a) - (e). Take your time. Although more
than one answer may pass the tests shown in Appendix C, you should select the best answer.
In particular, be sure to exploit and preserve the representation invariant. The code below
uses functions defined in Appendix A as well as the append operator for lists (@).

a. (3 points)
� Empty � (Empty,Empty) � [] � ([],[])

Only the first answer is of the correct type ((’a * ’a) tree).

b. (4 points)
� x = y

� lookup r (x,y)

� lookup r (x,y) || lookup r (y,x)

� lookup r (x,y) && lookup r (y,x)

The instructions indicate that the code should take advantage of the invariant on the
previous page. This invariant states that if (x,y) is present then (y,x) will also be
present. Therefore, the correct answer need only use lookup with one of these pairs.

c. (3 points)
� Empty � (Empty,Empty) � [] � ([],[])

Only the first answer is of the correct type (’a list).

d. (5 points)
� [y]

� get_all x0 lt @ get_all x0 rt

� [y] @ get_all x0 lt

� [y] @ get_all x0 lt @ get_all x0 rt

� get_all x0 lt @ [y] @ get_all x0 rt

Because of the invariant, the correct solution needs to gather the second component of
all pairs where the first component is equal to x. In this case, we have found one such
pair. However, other pairs may occur in the left and right subtrees.

e. (5 points)

�
if x0 < x then get_all x0 lt
else get_all x0 rt

� if (x0 = y) then [x]
else get_all x0 lt @ get_all x0 rt

� get_all x0 lt @ get_all x0 rt

� get_all x0 lt @ [x0] @ get_all x0 rt

Again, the correct solution should use the invariant to reduce the search for pairs where

PennKey: 11

the first component matches x. Because of the BST invariant and the lexicographic
ordering of pairs, we can direct the search into either the left or right subtree.

PennKey: 12

Appendix A: (Binary Search) Trees

type ’a tree =
| Empty
| Node of ’a tree * ’a * ’a tree

let rec lookup (t:’a tree) (n:’a) : bool =
begin match t with
| Empty -> false
| Node(lt, x, rt) ->

if x = n then true
else if n < x then lookup lt n
else lookup rt n

end

(∗ Inserts n into the binary search tree t ∗)
let rec insert (t:’a tree) (n:’a) : ’a tree =
begin match t with
| Empty -> Node(Empty, n, Empty)
| Node(lt, x, rt) ->

if x = n then t
else if n < x then Node (insert lt n, x, rt)
else Node(lt, x, insert rt n)

end

(∗ An inorder traversal of the tree ∗)
let rec inorder (t: ’a tree) : ’a list =
begin match t with
| Empty -> []
| Node (lt, x, rt) -> inorder lt @ [x] @ inorder rt
end

PennKey: 13

Appendix B: SET Module Signature
The signature below defines a simplified version of the SET interface used in the homework project
about abstract types and the module S (whose code is not shown), which implements that interface.

module type SET = sig
type ’a set
val empty : ’a set
val add : ’a -> ’a set -> ’a set
val remove : ’a -> ’a set -> ’a set
val member : ’a -> ’a set -> bool
val set_of_list : ’a list -> ’a set
val equals : ’a set -> ’a set -> bool

end
module S : SET = struct (∗ ... code not shown ... ∗) end

PennKey: 14

Appendix C: SYMREL Abstract Type
A symmetric relation is a data structure that keeps track of associations between pairs of data values
using the following interface.

module type SYMREL = sig

(∗ A type recording relations between values of some generic type ∗)
type ’a symrel

(∗ an empty relation ∗)
val empty : ’a symrel

(∗ add a new association to the relation ∗)
val add : ’a -> ’a -> ’a symrel -> ’a symrel

(∗ are two elements associated by the relation ? ∗)
val related : ’a -> ’a -> ’a symrel -> bool

(∗ return all values related to the given value , in sorted order ∗)
val get_all : ’a -> ’a symrel -> ’a list

end

To help you understand the the specification of this abstract type, we have stated some its
properties and have defined test cases that demonstrate the expected behavior.

Property: If a pair of values has been added, the related operation returns true.

;; open SymRel
let r1 : int symrel = add 1 3 empty

let test () : bool = related 1 3 r1
;; run_test "added values are related" test

Property: A symmetric relation associates values symmetrically. i.e. the order of the arguments
does not matter when they are added or queried in the relation.

;; open SymRel
let r2 : int symrel = add 3 1 empty

let test () : bool = related 1 3 r2
;; run_test "relation is symmetric" test

PennKey: 15

Property: Only associated values are related.
;; open SymRel
let r3 : int symrel = add 2 4 (add 1 3 empty)

let test () : bool = not (related 1 4 r3)
;; run_test "added values are related" test

Property: The get_all operation returns all elements related to a specified element, in sorted
order.

;; open SymRel
let r4 : int symrel = add 2 3 (add 1 1 (add 1 2 empty))

let test () : bool =
get_all 1 r4 = [1;2]

;; run_test "1 is related to itself and 2" test

let test () : bool =
get_all 2 r4 = [1;3]

;; run_test "2 is related to 1 and 3, result is sorted" test

let test () : bool =
get_all 4 r4 = []

;; run_Test "unrelated elements return empty list" test

PennKey: 16

Appendix D: Partial SymRel implementation using BSTs
This partial implementation accompanies problem 6. The letters in the blanks below correspond to
parts (a) - (e) in the problem.

You may use this page for scratch space, but we will not read or grade any of your notes here.
;; open BST (∗ Definitions from Appendix A ∗)

module SymRel : SYMREL = struct

(∗ A type recording relations between values of some generic type ∗)
type ’a symrel = (’a * ’a) tree

(∗ an empty relation ∗)
let empty = __________(a)______________

(∗ add a new association to the relation ∗)
let add (x:’a) (y:’a) (r: ’a symrel) : ’a symrel =

insert (insert r (x,y)) (y,x)

(∗ are two elements associated by the relation ? ∗)
let related (x:’a) (y:’a) (r :’a symrel) : bool =

________________(b)______________________

(∗ return all values related to the given value , in sorted order ∗)
let rec get_all (x0:’a) (t:’a symrel) : ’a list =

begin match t with

| Empty -> ____________(c)_____________

| Node (lt, (x,y), rt) ->

if (x0 = x) then

__________(d)______________________

else

__________(e)______________________

end

PennKey: 17

